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From Robotic Toil to Symbolic Theft: Grounding Transfer from
Entry-Level to Higher-Level Categories

Abstract
Neural network models of categoricd perception (compresson d within-caegory similarity

and dlation o between-caegory differences) are gplied to the symbal-groundng problem
(of how to conned symbals with meanings) by conreding analog sensorimotor projedions to
arbitrary symbadlic representations via leaned caegory-invariance detedors in a hybrid
symbadlic/norsymbadlic system. Our nets are trained to caegorize and reme 50x30 pixe
images (e.g., circles, dli pses, squares and redangles) projeded orto the receptive field of a
7x7 retina. They first lean to do prototype matching and then entry-level naming for the four
kinds of stimuli, grounding thelr names diredly in the inpu patterns via hidden-unit
representations (“sensorimotor toil"). We show that a higher-level caegorizaion (e.g.,
"symmetric" vs. "asymmetric") can leaned in two very different ways. ether (1) diredly
from the inpu, just as with the entry-level caegories (i.e., by tail), or (2) indiredly, from
bodean combinations of the grounded caegory names in the form of propasitions describing
the higher-order category ("symbdic theft"). We analyze the achitedures and inpu
condtions that allow grounding (in the form of compressor/separation in internal simil arity
gpace to be "transferred” in this mnd way from diredly grounded entry-level caegory
names to higher-order caegory names. Such hybrid models have implicaions for the
evolution and leaning of language.



From Robotic Toil to Symbolic Theft: Grounding Transfer from
Entry-Level to Higher-Level Categories

1. Introduction

The noningustic or prelingustic part of us is purely robaic, which is to say puey
sensorimotor (Harnad 199%,b). Or, to put it in a more eaumenicd way, so as to make it clea
that "robaic" is anything bu pgorative in this context: the pinnade of our hierarchy of
robaic cgadtiesis avery spedal kind of sensorimotor skill, that of (1) colledively making
unique, arbitrary resporses that name objeds, events and states of affairs, and (2) combining
those resporses to describe further objeds, events and states (not necessarily present ones and
not necessarily describing them truly). This ability of a roba community to share names,
descriptions and the thinking and knowledge that underlie them is what it means to have ad
use language (Harnad 1996.

The dasscdly sensorimotor comporent of this ability -- the noninguistic interadion with
those objeds, events and states -- is the traditional domain of robaics. vision, locomotion,
objed reagntion and manipulation. But even in modeling that domain, robatics has fourd it
helpful, and perhaps necessary, to make use of internal structures and processs that are, if not

lingustic, then at least symbdlic, otherwise known as computational (Pylyshyn 1984.

1.1 Thesymbol grounding problem

A computer program is a set of rules [algorithms] for manipulating meaningless ymbalsin a
way that can be systematicdly interpreted as meaning something (e.g., payroll cdculations,
solutions to quedratic equations, chessmoves, moon-landing simulations, or natural language
text). But athough the symbads are meaningfully interpretable by their users, they are
meaninglessin and d themselves, just as the symbals on the pages of this paper are. For this
reason, symba systems alone ae not viable models of the mind -- they canna be the
languege of though. This is the symbad groundng problem (Harnad 199). To embody
though, a cogntive system must be aitonamous: the conredions between its ymbals and
what they stand for must be dired and intrinsic to the system, rather than having to be



mediated by an externa user/interpreter.

A symbd is a physicd objed that represents other objeds. In the most important and
powerful symbad systems, those of natural language, symbals can expressthougtts by being
combined and recombined to form propasitions with truth-values (true or false). All artificia
symbad systems (such as those of mathematics and physics) are merely subsets of naturad
language. The "shape" of asymbad in asymbad system is arbitrary. It neither resembles nor is
causadly conreded in any way to the obed it represents. It is merely part of a forma
notational convention that its users have ayreed to adopt, whether it isaword in alanguaege, a
numeral of arithmetic, or abinary digit (0/1) in alow-level computational code.

How do symbadls come to mean something? One candidate answer is "by definition,” but a
definition just consists of further symbols. Where do thase symbads get their meaning?
Consider someone who spe&ks no Chinese trying to find the meaning d a Chinese symbad in
a Chinese-Chinese dictionary: All they can dois ®ach endlesdy from symbadl to meaningless
symbal. How can the meanings of the symbadlsin a symbad system be grounded in something
other than just further ungrounded symbals?

According to "computationali sts," cogrition is computation (Pylyshyn 1984, implemented in
a purely symbadlic "languege of though" (Foda 1975. The meanings of the symbadls arise
somehow from the system's being conneded in "the right way" to the things in the world that
its ymbals gand for. But what isthis "right way"? And will the properly "conreded" system
still be apure symba system linked to the world, or will the conreding system now be part
of a hybrid symbadlic/norsymbalic "language of though"? In other words, is thoudht redly

just symbadlic, or isit sensorimotor too, which isto say, robatic?

1.2 Neural networks and categorical perception

To "discriminate” is to dscern whether two patterns projeded orto our sensory surfaces are
the same or different. This does not require sophisticaed symbadlic operations, only a

comparison ketween iconic representations, the internal analogs of the sensory patterns,

perhaps by superimpaosing ore onto the other.



But to discriminate inpusis not yet to say what those inpus are. To identify an dbjed, one
must somehow deted the invariant feaures in its iconic representations, the feaures that
make them icons of that particular objed (or kind of objea) rather than ancther; the rest of the
feaures must be ignared. The more abstrad representations that this feaure-filtering of the

icons generates are caegoricd representations (Harnad 1987.

Categoricd representations are still only sensory rather than symbalic, becaise they continue
to preserve some of the "shape" of the sensory projedions, but this $ape has been "warped”
in the service of caegorizaion: The fedure filtering has compressed within-category
differences and expanded between-caegory distances in similarity space so as to alow a
reliable cdegory boundry to separate members from normmembers. This
compresson/expansion effed is cdled "caegoricd perception” (Harnad 1987 and hes been
shown to occur in both human subjeds (Goldstone 1994 Andrews et a. 1998; Pevtzow &
Harnad 199§ and neural nets (Harnad et al. 1991, 1995 Tijssling & Harnad 1997 Csato et
a. submitted) during the aurse of caegory leaning.

Categoricd representations can be wnreded to labels, the names of the caegories, but such
labels gill do nd mean anything urtil they are combined to form propasitions which can be
true or false. Only at that stage do they bemme symbadls, and the propasitions of which they
are omporents beaome symbdli c representations (Harnad 1987).

One of the most natural capabiliti es of neural nets is category leaning. Nets can be trained to
deted the invariants in sensory inpu patterns that allow them to be sorted in a spedfied why.
Once the patterns have been sorted, the cdegory can be given a name. That name is then
grounced in the system's autonamous cgpadty to pick out, from the “shadow” it casts on its
sensors, the thing (or kind of thing) in the world that the name refers to -- without the

mediation and interpretation d an external user.

The training of both neural nets and people to caegorize through trial and error with
corredive fealbadk has cometo be cdled "supervised leaning," but we will refer to it here &
the aquistion d caegories through "sensorimotor toil," to contrast it with a radicdly
diff erent way of aaquiring categories, which we will refer to as "symbadlic theft." Acquiring a
caegory through"toil" is based onleaning through dred sensorimotor interadion with its
members under the guidance of corredive feedbad. The outcome is a new caegory and

usuadly also a new name for it; the name can then serve & a grounded elementary symbal.



Acquiring a cdegory through "theft,” in contrast, is based on symbadls only, rather than on
sensorimotor interadion with the things the symbos gand for: The caegory is merely
described by a propasition composed of grounded symbals. (Why we refer to this as "theft"
will be eplained in Sedion 4 in the context of a hypahesis abou the evolutionary role of
language; for now, just think of a “stolen” category as one that is acquired withou having to
do any trial and error training with instances and feedbadk in order to get it; see Cangelos &
Harnad 1998)

Categories grounced dredly through sensorimotor toil have iconic and caegoricd
representations, whereas caegories grounded indiredly throughsymbali c theft have symbalic
representations consisting d their propaositional descriptions in the form of symbad strings.
The descriptions are Bodean o even more complex, quantified combinations of caegory
names that are dready grounded, ether diredly by toil, or indiredly by theft. In the
smulations described below, we test what happens when nets that first acqquire a set of
caegories through dred sensorimotor toil are then taught a higher-level caegory through
symbadlic theft (i.e., by being gven a string of symbadls that tells them what the higher-order
caegory is). We will show that sensorimotor groundng nd only transfers to higher-order,
symboal-based caegories in a bottom-up fashion, but that the new, symbal-based caegories
aso have some of the dharaderistic top-down effeds of sensorimotor caegory leaning,
namely, that they deform or “warp” internal similarity spacein the service of categorisation
(Tijssling & Harnad 1997). This snsorimotor "imprint" on symbalic though may be what
groundsit.

2. Method

2.1 The stimulus set

Our neural nets weretrained to caegorize and nrame 50 by 50 pxel images of circles, €lli pses,
sguares and redangles projeded orto thereceotive field of a7 by 7 unt "retina." Oncethe net
had goundd these four Entry-Level (E-Level) caegory names ("circle,” "éllipse" etc.)
through dred trial and error experience supervised by corredive fealbadk ("toil"), it was
taught the Higher-Level (H-Level) caegory "symmetric/asymmetric’ on the basis of strings
of symbals alone ("theft").



A total of 292 stimuli were used (256training, 32 test, and 4teadinginpu stimuli). The 256
stimuli consisted of four groups of circles, elli pses, squares, and redangles (Figure 1). In eat
group there were 64 (8 by 8) stimuli that varied in size (8 sizes generated by reducing the
diameter by two pixels) and retinal position (8 pasitions generated by shifting the center of
the figure by 1 pixel in the aght adjacent cdls). The 32 test stimuli were also subdvided into
four groups of eight stimuli ead, one for ead size The position for ead size was hence
fixed, but it varied aaoss $zes. The four teading inpus were the largest instances of eath

shape (prototype).

< Figure 1 abou here>

2.2 Neural networks

Ten 3layered feed-forward nets differing in their randam initial weights were exposed to the
256training stimuli during the threeleaning stages. The input layers consisted of two groups
of units: the retina, with 49 units (7 by 7) and the 6 lingustic units (one eab for the six

caegory names. "circle" "dlipse" "square” "redangle" "symmetric* and "asymmetric"). The
hidden layer had five units recaving conredions from both groups of inpu units. The output

had the same organizaion as the 49 retinal units plus 6 symbadli c-name units.

< Figure 2 abou here>

Whereas the wding d the symbdic units was locdist (i.e, ead unt was on when its
correspondng label was adive), the wding of the retinal units was more complex. We used
the @mding system of Jambs & Kosdyn (199) with retina units recaving adivation from
their receotive fieldsin the 50 by 50 pxel matrix depicting ead of the 256 geometric figures.
The receptive field of one retinal unit was a drcular areall (partially overlapping) pixelsin
diameter. Because of the receotive field owerlap (3 pixels), there were 49 receptive fields
arranged in 7 columns by 7 rows. The adivation formula for the retinal units used the
Gausgan dstribution centered on the receptive field. Hence pixels in the center of the field

contributed more to the adivation d theretinal unit than those in the periphery.



The formulafor the adivation x of eat Gaussan retina unitis:

1 2

1 -
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where p isthe locaion d the pixel, misthe mean of the Gaussan unt, and s refersto the size
of thereceptive field. In our case s= .45

2.3 Training procedure

The training procedure mnsisted of three stages for caegory leaning and reming: (1)
prototype-based sorting, (2) E-Level naming, and (3) H-Level naming. In al the leaning

stages in which names were used, there was a further imitation task (Figure 3).

< Figure 3 abou here>

2.3.1 Prototype-Based Sorting. The net was first trained, via badkpropagation, to sort the 256
training stimuli into the four caegories (64 stimuli ead)) by produwing as output the
"prototype" of ead caegory in the form of the largest circle, €llipse, square or redange
(coded the same way as the rest of the stimuli).

2.3.2 Entry-Level Naming. The net next leaned to respondto ead stimulus by producing
bath its prototype shape and its category name.

2.3.3 Higher-Level Naming. H-Level caegories such as "symmetric/ asymmetric’ can be
leaned in ore of two ways, either (1) diredly from the retina inpu, as with the E-Level
caegories ("sensorimotor toil"), or (2) from bodean combinations of the grounded caegory
names ("symbadlic theft"). We investigated (2): The net receved as inpu the conjunction of
the grounded name plus a new name (either "asymmetric" or "symmetric") and was required,
through error-correding feedbadk, to generate both names as output. (Simultaneous

presentation o E-level and H-level names makes it unrecessary to use areaurrent network to



lean the aciation.) A net that leans that two different grounded names, "circle" and
"square," are dways combined with the same new name, "symmetric,” shoud be able to name
a drcle bath "circle" on the basis of the prior sensorimotor groundng, and"symmetric" on the
basis of the new symbadlic groundng.

2.3.4 Imitation learning. The imitation task is aternated with ead tria of the naming task. It
congists of an extra adivation cycle that allows the net to "pradice’ on the caegory name

leaned in the previous naming cycle.

2.4 Backpropagation

One leaning epoch consists in the presentation d al 256 training stimuli. The first leaning
stage (Prototype-Based Categorizaion) consists of 10,000 epochs. This is necessary becaise
of the large number of retinal units (49) that need to be trained. The two E-level and H-level
naming tasks require 2,000 and 10® epochs, respedively. Each leaning condtion is
replicated with 10 nets having dfferent randam weight initiali zations. The 10 replications of
the second and third stages, however, are constrained to the weights that were trained in their

previous gage.

3. Results

3.1 Learning error and generalization

All ten rets leaned the three tasks siuccessully. The final average eror for the first stage,
Prototype-Based Categorizaion, was .09 after 10,000 epochs. (Figure 4a). This error is not
very low, but in most of the netsit was lessthan .05; it was only in afew that it was abou 0.1.
Nevertheless the cdegorization d al the stimuli was unambiguots, that is, ead shape was
aways caegorized corredly; the arors pertain only to some imperfedions in generating the
right prototype (the largest figure for ead shape) in this hybrid iconic/caegoricd task. The

same level of error was attained in the E-Level Naming stage, with afina error of .08 (Figure



4b).

The eror inthe H-Level leaning was very low, abou .01, because only the error in the name
units is computed. The pattern in all three ondtions is a rapid initial deaease in the ealy

training epochs. After that, the error deaeases very littl e (Figure 4c).

The results of the generalization test showed that after the prototype leaning the 32 test
stimuli were properly caegorized in the four E-Level caegories. The same good

generdli zaion performance was obtained in the other two leaning stages.

< Figure 4 abou here>

3.2 Categorical perception effects

At the level of the hidden unts, the net builds caegoricd representations which must sort
ead icon reliably and corredly into its own category. This can be though of as a fedure-
filter that reduces the cdegory confusability by deaeasing the within-caegory differences
among the icons and increasing the between-category differences as needed to reliably master
the sorting task (Harnad 1987).

For the threeleaning stages of ead o the 10 nets, we computed means and variances in the
Euclidean distances for all 256 representations in the 5-dimensional hidden unit adivation
gpace We first computed the central (mean) points for the four categories. These were then
used to compute both within- and between-caegory distances. The within-caegory variance
is a measure of the distance between eat of the 64 points and its respedive cdegory mean.
Thereisa dea deaease in within-category variance from before prototype leaning (.315) to
after (.2). That is, during the murse of the prototype leaning the 64 points of ead category
move doser to ore another [MANOVA: F(9,1)=6.12, p<.035]

A further within-category compresson from prototype matching (.2) to naming (.172) shows
the dfeds of arbitrary naming an caegoricd representations (prototypes are analog, names
are abitrary) [F(9,1)=14.9; p<.004].



< Figure 5 abou here>

The same dfeds are observed with the between-caegory diff erences (the distances between
the centers of the four caegories). From before leaning (.15) to prototype matching (1.14),
the arerage between-caegory distanceincreases for al six pairwise mmparisons between the
four caegory means [F(9,1)=1034 p< 0.0001)]. A further but smaller increase occurs with
naming (1.16; F(9,1)=28, p< 0.000]). Figure 6 shows the between-caegory distances for a
sample of pairwise mwmparisons.

< Figure 6 abou here>

After prototype-based caegorizaion, the within-category-to-be distances between the two
symmetric shapes (Circle [C] vs. Square[S], .82) and the two asymmetric ones (Elli pse [E]
vs. Redangle[R], .91) were small er than the distances between the four between-category-
to-bepars(Cvs. EandCvs. Rbath, 1.12; Svs. R, 1.32, Evs. S, 1.42; Figure 6). Thismeans
that when the four prototype-based caegories are formed, the two symmetric pairs and the
two asymmetric ones are drealy closer to ore anather than the between-caegory pairs are.
The higher order caegorization task starts with thisinitial smilarity structure.

In this nse, the symmetric/asymmetric distinction can be thoudht of asa somewhat
“prepared” category, asthereisarealy anintrinsic biasin their simil arity structure. A harder
task would be one in which the within and between distances for the (future) categories are
initially equal, but if the distances are dso small, this can runtherisk of making the
caegorizaiontask unleanable (Pevtzow & Harnad 199).

3.3 Grounding transfer

We next tested whether groundng could be "transferred" from diredly grounded names to H-
Level ones. Can a net that has leaned the cdegory "symmetric" indiredly through symbadlic
theft generalize it to the dired retinal inpu? To test this, after the H-Level training we



presented the retinal stimuli alone (seeFigure 3, last column) and computed the frequency of
corred resporses for the E-Level names (criterion for all condtions: corred bit > 0.5, others
<0.5)

Table | reports percent corred for the E-level names (left column for ead net) and the H-
Level names (right column). A net’s successcriterion was at least 50% corred. Nine of the
ten nets met this criterion for Entry-Level names and eight did for H-Level names (seeshaded
columnsin Tablel). Assuming chanceto be .5, the binomial probability of 9/10 nets
succesdul by chanceis.0098and (and for 8/10, .044). Hencethe E-Level grounding
succesdully transferred to the H-Level categorizaion.

We dso dd a mntrol to see whether this outcome depended on some uncontrolled variable
rather than groundng transfer. For a set of nets, the E-Level leaning stage was kipped; H-
Level leaning followed immediately after prototype leaning. The results are shown in Table
II. Based onthe same aiterion asin Table I, nore of the ten nets was succesgul in the E-level

naming, and ony three were succesdul for the H-level naming.

< Figure 7 abou here>

< Table!| abou here>

< Tablell abou here >

We can also court the total number of corred resporsesinsteal of the number of corred nets.
Since the total number of naming trials is high (2560 for E-Level plus H-Level), we can use
the Gaussan dstribution and compute the z value for the difference between the two
probabiliti es. For E-Level naming, the percent corred is 97% for the groundng transfer test
and 13% for the controls (prototype leaning orly). For H-Level naming, the percent corred is
92%, compared to 63% for the controls. Here we will compare only the probabiliti es for H-

Level naming. Z is computed using the foll owing formula:

10
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where P, and P, are respedively the two pasitive probabiliti es in the test and courter-test,
and Ql and Q2 aretheredprocd percentages (Q =100- P ). Nis256Q

For the difference between the two H-level probabilities, z is 30.3 (N=256Q p<.000L),

confirming that prior dired groundng is esential for groundng transfer.

3.4 Extending the ssmulation from extensional to intentional categories.

To control for the possbility that our findings applied orly to conjunctions of individuals and
conjunctions of symbals, we replicated and extended the groundng transfer test from merely
extensional H-Level caegories (based on bodean combinations of individuals) to intensional
ones (based on bodean combinations of feaures) usng a second set of stimuli: animal shapes
(horse and turtle) and texture feaures (stripes and spats) (see Figure 8). With this
combination d individuals and feaures (e.g., horse and stripes) as E-level stimuli (rather

than orly individuals and individuals, asin the prior smulations), it was possble to tead the
H-level names by combining them into bodean descriptions of new H-level individuals (e.g.,
zebras). The H-level "zebrd' name was trained in one stage using the name conjunction:
"horse +dtripes.” The test for the H-level "zebra" category was then whether the zdora shape
(an image of a striped horse) could be @rredly named. In the prior shape experiment, the H-
level names had been derived by conjoining two individuals (e.g. circle and square) to lean a
new abstrad fedure cdegory (symmetric). The training had been in two stages, one for
leaning that "circle" was "symmetric" and the other for leaning that "square" was likewise
"symmetric". The groundng transfer test was also in two stages, one for ead symmetric
shape. The zdora simulations used the same method as in sedion 2, except that (apart from the
new stimuli), the H-level training and testing involved only one stage for ead H-leve
caegory ("Horse" + "Stripes' ="Zebra', "Turtle" + "Spats' = "Sportoise”).

Tables |l and IV report percent corred for groundng transfer for the H-level stimuli with the
standard and control nets (omitting the E-level naming), respedively. Eight of the 10

experimental nets but nore of the 10 control nets were succes<ul.

11



The percent corred for instances of naming (rather than of succesgul networks) was 83% in
the eperimental condtion and 7?6 in the control (N=900). The difference was highly
significant.

These results are similar to thaose for the shape smulations. Only the nets that leaned the
direa groundng of the E-level names "horse" and "stripes’ were ale to ground the H-level
names, corredly naming the zdora shape they had never encountered during training. The
control nets could na name the H-level caegories becaise they had nogroundng for the E-
level names.

< Figure 8 abou here>

< Tablelll abou here >

< TablelV abou here >

4. Discussion

These results confirm and extend findings with ather connedionist models of caegoricd
perception (Harnad, Hanson & Lubin 1995 Csato et a., submitted). When trained to
caegorize neura nets build internal representations that compress differences within
caegories and expand them between. These data ae dso consistent with related findingsin a
conredionist model with locdist encoding of perceptua feaures (Cangelos & Harnad 1998.

Ours is a "toy" model, but it is hoped that the findings will contribute toward constructing
hybrid models that are immune to the symba groundng problem. Names (symbals) are
grounced via net-based connedions to the sensory projedions of the objeds they stand for.
The groundng of E-Level symbads can then be transferred to further symbals through
Bodean combinations of symbals expressng propasitions.

12



The antrol simulation showed that dired groundng of at least some names is necessary. We
grounced the names of the four E-Level shapes diredly in their retina projedions. The same
retinal projedions then also adivate the new H-Level name, "symmetric,” through their
indiread groundng. Circles and sguares adivate some mmmon caegoricd representation in
the hidden layer that in turn adivates "symmetric'; redanges and ellipses adivate
"asymmetric."

The ondtions that lead to groundng transfer require further smulations and analysis. E-
Level naming proved sufficient for groundng transfer in most of the nets (80%). Thirty
percent of the control nets were likewise @le to transfer groundng to the H-Level names,
probably becaise compressorn/separation induced by their training in E-level categorisation
and raming reduced the variability in the hidden layer. This can be tested with further

randamized and based control condtions.

During the prototype-based caegorizaion, the nets lean to produce four separable hidden
representations for ead of the cdegories (64 shapes in ead), with very smilar adivation
patterns within caegories and very different ones between. In addition, there is aready some
compresson d the symmetric and asymmetric shapes at the prototype level. These "head-
gtarts’ in similarity spacemay explain hav some of the nets managed to master the H-Level
naming withou being taught the E-Level naming: They arealy hed the caegories, just not
yet their names. And so it may well be with many caegories, randam sealing is an urlikely

model for theinitial condtions of biologicd caegorizaion.

Some cdegories will alrealy be "prepared” by evolution; others will be a@juired on the basis
of shared iconic or functional resporses, rather than arbitrary naming. But when naming daes
occur, it will benefit from foll owing these pre-existing gadients or boundxies in smilarity
gpace- as long as the requisite new caegory goes with them rather than against them. This

tooisaform of groundngtransfer.

This explanation is confirmed by the analysis of the naming errors for the E-Level names in
the antrol condtion. Nets named only a very low propation d shapes corredly in this
condtion (15%) because it gets harder to be right by chance & the number of bits increases.
With two passhiliti es, symmetric/asymmetric, nets can achieve 50% by chance, but with four
(circle, sguare, etc.), chance is 25%. Moreover, the E-Level control errors reved that circles

are often cdled "circle + square" or smply "square” and conversely. This interconfusability

13



of circles and squaresiswhat one would exped from their close cdegoricd representations.

Our moded for caegorization and raming can aso test hypaheses abou the origin o
cogntion and d language (Cangelos & Paris 1998. The propasition describing the H-Level
caegories in the present smulation ("Circle [is] Symmetric" "Ellipse [is] Asymmetric" etc.)
came s akind d "Deus ex Madina': The E-Level categories could have been aqquired by
ordinary trial and error reinforcement in the world, through leaning supervised by the
consequences of caegorizing and miscaegorizing. This is what we have cdled leaning by
"sensorimotor toil". But in aredistic world the symbalic propasitions on which the H-Level
caegories were based would have had to come from someone who arealy knew what was
what.

To get caegories by "symbdlic theft,” then, is to get them on the basis of the grounced
knowledge of others, transferred to us via symbalic propasitions whose terms - al but one -
are dready grounded for us too. This new way of acquiring caegories gares us a gred ded
of sensorimotor tail. (Imagine if everything we leaned from books and ledures instead had to
be leaned dredly throughtrial and error experience) Hence gaining intelledual goods via
heasay isakind d theft, but in most cases it is aso avictimlesscrime, as the provider of the
knowledge loses nothing by gving it away; perhaps it is more like a form of redprocd
dtruism. There ae exceptions, such as when the knowledge @mncerns <arce resources for
which there is competition (Cangelos & Harnad 1998. But a paradigmatic example of the
victimlessnature of lingustic theft would be this article itself, which, if its reader has gained

anything from it, certainly leaves the authors nore the worse off for it.
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FIGURES
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Figure 1 - Stimulus set and localist coding of naming units



Figure 2 - Neural network architecure and stimulus coding
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Figure 3: Neural network inpu and output in the leaning and test stages. Absence of inpu or
output in the spedfied set of unitsisindicated by *.
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Figure 4 - Leaning error for the Prototype Sorting (4a), Entry-level Naming (4b), and H-level

naming (4c).
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Figure 5 - Average within-category distances
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Figure 6: Between-category distances for the pairs Circles-Squares and Elli pses-Redangles
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Figure 7: Neura network input and output in the cntrol simulations.
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Figure 8 - Stimuli used in the zdorasimulations



TABLES

Net 1 net 2 net 3 net 4 net5 net 6 net 7 net 8 net 9 net 10
E H E H E H E H E H E H E H E H E H E H

100/ 100] 100| 100} 100| 100 100| 100] 100| 100] 100| 100] 100| 100 100| 0} 100| 100|100/ 100
100| 100] 75| 100} 100| 100f 100| 100} 12| 100] 100| 100] 100| 100} 100| 100} 100| 100|100, 37
100/ 100] 100| 100} 100| 100| 100| 100] 100| 100] 100| 100] 100| 100 100| 0} 100| 100|100/ 100
100/ 100] 100| 100} 100| 100 100| 100} 100| 100] 100| 100] 100| 100} 100| 100} 100| 100|100, 37

O 0wom O

Table| - Percent corred in grounding transfer test. For ead net, number on the left is correct
responses for E-level names and on right for H-level names. Rows are for the 64 circles (C),
ellipses (E), squares (S), and rectangles (R). Shaded cell s indicate success in E-level (light
grey) or H-level (dark grey) caegorization in the grounding transfer (criterion: at least 50%)



Net 1 net 2 net 3 net 4 net5 net 6 net 7 net 8 net 9 net 10
E H E H E H E H E H E H E H E H E H E H

C | 100 100 ©Oj100f O 8 O] O] 04100 Of100] 0O]100]100|100fj100|100]100 100
E 0] 0j100f O|100f100/100f O O] Of100f O O O oOf O O] 0f100
S 0| 100|100, 100} O O] O O] 0O]100{100|100f O|100F 0O/ 100f O0j100f O]100
R 0o 0| O 87 O 58] O0f100f O O] O/1004 O O O O O O 0O]100

Table Il - Percent correct in grounding transfer controls. For ead net, number on left is
corred responses for E-level names and on right for H-level names. Rows are for the 64
circles (C), ellipses (E), squares (S), and redangles (R). Shaded cell s indicate the nets that
succealed in E-level (light grey) or H-level (dark grey) grounding transfer (criterion: at least
50% correct).



nil n2 n3 n4d n5 n6 n7 n8 n9 nl0

Zebra 62 100]|100| 100| 100] 20]100| 33| 66] 100
"Sportoise" | 100| 100| 100| 100| 100 0| 100| 100| 100| 100

Tablelll - Percent correct in grounding transfer test for Zebra simulations. Numbers refer to
H-level names. Shaded cells refer to the nine succesSul H-level nets in the grounding transfer
(criterion: at least 50% correct)



nil n2 n3 n4d n5 n6 n7 n8 N9 nl0

Zebra 100| 42| 67| 100| 53| 100| 20| 30 0] 100
"Sportoise" 0] 100 0 0 0 0 0 0 0 0

Table 1V - Percent correct in grounding transfer controls for Zebra series. Numbers refer to H-

level names. No net met the 50% successcriterion.



