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From Robotic Toil to Symbolic Theft: Grounding Transfer from
Entry-Level to Higher-Level Categories

Abstract

Neural network models of categorical perception (compression of within-category similarity

and dilation of between-category differences) are applied to the symbol-grounding problem

(of how to connect symbols with meanings) by connecting analog sensorimotor projections to

arbitrary symbolic representations via learned category-invariance detectors in a hybrid

symbolic/nonsymbolic system. Our nets are trained to categorize and name 50x50 pixel

images (e.g., circles, elli pses, squares and rectangles) projected onto the receptive field of a

7x7 retina. They first learn to do prototype matching and then entry-level naming for the four

kinds of stimuli, grounding their names directly in the input patterns via hidden-unit

representations ("sensorimotor toil "). We show that a higher-level categorization (e.g.,

"symmetric" vs. "asymmetric") can learned in two very different ways:  either (1) directly

from the input, just as with the entry-level categories (i.e., by toil ), or (2) indirectly, from

boolean combinations of the grounded category names in the form of propositions describing

the higher-order category ("symbolic theft"). We analyze the architectures and input

conditions that allow grounding  (in the form of compression/separation in internal similarity

space) to be "transferred" in this second way from directly grounded entry-level category

names to higher-order category names. Such hybrid models have implications for the

evolution and learning of language.
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From Robotic Toil to Symbolic Theft: Grounding Transfer from
Entry-Level to Higher-Level Categories

1. Introduction

The nonlinguistic or prelinguistic part of us is purely robotic, which is to say purely

sensorimotor (Harnad 1995a,b). Or, to put it in a more ecumenical way, so as to make it clear

that "robotic" is anything but pejorative in this context: the pinnacle of our hierarchy of

robotic capacities is a very special kind of sensorimotor skill , that of (1) collectively making

unique, arbitrary responses that name objects, events and states of affairs, and (2) combining

those responses to describe further objects, events and states (not necessarily present ones and

not necessarily describing them truly). This abil ity of a robot community to share names,

descriptions and the thinking and knowledge that underlie them is what it means to have and

use language (Harnad 1996).

The classically sensorimotor component of this abilit y -- the nonlinguistic interaction with

those objects, events and states -- is the traditional domain of robotics: vision, locomotion,

object recognition and manipulation. But even in modeling that domain, robotics has found it

helpful, and perhaps necessary, to make use of internal structures and processes that are, if not

linguistic, then at least symbolic, otherwise known as computational (Pylyshyn 1984).

1.1 The symbol grounding problem

A computer program is a set of rules [algorithms] for manipulating meaningless symbols in a

way that can be systematically interpreted as meaning something (e.g., payroll calculations,

solutions to quadratic equations, chess moves, moon-landing simulations, or natural language

text). But although the symbols are meaningfully interpretable by their users, they are

meaningless in and of themselves, just as the symbols on the pages of this paper are. For this

reason, symbol systems alone are not viable models of the mind -- they cannot be the

language of thought. This is the symbol grounding problem (Harnad 1990). To embody

thought, a cognitive system must be autonomous: the connections between its symbols and

what they stand for must be direct and intrinsic to the system, rather than having to be
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mediated by an external user/interpreter.

A symbol is a physical object that represents other objects. In the most important and

powerful symbol systems, those of natural language, symbols can express thoughts by being

combined and recombined to form propositions with truth-values (true or false). All artificial

symbol systems (such as those of mathematics and physics) are merely subsets of natural

language. The "shape" of a symbol in a symbol system is arbitrary. It neither resembles nor is

causally connected in any way to the object it represents. It is merely part of a formal

notational convention that its users have agreed to adopt, whether it is a word in a language, a

numeral of arithmetic, or a binary digit (0/1) in a low-level computational code.

How do symbols come to mean something? One candidate answer is "by definition," but a

definition just consists of further symbols: Where do those symbols get their meaning?

Consider someone who speaks no Chinese trying to find the meaning of a Chinese symbol in

a Chinese-Chinese dictionary: All they can do is search endlessly from symbol to meaningless

symbol. How can the meanings of the symbols in a symbol system be grounded in something

other than just further ungrounded symbols?

According to "computationalists," cognition is computation (Pylyshyn 1984), implemented in

a purely symbolic "language of thought" (Fodor 1975). The meanings of the symbols arise

somehow from the system's being connected in "the right way" to the things in the world that

its symbols stand for. But what is this "right way"? And will the properly "connected" system

still be a pure symbol system linked to the world, or will the connecting system now be part

of a hybrid symbolic/nonsymbolic "language of thought"? In other words, is thought really

just symbolic, or is it sensorimotor too, which is to say, robotic?

1.2 Neural networks and categorical perception

To "discriminate" is to discern whether two patterns projected onto our sensory surfaces are

the same or different. This does not require sophisticated symbolic operations, only a

comparison between iconic representations,  the internal analogs of the sensory patterns,

perhaps by superimposing one onto the other.
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But to discriminate inputs is not yet to say what those inputs are. To identify an object, one

must somehow detect the invariant features in its iconic representations, the features that

make them icons of that particular object (or kind of object) rather than another; the rest of the

features must be ignored. The more abstract representations that this feature-filtering of the

icons generates are categorical representations (Harnad 1987).

Categorical representations are still only sensory rather than symbolic, because they continue

to preserve some of the "shape" of the sensory projections, but this shape has been "warped"

in the service of categorization: The feature filtering has compressed within-category

differences and expanded between-category distances in similarity space so as to allow a

reliable category boundary to separate members from nonmembers. This

compression/expansion effect is called "categorical perception" (Harnad 1987) and has been

shown to occur in both human subjects (Goldstone 1994; Andrews et al. 1998; Pevtzow &

Harnad 1998) and neural nets (Harnad et al. 1991, 1995; Tijsseling & Harnad 1997; Csato et

al. submitted) during the course of category learning.

Categorical representations can be connected to labels, the names of the categories, but such

labels still do not mean anything until they are combined to form propositions which can be

true or false. Only at that stage do they become symbols, and the propositions of which they

are components become symbolic representations (Harnad 1987).

One of the most natural capabiliti es of neural nets is category learning. Nets can be trained to

detect the invariants in sensory input patterns that allow them to be sorted in a specified why.

Once the patterns have been sorted, the category can be given a name. That name is then

grounded in the system's autonomous capacity to pick out, from the “shadow” it casts on its

sensors, the thing (or kind of thing) in the world that the name refers to -- without the

mediation and interpretation of an external user.

The training of both neural nets and people to categorize through trial and error with

corrective feedback has come to be called "supervised learning," but we will refer to it here as

the acquisition of categories through "sensorimotor toil," to contrast it with a radically

different way of acquiring categories, which we wil l refer to as "symbolic theft." Acquiring a

category through "toil " is based on learning through direct sensorimotor interaction with its

members under the guidance of corrective feedback. The outcome is a new category and

usually also a new name for it; the name can then serve as a grounded elementary symbol.



4

Acquiring a category through "theft," in contrast, is based on symbols only, rather than on

sensorimotor interaction with the things the symbols stand for: The category is merely

described by a proposition composed of grounded symbols. (Why we refer to this as "theft"

will be explained in Section 4 in the context of a hypothesis about the evolutionary role of

language; for now, just think of a “stolen” category as one that is acquired without having to

do any trial and error training with instances and feedback in order to get it; see Cangelosi &

Harnad 1998.)

Categories grounded directly through sensorimotor toil have iconic and categorical

representations, whereas categories grounded indirectly through symbolic theft have symbolic

representations consisting of their propositional descriptions in the form of symbol strings.

The descriptions are Boolean or even more complex, quantified combinations of category

names that are already grounded, either directly by toil, or indirectly by theft. In the

simulations described below, we test what happens when nets that first acquire a set of

categories through direct sensorimotor toil are then taught a higher-level category through

symbolic theft (i.e., by being given a string of symbols that tells them what the higher-order

category is). We will show that sensorimotor grounding not only transfers to higher-order,

symbol-based categories in a bottom-up fashion, but that the new, symbol-based categories

also have some of the characteristic top-down effects of sensorimotor category learning,

namely, that they deform or “warp” internal similarity space in the service of categorisation

(Tijsseling & Harnad 1997). This sensorimotor "imprint" on symbolic thought may be what

grounds it.

2. Method

2.1 The stimulus set

Our neural nets were trained to categorize and name 50 by 50 pixel images of circles, elli pses,

squares and rectangles projected onto the receptive field of a 7 by 7 unit "retina." Once the net

had grounded these four Entry-Level (E-Level) category names ("circle," "elli pse," etc.)

through direct trial and error experience supervised by corrective feedback ("toil "), it was

taught the Higher-Level (H-Level) category "symmetric/asymmetric" on the basis of strings

of symbols alone ("theft").
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A total of 292 stimuli were used (256 training, 32 test, and 4 teaching input stimuli). The 256

stimuli consisted of four groups of circles, elli pses, squares, and rectangles (Figure 1). In each

group there were 64 (8 by 8) stimuli that varied in size (8 sizes generated by reducing the

diameter by two pixels) and retinal position (8 positions generated by shifting the center of

the figure by 1 pixel in the eight adjacent cells). The 32 test stimuli were also subdivided into

four groups of eight stimuli each, one for each size. The position for each size was hence

fixed, but it varied across sizes. The four teaching inputs were the largest instances of each

shape (prototype).

< Figure 1 about here >

2.2 Neural networks

Ten 3-layered feed-forward nets differing in their random initial weights were exposed to the

256 training stimuli during the three learning stages. The input layers consisted of two groups

of units: the retina, with 49 units (7 by 7) and the 6 linguistic units (one each for the six

category names: "circle" "elli pse" "square" "rectangle" "symmetric" and "asymmetric"). The

hidden layer had five units receiving connections from both groups of input units. The output

had the same organization as the 49 retinal units plus 6 symbolic-name units.

< Figure 2 about here >

Whereas the coding of the symbolic units was localist (i.e., each unit was on when its

corresponding label was active), the coding of the retinal units was more complex. We used

the coding system of Jacobs & Kosslyn (1994) with retinal units receiving activation from

their receptive fields in the 50 by 50 pixel matrix depicting each of the 256 geometric figures.

The receptive field of one retinal unit was a circular area 11 (partially overlapping) pixels in

diameter. Because of the receptive field overlap (3 pixels), there were 49 receptive fields

arranged in 7 columns by 7 rows. The activation formula for the retinal units used the

Gaussian distribution centered on the receptive field. Hence pixels in the center of the field

contributed more to the activation of the retinal unit than those in the periphery.
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The formula for the activation x of each Gaussian retinal unit is:

x p
iei

= − −∑ ( )
1

22
2

21

σ σ
µ

where p is the location of the pixel, m is the mean of the Gaussian unit, and s refers to the size

of the receptive field. In our case s = .45

2.3 Training procedure

The training procedure consisted of three stages for category learning and naming: (1)

prototype-based sorting, (2) E-Level naming, and (3) H-Level naming. In all the learning

stages in which names were used, there was a further imitation task (Figure 3).

< Figure 3 about here >

2.3.1 Prototype-Based Sorting. The net was first trained, via backpropagation, to sort the 256

training stimuli into the four categories (64 stimuli each) by producing as output the

"prototype" of each category in the form of the largest circle, elli pse, square or rectangle

(coded the same way as the rest of the stimuli ).

2.3.2 Entry-Level Naming. The net next learned to respond to each stimulus by producing

both its prototype shape and its category name.

2.3.3 Higher-Level Naming. H-Level categories such as "symmetric/ asymmetric" can be

learned in one of two ways, either (1) directly from the retinal input, as with the E-Level

categories ("sensorimotor toil "), or (2) from boolean combinations of the grounded category

names ("symbolic theft"). We investigated (2): The net received as input the conjunction of

the grounded name plus a new name (either "asymmetric" or "symmetric") and was required,

through error-correcting feedback, to generate both names as output. (Simultaneous

presentation of E-level and H-level names makes it unnecessary to use a recurrent network to
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learn the association.) A net that learns that two different grounded names, "circle" and

"square," are always combined with the same new name, "symmetric," should be able to name

a circle both "circle" on the basis of the prior sensorimotor grounding, and "symmetric" on the

basis of the new symbolic grounding.

2.3.4 Imitation learning. The imitation task is alternated with each trial of the naming task. It

consists of an extra activation cycle that allows the net to "practice" on the category name

learned in the previous naming cycle.

2.4 Backpropagation

One learning epoch consists in the presentation of all 256 training stimuli. The first learning

stage (Prototype-Based Categorization) consists of 10,000 epochs. This is necessary because

of the large number of retinal units (49) that need to be trained. The two E-level and H-level

naming tasks require 2,000 and 1000 epochs, respectively. Each learning condition is

replicated with 10 nets having different random weight initializations. The 10 replications of

the second and third stages, however, are constrained to the weights that were trained in their

previous stage.

3. Results

3.1 Learning error and generalization

All ten nets learned the three tasks successfully. The final average error for the first stage,

Prototype-Based Categorization, was .09 after 10,000 epochs. (Figure 4a). This error is not

very low, but in most of the nets it was less than .05; it was only in a few that it was about 0.1.

Nevertheless, the categorization of all the stimuli was unambiguous, that is, each shape was

always categorized correctly; the errors pertain only to some imperfections in generating the

right prototype (the largest figure for each shape) in this hybrid iconic/categorical task. The

same level of error was attained in the E-Level Naming stage, with a final error of .08 (Figure
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4b).

The error in the H-Level learning was very low, about .01, because only the error in the name

units is computed. The pattern in all three conditions is a rapid initial decrease in the early

training epochs. After that, the error decreases very littl e (Figure 4c).

The results of the generalization test showed that after the prototype learning the 32 test

stimuli were properly categorized in the four E-Level categories. The same good

generalization performance was obtained in the other two learning stages.

< Figure 4 about here >

3.2 Categorical perception effects

At the level of the hidden units, the net builds categorical representations which must sort

each icon reliably and correctly into its own category. This can be thought of as a feature-

filter that reduces the category confusabilit y by decreasing the within-category differences

among the icons and increasing the between-category differences as needed to reliably master

the sorting task (Harnad 1987).

For the three learning stages of each of the 10 nets, we computed means and variances in the

Euclidean distances for all 256 representations in the 5-dimensional hidden unit activation

space. We first computed the central (mean) points for the four categories. These were then

used to compute both within- and between-category distances. The within-category variance

is a measure of the distance between each of the 64 points and its respective category mean.

There is a clear decrease in within-category variance from before prototype learning (.315) to

after (.2). That is, during the course of the prototype learning the 64 points of each category

move closer to one another [MANOVA: F(9,1)=6.12, p<.035]

A further within-category compression from prototype matching (.2) to naming (.172) shows

the effects of arbitrary naming on categorical representations (prototypes are analog, names

are arbitrary) [F(9,1)=14.9; p<.004].
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< Figure 5 about here >

The same effects are observed with the between-category differences (the distances between

the centers of the four categories). From before learning (.15) to prototype matching (1.14),

the average between-category distance increases for all six pairwise comparisons between the

four category means [F(9,1)=1034, p< 0.0001)]. A further but smaller increase occurs with

naming (1.16; F(9,1)=28, p< 0.0001). Figure 6 shows the between-category distances for a

sample of pairwise comparisons.

< Figure 6 about here >

After prototype-based categorization, the within-category-to-be distances between the two

symmetric shapes (Circle [C] vs. Square [S], .82) and the two asymmetric ones (Elli pse [E]

vs. Rectangle [R], .91) were smaller than the distances between the  four between-category-

to-be pairs (C vs. E and C vs. R both, 1.12; S vs. R, 1.32; E vs. S, 1.42; Figure 6). This means

that when the four prototype-based categories are formed, the two symmetric pairs and the

two asymmetric ones are already closer to one another than the between-category pairs are.

The higher order categorization task starts with this initial similarity structure.

In this sense, the symmetric/asymmetric distinction can be thought of as a  somewhat

“prepared” category, as there is already an intrinsic bias in their similarity structure. A harder

task would be one in which the within and between distances for the (future) categories are

initially equal, but if the distances are also small , this can run the risk of making the

categorization task unlearnable (Pevtzow & Harnad 1997).

3.3 Grounding transfer

We next tested whether grounding could be "transferred" from directly grounded names to H-

Level ones. Can a net that has learned the category "symmetric" indirectly through symbolic

theft generalize it to the direct retinal input? To test this, after the H-Level training we
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presented the retinal stimuli alone (see Figure 3, last column) and computed the frequency of

correct responses for the E-Level names (criterion for all conditions: correct bit > 0.5, others

< 0.5)

Table I reports percent correct for the E-level names (left column for each net) and the H-

Level names (right column). A net’s success criterion was at least 50% correct. Nine of the

ten nets met this criterion for Entry-Level names and eight did for H-Level names (see shaded

columns in Table I). Assuming chance to be .5, the binomial probability of 9/10 nets

successful by chance is .0098 and (and for 8/10, .044). Hence the E-Level grounding

successfully transferred to the H-Level categorization.

We also did a control to see whether this outcome depended on some uncontrolled variable

rather than grounding transfer. For a set of nets, the E-Level learning stage was skipped; H-

Level learning followed immediately after prototype learning. The results are shown in Table

II . Based on the same criterion as in Table I, none of the ten nets was successful in the E-level

naming, and only three were successful for the H-level naming.

< Figure 7 about here >

< Table I about here >

< Table II about here >

We can also count the total number of correct responses instead of the number of correct nets.

Since the total number of naming trials is high (2560 for E-Level plus H-Level), we can use

the Gaussian distribution and compute the z value for the difference between the two

probabiliti es. For E-Level naming, the percent correct is 97% for the grounding transfer test

and 15% for the controls (prototype learning only). For H-Level naming, the percent correct is

92%, compared to 63% for the controls. Here we will compare only the probabiliti es for H-

Level naming. Z is computed using the following formula:
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where 1P  and 2P  are respectively the two positive probabiliti es in the test and counter-test,

and 
1

Q  and 
2

Q  are the reciprocal percentages ( )Q P= −100 . N is 2560.

For the difference between the two H-level probabiliti es, z is 30.3 (N=2560; p<.0001),

confirming that prior direct grounding is essential for grounding transfer.

3.4 Extending the simulation from extensional to intentional categories.

To control for the possibilit y that our findings applied only to conjunctions of individuals and

conjunctions of symbols, we replicated and extended the grounding transfer test from merely

extensional H-Level categories (based on boolean combinations of individuals) to intensional

ones (based on boolean combinations of features) using a second set of stimuli : animal shapes

(horse and turtle) and texture features (stripes and spots) (see Figure 8). With this

combination of individuals and features  (e.g., horse and stripes) as E-level stimuli (rather

than only individuals and individuals, as in the prior simulations), it was possible to teach the

H-level names by combining them into boolean descriptions of new H-level individuals (e.g.,

zebras). The H-level "zebra" name was trained in one stage using the name conjunction:

"horse + stripes.” The test for the H-level "zebra" category was then whether the zebra shape

(an image of a striped horse) could be correctly named. In the prior shape experiment, the H-

level names had been derived by conjoining two individuals (e.g. circle and square) to learn a

new abstract feature category (symmetric). The training had been in two stages, one for

learning that "circle" was "symmetric" and the other for learning that "square" was likewise

"symmetric". The grounding transfer test was also in two stages, one for each symmetric

shape. The zebra simulations used the same method as in section 2, except that (apart from the

new stimuli ), the H-level training and testing involved only one stage for each H-level

category ("Horse" + "Stripes" = "Zebra", "Turtle" + "Spots" = "Sportoise").

Tables II I and IV report percent correct for grounding transfer for the H-level stimuli with the

standard and control nets (omitting the E-level naming), respectively. Eight of the 10

experimental nets but none of the 10 control nets were successful.
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The percent correct for instances of naming (rather than of successful networks) was 83% in

the experimental condition and 7% in the control (N=900). The difference was highly

significant.

These results are similar to those for the shape simulations. Only the nets that learned the

direct grounding of the E-level names "horse" and "stripes" were able to ground the H-level

names, correctly naming the zebra shape they had never encountered during training. The

control nets could not name the H-level categories because they had no grounding for the E-

level names.

< Figure 8 about here >

< Table III about here >

< Table IV about here >

4. Discussion

These results confirm and extend findings with other connectionist models of categorical

perception (Harnad, Hanson & Lubin 1995; Csato et al., submitted). When trained to

categorize, neural nets build internal representations that compress differences within

categories and expand them between. These data are also consistent with related findings in a

connectionist model with localist encoding of perceptual features (Cangelosi & Harnad 1998).

Ours is a "toy" model, but it is hoped that the findings wil l contribute toward constructing

hybrid models that are immune to the symbol grounding problem. Names (symbols) are

grounded via net-based connections to the sensory projections of the objects they stand for.

The grounding of E-Level symbols can then be transferred to further symbols through

Boolean combinations of symbols expressing propositions.
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The control simulation showed that direct grounding of at least some names is necessary. We

grounded the names of the four E-Level shapes directly in their retinal projections. The same

retinal projections then also activate the new H-Level name, "symmetric," through their

indirect grounding. Circles and squares activate some common categorical representation in

the hidden layer that in turn activates "symmetric"; rectangles and elli pses activate

"asymmetric."

The conditions that lead to grounding transfer require further simulations and analysis. E-

Level naming proved suff icient for grounding transfer in most of the nets (80%). Thirty

percent of the control nets were likewise able to transfer grounding to the H-Level names,

probably because compression/separation induced by their training in E-level categorisation

and naming reduced the variabilit y in the hidden layer. This can be tested with further

randomized and biased control conditions.

During the prototype-based categorization, the nets learn to produce four separable hidden

representations for each of the categories (64 shapes in each), with very similar activation

patterns within categories and very different ones between. In addition, there is already some

compression of the symmetric and asymmetric shapes at the prototype level. These "head-

starts" in similarity space may explain how some of the nets managed to master the H-Level

naming without being taught the E-Level naming: They already had the categories, just not

yet their names. And so it may well be with many categories; random seeding is an unlikely

model for the initial conditions of biological categorization.

Some categories will already be "prepared" by evolution; others wil l be acquired on the basis

of shared iconic or functional responses, rather than arbitrary naming. But when naming does

occur, it will benefit from following these pre-existing gradients or boundaries in similarity

space - as long as the requisite new category goes with them rather than against them. This

too is a form of grounding transfer.

This explanation is confirmed by the analysis of the naming errors for the E-Level names in

the control condition. Nets named only a very low proportion of shapes correctly in this

condition (15%) because it gets harder to be right by chance as the number of bits increases.

With two possibiliti es, symmetric/asymmetric, nets can achieve 50% by chance, but with four

(circle, square, etc.), chance is 25%. Moreover, the E-Level control errors reveal that circles

are often called "circle + square" or simply "square" and conversely. This interconfusabilit y
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of circles and squares is what one would expect from their close categorical representations.

Our model for categorization and naming can also test hypotheses about the origin of

cognition and of language (Cangelosi &  Parisi 1998). The proposition describing the H-Level

categories in the present simulation ("Circle [is] Symmetric" "Ellipse [is] Asymmetric" etc.)

came as a kind of "Deus ex Machina": The E-Level categories could have been acquired by

ordinary trial and error reinforcement in the world, through learning supervised by the

consequences of categorizing and miscategorizing. This is what we have called learning by

"sensorimotor toil ". But in a realistic world the symbolic propositions on which the H-Level

categories were based would have had to come from someone who already knew what was

what.

To get categories by "symbolic theft," then, is to get them on the basis of the grounded

knowledge of others, transferred to us via symbolic propositions whose terms - all but one -

are already grounded for us too. This new way of acquiring categories spares us a great deal

of sensorimotor toil . (Imagine if everything we learned from books and lectures instead had to

be learned directly through trial and error experience!) Hence gaining intellectual goods via

hearsay is a kind of theft, but in most cases it is also a victimless crime, as the provider of the

knowledge loses nothing by giving it away; perhaps it is more like a form of reciprocal

altruism. There are exceptions, such as when the knowledge concerns scarce resources for

which there is competition (Cangelosi & Harnad 1998). But a paradigmatic example of the

victimless nature of linguistic theft would be this article itself, which, if its reader has gained

anything from it, certainly leaves the authors none the worse off for it.
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FIGURES

Figure 1 - Stimulus set and localist coding of naming units



Figure 2 - Neural network architecture and stimulus coding
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Figure 3: Neural network input and output in the learning and test stages. Absence of input or

output in the specified set of units is indicated by * .
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Figure 4 - Learning error for the Prototype Sorting (4a), Entry-level Naming (4b), and H-level

naming (4c).
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Figure 5 - Average within-category distances
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Figure 6: Between-category distances for the pairs Circles-Squares and Ellipses-Rectangles
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Figure 7: Neural network input and output in the control simulations.
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Figure 8 - Stimuli used in the zebra simulations



TABLES

Net 1 net 2 net 3 net 4 net 5 net 6 net 7 net 8 net 9 net 10

E H E H E H E H E H E H E H E H E H E H

C 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100

E 100 100 75 100 100 100 100 100 12 100 100 100 100 100 100 100 100 100 100 37

S 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100

R 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 37

Table I - Percent correct in grounding transfer test. For each net, number on the left is correct

responses for E-level names and on right for H-level names. Rows are for the 64 circles (C),

ellipses (E), squares (S), and rectangles (R). Shaded cells indicate success in E-level (light

grey) or H-level (dark grey) categorization in the grounding transfer (criterion: at least 50%)



Net 1 net 2 net 3 net 4 net 5 net 6 net 7 net 8 net 9 net 10

E H E H E H E H E H E H E H E H E H E H

C 100 100 0 100 0 8 0 0 0 100 0 100 0 100 100 100 100 100 100 100

E 0 0 0 100 0 100 100 100 0 0 0 100 0 0 0 0 0 0 0 100

S 0 100 100 100 0 0 0 0 0 100 100 100 0 100 0 100 0 100 0 100

R 0 0 0 87 0 58 0 100 0 0 0 100 0 0 0 0 0 0 0 100

Table II  - Percent correct in grounding transfer controls. For each net, number on left is

correct responses for E-level names and on right for H-level names. Rows are for the 64

circles (C), elli pses (E), squares (S), and rectangles (R). Shaded cells indicate the nets that

succeeded in E-level (light grey) or H-level (dark grey) grounding transfer (criterion: at least

50% correct).



n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

Zebra 62 100 100 100 100 20 100 33 66 100

"Sportoise" 100 100 100 100 100 0 100 100 100 100

Table III  - Percent correct in grounding transfer test for Zebra simulations. Numbers refer to

H-level names. Shaded cells refer to the nine successful H-level nets in the grounding transfer

(criterion: at least 50% correct)



n1 n2 n3 n4 n5 n6 n7 n8 N9 n10

Zebra 100 42 67 100 53 100 20 30 0 100

"Sportoise" 0 100 0 0 0 0 0 0 0 0

Table IV - Percent correct in grounding transfer controls for Zebra series. Numbers refer to H-

level names. No net met the 50% success criterion.


