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I discuss the ubiquity of power law distributions in language organisation (and elsewhere), and
argue against Miller’s (2000) argument that large vocabulary size is a consequence of sexual
selection. Instead I argue that power law distributions are evidence that languages are best
modelled as dynamical systems but raise some issues for models of iterated language learning.

1. Introduction
A diagnostic of a power law distribution is that a log-log plot of frequency against
rank yields a (nearly) straight line. For instance, Zipf (1935) plotted word token
counts in a variety of texts against the inverse rank of each distinct word type and
showed that typically such plots approximate a straight line. The characteristic
‘Zipf curve’ of word frequency against rank deviates from this line because the
relative frequency of very common word types, such as the English determiners
the and a, tend to be more similar than the power law predicts, as also does the
relative frequency of very rare words in the tail of the distribution. Zipf’s ‘law’ is
often expressed as:
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where ��� 	 , the exponent, defines the slope of the plot, frequency ������� is the
token count of word type � in text, and rank 
������ is the position of word type �
in the list of word types sorted in descending order of frequency, ������� . Guiraud’s
(1954) related law states that the number of word types � in a text is proportional
to the length of that text � :

� � ��� (2)

Although the models of power law distributions of which I am aware have a dy-
namical component, they have received little attention from evolutionary linguists.



I know of only one argument, due to an evolutionary psychologist (Miller, 2000),
which utilises Zipf’s observation about word frequencies in attempting to explain
large, redundant vocabularies in terms of sexual selection. I argue against this
explanation in � 4, but, before doing so, I discuss the ubiquity of power law dis-
tributions in � 2, some relevant models of them in � 3, return to Miller’s argument
in � 4, and then discuss some issues power law distributions raise for evolutionary
models of iterated language learning in � 5.

2. Manifestations of Power Law Distributions
Power law distributions are very different from normally distributed phenomena,
such as height, which yield the characteristic ‘Bell Curve’. The factors that in-
fluence a person’s height, such as nutrition and genetic inheritance, combine in
a more linear manner so that (relatively minor) variation in height is normally
distributed around a mean that can be accurately estimated from a representative
sample of the population. Zipf (1949) noted that Pareto’s observations about the
distribution of wealth in the population could also be modelled using a version of
his ‘law’. What makes wealth different from height intuitively is that the factors
that influence the amount of money we have combine non-linearly and there are
strong (positive) feedback effects (i.e. ‘the rich get richer’). We now know that
power law distributions are good approximations of many other non-linguistic
phenomena, such as the distribution of people within cities, citations amongst
scientists, accesses of web pages, species within habitats, authors amongst scien-
tific articles, actors within films, links between web pages, activation of genes,
size of earthquakes, number of sexual partners, and many more (e.g. Albert &
Barabasi,2002).

There are similar results regarding extrinsic properties of languages: for in-
stance, the distribution of languages within language families approximates a
power law (Wichmann, 2005). In terms of inherent properties of language, Zipf
also showed that plotting the length or the number of meanings of word types
against their frequency also yields similar distributions. With the increasing avail-
ability of annotated electronic corpora, these observations have been extended to
many other areas of language organisation, such as the frequency of contiguous
sequences of words (bigrams, trigrams, and more generally ngrams), of grammat-
ical rules, of construction types, of lexical relations between word types, as well
as the length of constituents, and the association of verbs with constructions (e.g.
Sharman, 1989; Manning & Schutze, 1999; Korhonen 2002; Yook et al., 2001).

3. Models of Power Law Distributions
So far I have used the term ‘distribution’ ambiguously between the linguistic and
probabilistic sense. The most important insight about such distributions with large
numbers of rare events (e.g. Baayen, 2001) is that converting a frequency-rank
plot into a probability-rank plot via maximum likelihood (i.e. relative frequency)



estimation, and treating the result as a probability distribution is unwise. Since
the counts of the tail are very low, statistical estimation theory tells us that they
will be unreliable. A rare word, for instance, may suddenly become fashionable
(e.g. eggregious, serendipity) and thus increase in relative frequency over a given
time period. Since, we always see a long tail of rare events no matter how much
(more) text we sample, and the number of types grows in proportion to the size
of this sample (Guiraud’s law), power law distributions are often described as
‘scale-free’. In statistical terms, power law distributions which remain invariant
over different sample sizes are a strong indication that we may be sampling from
a statistically unrepresentive non-stationary (i.e. dynamical) system.

Baayen (1991), following in the tradition of Mandelbrot (1953) and Simon
(1955), develops a stochastic Markovian model of phonotactically legal Dutch
word strings and relates it to empirical data on similarities between words by
phonological form and by relative frequency. He finds that to model these effects
accurately, it is necessary to add a second ‘dynamical’ stochastic model which
introduces or removes word types with probability proportional to their token fre-
quency. This has the effect of increasing overall frequency-based and decreasing
form-based similarity. For present purposes, it is indicative that the second dy-
namical word ‘birth-death’ processs is required even though it says nothing di-
rectly about the relationships between word types.

Albert & Barabasi (2002) provide a recent survey of work on ‘small world’
networks in which most nodes of a network can be reached by any other in a
small number of (node) steps, though the overall number of nodes can be arbi-
trarily high. They define a dynamical algorithm for generating such networks, by
continuously adding new nodes and attaching them to old nodes with probabil-
ity proportional to their number of existing links. They prove that such networks
evolve to a scale-free organisation obeying a power law distribution in which there
is a long tail of nodes with low numbers of links and a small number of ‘popu-
lar’ nodes with many links. They also prove that both ‘growth’, the dynamical
component, and ‘preferential attachment’ are necessary for this pattern to emerge.
Such networks have been applied to models like that of Baayen (1991), described
above (e.g. Bornholdt and Ebel, 2001), and to lexical semantic organisation (e.g.
Yook et al., 2001).

4. Power Laws and Sexual Selection
Miller (2000:369f), in the context of a more general argument that human lan-
guage evolved by sexual selection, argues that large vocabulary size, in compar-
ison with those of other (artificial and natural) animal communication systems,
evolved through sexual selection. Women preferred men with large active vo-
cabularies but needed to acquire large passive vocabularies themselves to assess
the trait. Miller offers, as evidence for the non-functional nature of much of this
vocabulary, Zipf’s observation that vocabulary distributes like a power law and



contains many near synonyms:

...any of the words we know is likely to be used on average about
once in every million words we speak... Why do we bother to learn so
many rare words that have practically the same meanings as common
words, if language evolved to be practical? (Miller, 2000:370)

He argues that human variation in vocabulary acquisition correlates with intelli-
gence and has a heritable component, and thus is an (indirect) fitness indicator,
triggering an ‘arms race’ in which advertising excessive vocabulary size is a ‘dis-
play’ of fitness akin to the peacock’s tail, precisely because it does not contribute
usefully to communication.

In � 2 we saw that power law distributions manifest themselves in many areas
of linguistic organisation. For instance, there is a tail of rare long constituents
in text samples (Sharman, 1989). However, there is no evidence that ‘display’
of such forms is a particular feature of courtship, nor that such forms are non-
functional. As we saw in � 3 models predicting such distributions need only a
dynamical component and no element of natural or sexual selection whatever.
Evidence of power law distributions in both idiolects and language forces us to
conclude that both are best modelled as dynamical systems – rather than well-
formed sets, as in generative linguistics (e.g. Sampson, 2001:165f) – but nothing
more.

If vocabulary size were non-functional, we might expect there to be many
truly synonymous words. What we find in the organisation of vocabulary is that
partially synonymous words have different distributions in terms of specificity of
reference, syntactic potential, or genre and register. There is, in fact, consider-
able evidence that children avoid hypothesising synonyms in language acquisition
(e.g. Clark, 2003) and that language users adhere to the convention of preemp-
tion by synonymy, except where discourse or syntactic context triggers a non-
synonymous reading (e.g. Briscoe et al., 1995; Copestake & Briscoe, 1995). For
instance, cow, unlike chicken, is not generally used to refer to the meat because
of the existence of beef. However, in an appropriate context cow can be used this
way and triggers an implicature of ‘disgust’:

There were five thousand extremely loud people on the floor eager
to tear into roast cow with both hands and wash it down with bour-
bon whiskey. (Tom Wolfe, 1979. The Right Stuff, Farrar, Straus and
Giroux, New York (p. 298, Picador edition, 1991))

Similarly, the word stealer, formed by the fairly productive derivational rule of
agentive +er nominalisation, is blocked by thief, except in syntactic contexts
where the specificity of reference is narrowed:

He is an inveterate *stealer / thief / stealer of Porsche 911s



These and many similar observations suggest that partial synonymy is commu-
nicatively useful and actively exploited to convey meaning.

To understand why we have so many words and how the cognitive ability to
cope with them (co-)evolved, consider the likely environment of adaptation for
language. In a foraging, scavenging or hunter society, the ability to discriminate
– and thus name more and more species, according to nutritional value, location,
method of capture or harvesting, and so forth – would be of value for survival be-
cause it would allow efficent transmission of these skills to kin as well as survival
over larger and more varied habitats. Modern hunter-gatherers are known to have
large vocabularies specialised in this way (Diamond, 1997). This may not have
been the sole driver for increasing vocabulary size, but it has the advantage that it
predicts that vocabulary will be to a large extent organised by specificity of refer-
ence. It is useful not only to be able to talk about plants in general but also species
and subgroups (e.g. by location or edible part) in order to discriminate the edible,
find the source, and harvest effectively. Once we accept such a pressure to name
in an increasingly complex and multifaceted environment, then the tendency for
there to be smaller numbers of high frequency words of generic reference and a
larger number of rarer words with highly specific denotations is just a case of the
structure of vocabulary mirroring (our perception of) this environment.

5. The Real Challenge – Iterated Learning
One achievement of recent evolutionary models of language is the demonstration
that treating languages as complex adaptive systems responding to conflicting se-
lection pressures (e.g. Briscoe, 2000) leads to insightful acccounts of typologi-
cal and other linguistic universals without the need to invoke innateness. These
accounts rely heavily on the iterated learning model (ILM, e.g. Kirby, 2001)
in which linguistic traits must undergo repeated relearning by successive gen-
erations of language learners acquiring their language from that of the previous
generation. For instance, Kirby (2001) demonstrates that languages in the ILM
evolve to have compositional structure in which only high frequency irregular
form-meaning mappings are stable, given the following assumptions:

1. an invention strategy for form-meaning pairs,

2. a production bias to express meanings using short forms,

3. an inductive bias to learn small grammars and lexicons,

4. a learning period in which not all form-meaning pairs appear

5. and environmental structure which favours some meanings

In the simulation, initial (proto)languages are holistic and non-compositional but
chance regularities which emerge in form-meaning mappings are acquired by



learners, who then reliably exemplify them for the next generation of learners,
because regularities are, by definition, more frequent in data. Thus, over time the
language evolves to be mostly compositional and regular. However, (short) irreg-
ular mappings can survive provided they are associated with meanings which are
expressed frequently and, therefore, also occur reliably during the learning period.

This instantiation of the ILM neatly explains the observation that irregularity
correlates with high frequency in attested languages: children would continue to
say goed into adulthood if went were not a high frequency form. The corollary,
however, is that rare unpredictable properties of language which do not follow
from some regularity manifest during the learning period should be unstable and,
therefore, rarely observed.

Rare word-meaning associations are unpredictable and may also influence
lexico-grammatical behaviour. For example, the verb obsess is a stable lexeme of
English, but does not appear in any of the 40 or so case studies of child-directed
speech in CHILDESa. It is transitive but usually appears in the passive in adult
speech accompanied by a PP headed by by, with or over. However, vocabulary
acquisition continues through adulthood, so the ILM (and other models) simply
predict that such vocabulary will be acquired later (and less universally).

Marked but predictable constructions, such as multiple centre-embeddings,
which Sampson (2001:21) estimates occur once in every 250K words on average,
are also not counter-examples if one believes that they are a consequence of learn-
ers acquiring, in the basis of more frequent constructions, grammatical rules which
correctly predict the appropriate form-meaning mapping for these constructions.

A more challenging case for the ILM is diathesis alternation, in which verbs
of certain semantic classes semi-predictably occur in alternant constructions often
with predictable meaning changes. For instance, eat can appear in intransitive and
transitive constructions but when it occurs intransitively the theme of the action is
‘understood’. However, verbs with similar senses, such as devour or consume do
not undergo this alternation. There is evidence that children learn at least some of
these alternation rules by 3 years because they produce errors, such as Don’t fall
my dolly down – the causative-inchoative alternation. However, the rate at which
such errors occur also suggest that alternation rules are learnt conservatively and
only rarely overapplied. There are on the order of 100 such alternation rule types
in English, when productive meaning change is taken into account.

Figure 1 shows log-log plots of the unconditional probability of over 150 verb-
headed constructions against their inverse rank on the left and of the conditional
probability of these constructions when headed by any form of the verb believe
on the right, calculated from 30M words of automatically parsed text along with
the closest fit straight line derived using (1) above with � set appropriately. Both
distributions loosely approximate power laws with long tails of rare events, but

ahttp://childes.psy.cmu.edu/data/



1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Pr
ob

Rank

Rank Probability: all classes
’s.all’

0.0001

0.001

0.01

0.1

1

1 10 100

Pr
ob

Rank

Rank Probability: believe
’s.believe’

Figure 1. AllVerb/Believe Constructions

critically the correlation between the unconditional distribution and conditional
ones for individual verbs is low (0.47 Spearman-Rank Coefficient for 14 verbs).
This means that it is not possible to predict the individual association of verbs
and constructions on the basis of the unconditional distribution. For instance,
sentential complements are rare overall but the most common construction with
believe, accounting for over 90% of occurrences. This lack of correlation, taken
together with the fact that analysis of CHILDES shows that child-directed speech
only exemplifies common verb-construction associations (e.g. Buttery & Korho-
nen, 2005), suggests that children do not have reliable evidence for the existence
of most alternation rules – assuming that evidence would be several exemplars of
the same alternation involving several different verbs.

It may be that such semi-productive alternations are also acquired later in life,
despite the occasional errors in children’s speech. This is a general strategy that
proponents of ILM-style explanations can take. But on the other hand, there must
also be some learning ‘bottleneck’, caused by limited exposure to data during the
learning period, for ILM accounts of linguistic evolution to work. Cases like this
pose interesting challenges for the approach because they suggest that linguistic
data is distributed in such a fashion that there may still be a ‘poverty of stimulus’
issue during the sensitive period for acquisition. More empirical work on language
acquisition is needed to determine whether the ILM’s predictions hold up for such
specific cases.
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