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1 Introduction

In this paper, I will review arguments for and against the emergence and main-
tenance of an innate language acquisition device (LAD) via genetic assimilation.
By a LAD, I mean nothing more or less than a learning mechanism which in-
corporates some language-specific inductive bias.! I will adopt a coevolutionary
model in which natural languages are treated as complex adaptive systems un-
dergoing often conflicting selection pressures, some of which emanate from the
LAD, which itself evolved in response to (proto)languages in the environment of

adaptation

Of course, the existence of an innate LAD has not gone unquestioned, and it is
certainly the case that many arguments that have been proposed in its favour are
either questionable or wrong (e.g. Pullum and Scholz, forthcoming; Sampson,
1989, 1999). It is not my intention to review this debate here. However, I will
argue that all remotely adequate extant models of grammatical acquisition that
have been proposed presuppose a LAD, and that genetic assimilation is the only
coherent account of its emergence and maintenance. These arguments, even if

flawless, do not constitute a proof either of the existence of an innate LAD, or

! The term inductive bias is utilised in the field of machine learning to characterise both hard
constraints on the hypothesis space considered by a learner, usually imposed by a restricted
representation language for hypotheses, and soft constraints which create preferences within
the hypothesis space, usually encoded in terms of cost metric or prior probability distribution
on hypotheses (e.g. Mitchell, 1997:39f).



that it emerged by genetic assimilation. However, they do suggest that the onus
is on non-nativists to demonstrate an adequate detailed account of grammatical
acquisition which does not rely on a LAD, and on non-assimilationists to propose

a detailed and plausible alternative mechanism for the evolution of the LAD.

I use the more succinct phrase ‘grammatical assimilation’ as shorthand for the
more ponderous ‘genetic assimilation of grammatical information into the LAD’.
The general concept of genetic assimilation is described and discussed in more
detail in section 4, where some arguments for and against grammatical assimila-
tion are also presented. Section 2 reviews work on grammatical acquisition and
presents the case for assuming the existence of the LAD. Section 3 outlines an
account of languages as complex adaptive systems and spells out several conse-
quences for models of grammatical assimilation. Section 5 describes and evalu-
ates extant simulations of genetic and grammatical assimilation, and section 6
describes my model and reports some new experiments with it. Much of this pa-
per is a re-presentation of my own research and simulations addressing the issue
of grammatical assimilation (Briscoe, 1997, 1998, 1999, 2000a,b, 2001). However,
I also discuss and compare this to related work by Batali (1994), Kirby and Hur-
ford (1997), Livingstone and Fyfe (2000), and Turkel (2001), and I present, some
extensions of my earlier work which reexamine the issue of the degree of cor-
relation between genotype and phenotype and its likely impact on grammatical

assimilation (Mayley, 1996; Yamauchi, 2000a,b).



2 Grammatical Acquisition

Adequate accounts of grammatical acquisition during first language learning must
satisfy at least the following desiderata. Firstly, there is the desideratum of cover-
age: models should support acquisition of any attested grammatical system and
adequately characterise the range of possible mappings from meaning to form in
attested systems. This rules out much work which purports to address the issue
of grammatical acquisition, for example, all work based on (recurrent) neural
networks as models of such systems. A reasonable requirement, given current
knowledge, is that the model be capable of acquiring a proper subset of indexed
languages, including those exhibiting cross-serial dependencies (e.g. Joshi et al
1991). Secondly, models must work with realistic input: grammatical acquisition
is based on finite positive but noisy input; that is, learners are exposed to a finite
sequence of utterances drawn from mixed and non-stationary sources, so speech
communities are never totally homogeneous nor static (e.g. Milroy, 1992). Many
models instead assume a single non-noisy stationary source, or equivalently a
finite sequence of ‘triggers’ drawn from the target grammar to be acquired (e.g.
Gibson and Wexler, 1994). Thirdly, models should work with realistic input
enrichment: many assume that each ‘trigger’ is paired reliably with its correct
meaning (logical form) and that the learner never hypothesises an incorrect pair-
ing. Such assumptions may facilitate formal learnability results for inadequate
algorithms, but they presuppose implausibly that the context of utterance dur-
ing learning is always highly determinate and redundant — or at least when it
isn’t, it is reliably recognisable as such, so that the learner knows when to ignore

input (e.g. Osherson et al 1986:100). Fourthly, there is selectivity in acquisition:



learners do not acquire (maximum likelihood style) ‘covering’ grammars of the
input, but rather reject noise and other random or very infrequent data in favour
of a single consistent grammar (e.g. Lightfoot, 1999) — modulo sociolinguistic
variation, which is neither random nor infrequent when conditioned on the ap-
propriate sociologuistically defined context. Fifthly, accuracy is critical: learners
do not ‘hallucinate’ or invent grammatical properties regardless of the input,
though they do (over)generalise and, in this limited sense, ‘go beyond the data’.
Accuracy can be operationalised in terms of a formal learnability requirement, at
least under the simplifying assumption that the learner is only exposed to input

from the target grammar (e.g. Wexler and Culicover, 1980; Niyogi, 1999)

If accuracy is defined in terms of a learnability requirement from realistic finite
positive but noisy sentence-meaning pairs or ‘triggers’ over a hypothesis space
with adequate coverage, even when drawn from a single stationary target gram-
mar, then some form of inductive bias in the acquisition model is essential. In
most current work on grammatical acquisition, inductive bias takes the form of a
restricted finite hypothesis space of grammars within which individual grammars
are selected by setting (finite-valued) parameters. There may also be additional
bias in terms of default initial settings for a subset of parameters, creating a
preference ordering on grammars in the hypothesis space (e.g. Chomsky, 1981).
Models of this form, which do not incorporate a statistical or quantitive com-
ponent, are not able to deal adequately with noisy input (e.g. Briscoe, 1999,
2001). There is a well-known formulation of inductive bias in terms of Bayesian
statistical learning theory (e.g. Mitchell, 1997:154f). Bayes theorem provides a
general formula and justification for the integration of prior bias with experience

and it has been demonstrated that an accurate Bayesian prior supports learn-



ability from finite noisy data over infinite hypothesis spaces (e.g. Horning, 1969;

Muggleton, 1996).

Bayesian learning theory is a general domain-independent formulation of learn-
ing. The LAD, as defined in section 1, is a language-specific endowment. So
it is at least questionable whether Bayesian models of grammatical acquisition
presuppose a LAD. The most general formulation of learning in this framework
(Kolmogorov Complexity) posits a learner able to learn any generalisation with a
domain-independent bias (the so-called ‘universal prior’) in favour of the smallest,
most compressed hypothesis (e.g. Li and Vityani, 1993). However, nobody has
demonstrated that this general formulation could, even in principle, result in a
learning algorithm capable of accurately acquiring a specific grammar of a human
language from realistic input. Horning’s (1969) work is based on the (infinite)
class of context-free grammars, which violates the coverage desideratum intro-
duced above as cross-serial dependencies are not covered. However, Muggleton’s
(1996) proof is defined over a restricted form of stochastic logic program which
does meet the coverage desideratum. Furthermore, both Horning and Muggleton
require that the prior distribution over grammars in the hypothesis space is ac-
curate, in the sense that it defines a preference metric over hypotheses that leads
the learner to the correct target grammar given realistic input. Gold’s (1967)
original negative ‘in the limit’ learnability results are founded on the intuition
that any amount of positive data from a target grammar in a class containing
grammars capable of generating an infinite set of sentences is always compatible
with a hypothesised grammar generating all and only the data seen so far and also
with any one of a potentially infinite set of other grammars from the candidate

class which generate some superset of the learning sample. A prior distribution



or cost metric encoding a preference for smaller, more compressed grammars will,
in general, select ones that predict the grammaticality of supersets of the learn-
ing sample. The exact form of the representation language in which candidate
grammars are couched and/or the addition of factors other than just size to the
prior distribution or cost metric will determine which of the potentially infinitely
many grammars generating a superset of the learning sample is selected by the
learner. This is where domain-specific inductive bias appears to be unavoidable if
the desideratum of learning accuracy is to be met. And thus, this is the basis on
which a LAD, in the sense of section 1, is unavoidable in any adequate account

of grammatical acquisition.

This last argument is sufficiently important that a concrete example is warranted.
Consider a potential class of languages consisting of clauses constructed from a
verb (V) and optionally a subject (S) and object (O), where S and O are always
realised as single (pro)nouns (N) or as noun phrases consisting of a noun and
a (relative) clause — the S and O labels are a shorthand for the mapping from
sentences to meanings (in this instance just predicate-argument structure). By
stipulation, there is one root clause per sentence and all relative clauses modify
the immediately preceding or following noun. Potentially grammatical sentences
in this class of languages can consist of any infinite sequence of Ss, Vs and/or Os,
where we will use subscripts to indicate which S or O goes with which V, when
there is more than one V in a sentence. Thus, without further stipulation, any
clausal ordering of S, O and V is possible, as well as any arrangement of root and

relative clauses like those in (1).



(1) a S,VZQSJV]OJ
(e.g. cats like dogs; who; like cats)
(e.g. who; like dogs cats; like cats)
C SZV]OJSJVZVkOkSkOZ
(e.g. cats; like dogs who; like eat mice who;
cats;)

These examples illustrate that post- and pre-nominal relative clauses with clause-

initial and -final relative pronouns are all potentially grammatical sequences.

This class of languages is a proper subset of the context-free languages (CFLs), as
intersecting but not nested dependencies are prevented by the stipulations above.
A learner over context-free grammars (CFGs) with preterminals N and V will be
capable, in principle, of acquiring any target grammar in this space. Suppose
that the learner prefers, a priori, the smallest grammar compatible with the
learning sample, defined as the grammar with the least number of nonterminals
and the least number of rules with the least number of daughters (where each
nonterminal and rule costs one and each daughter of each rule costs one). Then a
learner exposed to a sample of unembedded SVO sequences and (1a) might learn

the grammar (2).2

(2) a Sent — NP5 V NP©
b NP — NP Sent
¢c NP = N

This grammar has a cost of 2 for nonterminals, 3 for rules and 6 for daughters
(making 11), and predicts the grammaticality of postnominal subject-modifying

relative clauses and of centre-embedded and right-branching sequences of rel-

20nce again, T use superscripted S and O and subscripted indices to show the mapping to
predicate argument structure and leave that required to characterise the predicate-argument
structure of sentences containing relative pronouns implicit. The details of how this mapping is
actually realised formally are not important to the argument, but either a rule-to-rule semantics
based on the typed lambda calculus or a unification-based analogue would suffice.



ative clauses. (Given this cost metric, the learner could equally well learn a
non-recursive variant of (2b) with N substituted for NP as leftmost daughter.)
Without the preference for smaller grammars, defined as above, a learner might

have acquired the less predictive (3).

(3) a Sent — N° V N©

This grammar has a cost of 1 for nonterminals, 2 for rules and 10 for daughters
(making 13), and it does not predict the grammaticality of subject-modifying
relative or multiply-embedded relative clauses. Moreover, a cost metric which

assigned a cost of 2 to each rule would also select (3) in preference to (2).3

If the learning sample also includes (1b), containing a prenominal subject-modifying
relative clause, then a learner utilising grammar (2) might acquire a further right-
recursive rule analogous to (2b), predicting complementary distribution of pre-
and post-modifying relative clauses. Whilst one utilising (3) might acquire a fur-
ther rule analogous to (3b) predicting only subject-modifying prenominal relative
clauses. Example (1c) provides evidence for a root SVO language containing post-
nominal VOS relative clauses. A learner with no cost metric might well acquire
a grammar with a rule analogous to (3b) with 9 daughters predicting this and
only this exact sequence. A learner with the above cost metric exposed to SVO

unembedded sequences and (1c) would acquire grammar (4) with a total cost of

3The point is not, new of course. Chomsky (1965:38) recognises the need for an evaluation
measure based on simplicity to choose between grammars during language acquisition, and
others criticised the arbitrariness of such measures. Kolmogorov Complexity (e.g. Li and
Vitanyi, 1993) and the related Minimum Description Length Principle (e.g. Rissanen, 1989)
provide a less arbitrary metric based on the cost of compressing a hypothesis. The MDL
principle can and has been applied to grammatical acquisition (e.g. Osborne and Briscoe, 1997;
Ristad and Rissanen, 1994), but with restricted representation languages. These complexities
are ignored here to keep the example simple as they do not alter the fundamental point about
the domain-dependence of cost metrics or prior distributions defined over restricted hypothesis
represenation languages.



16.

(4) a Sent — NP* V NP©
b RC — V NP?Y NP*
¢ NP — NP RC
d NP =+ N

Thus, the learning model predicts that mixed root and embedded constituent
orders is a dispreferred or more marked option that will only be adopted when
the learner is forced to do so by positive evidence. By contrast, if the learner
represents the class of CFLs in so-called IDLP notation instead of standard CFG,
acquiring immediate dominance (ID) rules independently of linear precedence
(LP) rules (Gazdar et al 1985), but utilising a similar cost metric which also
assigns a cost of one to each LP rule, then the preference ordering on specific
IDLP grammars predicts that order-free variants of the above grammars with no
LP rules will be hypothesised and that the inclusion of examples like (2b) or (2c)

in the learning sample will not alter the learner’s hypothesis.

Cost metrics applied to restricted representation languages mean that learners
will ‘go beyond the evidence’ in different ways and, thus, will have different
linguistic biases. However, learners that do not utilise cost metrics, or equiv-
alently prior distributions, cannot learn target grammars for human languages
accurately, as Gold’s (1967) work demonstrated. There are no detailed models
of grammatical acquisition utilising an unrestricted representation language with
a domain-independent cost metric or ‘universal prior’. Extant models assume a
LAD, in the (weak) sense of section 1, because they utilise prior distributions or
cost metrics defined over restricted representations chosen to facilitate encoding

of grammars for human languages. The onus is on non-nativists to develop an ac-



count of grammatical acquisition which meets the above desiderata and does not,
utilise a LAD. The Bayesian learning framework provides a general and natural
way to understand and model how further grammatical bias can be integrated
with the language acquisition procedure in terms of the evolution of more and
more accurate prior distributions over the hypothesis space with better and bet-
ter ‘fit” with languages in the environment of adaptation (e.g. Staddon, 1988;
Cosmides and Tooby, 1996). Finally, there is independent psycholinguistic evi-
dence that human language learners are biased in lingustically-specific ways; for
instance, Wanner and Gleitman (1982:12f) argue that children are predisposed
to learn lexical compositional systems in which ‘atomic’ elements of meaning,
such as negation, are mapped to individual words. This leads to errors where

languages, for example, mark negation morphologically.

3 Linguistic Evolution

Learnability frameworks typically assume that the learning sample is generated
by a fixed target grammar and accuracy or success is defined in terms of acquisi-
tion of this grammar. However, as we noted, in section 2, first language learners
are not typically exposed to homogeneous data from an unchanging speech com-
munity. Though major and rapid grammatical change is relatively rare, learners
typically hear utterances produced by members of other speech communities,
and the learning period is sufficiently extended that they may be exposed to
ongoing linguistic change within a single community. A major tenet of gener-
ative diachronic linguistics is that first language acquisition is the main engine
of grammatical change because, faced with such mixed data, learners do acquire

grammars that are distinct from those of the previous generation (e.g. Lightfoot,

10



1999).

We can model the development of the (E-)language of a speech community as a
dynamical system in which states encode the distribution of grammars (and lex-
icons) within the community and transitions between states are defined in terms
of changes in this distribution (Briscoe, 2000b; Niyogi and Berwick, 1997). If
there is inductive bias in first language acquisition (regardless of its provenance),
then E-languages are best characterised as adaptive systems, because learners
will preferentially select linguistic variants which are easier to learn and thus
more adaptive with respect to the acquisition procedure (Briscoe, 2000b; Kirby,
1998). However, linguistic selection of this kind does not come exclusively from
language acquisition. There are other often conflicting selection pressures created
by the exigencies of production and comprehension which mean that the fitness
(or adaptive) landscape for languages is complex and dynamic with no fixed
points or stable attractors (Briscoe, 2000b). For example, a functional pressure
for more parsable linguistic variants (Briscoe, 2000a; Kirby, 1999) may be coun-
terbalanced by a social pressure to produce innovative variants (Nettle, 1999)
or a functional pressure to produce shorter utterances (Lindblom, 1998). Thus
individual languages are complex adaptive systems on rugged and multipeaked

fitness landscapes, in the sense of, for example, Kaufmann (1993).

Even restricting consideration to major grammatical change, which is only ‘fixed’
through first language acquisition, it seems clear that linguistic evolution pro-
ceeds via cultural transmission (i.e. first language acquisition) at a faster rate
than biological evolution. The populations involved are smaller (speech com-
munities rather than entire species), and language acquisition appears to be a

more flexible and efficient method of information transfer than genetic mutation.

11



Clearly, vocabulary learning and, at least, peripheral grammatical development
are ongoing processes that last beyond childhood, so that linguistic inheritance
is less clearly delineated or constrained than the biological mechanisms of genetic

evolution.

Several consequences emerge from the evolutionary account of (E-)languages as
(complex) adaptive systems which must be taken into consideration by any plau-
sible account of grammatical assimilation. Firstly, several researchers have con-
sidered what type of language acquisition procedure could not only underlie ac-
curate learning of modern human languages but also predict the emergence of
protolanguage(s) with undecomposable signal-meaning correspondences and the
(subsequent) emergence of protolanguage(s) with decomposable (minimally gram-
matical) sentence-meaning correspondences (e.g. Oliphant, 2001; Kirby, 2001a).
They conclude that the language acquisition procedure must incorporate induc-
tive bias causing generalisation, and consequent regularisation of the input, in
order that repeated rounds of cultural transmission of language regularise ran-
dom variations into consistent and coherent communication systems. Newport
(1999) reports the results of experiments on sign language acquisition from poor
and inconsistent signers which clearly exhibits exactly this bias to impose regu-
larity where there is variation unconditioned by social context or other factors.
Secondly, the account of languages as adaptive systems entails that linguistic
universals no longer constitute strong evidence for a LAD. Deacon (1997), Kirby
and Hurford (1997) and others make the point that universals may equally be the
result of convergent evolution in different languages as a consequence of similar
evolutionary pathways and linguistic selection pressures. For example, to return

to the first point, the fact that in attested languages irregularity is associated

12



with hih frequency forms is unlikely to be a consequence of a nativised constraint

and much more likely to be a universal consequence of

4 Grammatical Assimilation

If there is a LAD, then it is legitimate to ask how this unique biological trait
emerged. There are only two clearly distinct possibilities compatible with modern
evolutionary theory: some degree of exaptation of preexisting traits combined

with saltation and/or genetic assimilation (e.g. Bickerton, 2000).

Genetic assimilation is a neo-Darwinian (and not Lamarckian) mechanism sup-
porting apparent ‘inheritance of acquired characteristics’ (e.g. Waddington, 1942,
1975). The fundamental insights are that: 1) plasticity in the relationship be-
tween phenotype and genotype is under genetic control, 2) novel environments
create selection pressures which favour organisms with the plasticity to allow
within-lifetime developmental adaptations to the new environment, 3) natural
selection will function to ‘canalize’ these developmental adaptations by favour-
ing genotypic variants in which the relevant trait develops reliably on the basis of
minimal environmental stimulus, providing that the environment, and consequent
selection pressure, remains constant over enough generations.* Waddington, him-
self, suggested that genetic assimilation provided a possible mechanism for the

gradual evolution of a LAD: ‘If there were selection for the ability to use language,

4Waddington’s work on genetic assimilation is a neo-Darwinian refinement of an idea inde-
pendently proposed by Baldwin, Lloyd Morgan and Osborne in 1896, and often referred to as
the Baldwin Effect (see Richards, 1987 for a detailed history). Waddington refined the idea by
emphasizing the role of canalization and the importance of genetic control of ontogenetic devel-
opment — his ‘epigenetic theory of evolution’. He also undertook experiments with Drosphila
subobscura which directly demonstrated modification of genomes via artificial environmental
changes (see Jablonka and Lamb, 1995:31f for a detailed and accessible description of these
experiments).

13



then there would be selection for the capacity to acquire the use of language, in
an interaction with a language-using environment; and the result of selection
for epigenetic responses can be, as we have seen, a gradual accumulation of so
many genes with effects tending in this direction that the character gradually
becomes genetically assimilated.” (1975:305f). Pinker and Bloom (1990) briefly
make essentially the same suggestion, citing the ‘Baldwin Effect’ and Hinton and
Nowlan’s (1987) computational simulation showing genetic assimilation of initial

node settings facilitating learning in a population of neural networks.

The account proposed in Briscoe (1999, 2000a) is that an initial acquisition proce-
dure emerged via recruitment (exaptation) of preexisting (preadapted) general-
purpose (Bayesian-like) learning mechanisms to a specifically-linguistic mental
representation capable of expressing mappings from conceptual representations
to realisable, essentially linearised, encodings of such representations (e.g. Bick-
erton, 1998, 2000; Worden, 1998). The selective pressure favouring such a devel-
opment, and its subsequent maintenance and refinement, is only possible given
a coevolutionary scenario in which some protolanguage(s) supporting successful
communication and capable of cultural transmission (that is, learnable without a
LAD) within a hominid population had already evolved via cultural transmission
(e.g. Kirby, 1998; Deacon, 1997). Protolanguage(s) may have been initially sim-
ilar to those proposed by Wray (2000) in which complete propositional messages
are conveyed by undecomposable signals. However, to create selection pressure
for the emergence of grammar, and thus a LAD incorporating language-specific
grammatical inductive bias, protolanguage(s) must have evolved at some point
into decomposable utterances, broadly of the kind envisaged by Bickerton (1998).

Several accounts of the emergence of syntax have been developed that predict the

14



emergence of syntax (e.g. Kirby, 2001a,b; Nowak et al 2000). At the point when
the environment contains language(s) with minimal syntax, grammatical assim-
ilation becomes adaptive, under the assumption that language confers a fitness
advantage on its users, since assimilation makes grammatical acquisition faster

and more reliable.

Saltations or macromutations are compatible with evolutionary theory if a single
highly-adaptive change in genotype creates a large change in phenotype. Evolu-
tionary theory predicts that macromutations are extremely unlikely to be adap-
tive (Dennett (1995:282f). Saltationist accounts have been proposed by Chomsky
(1988), Gould (1991), Bickerton (1998), Berwick (1998), Lightfoot (2000) and
others who variously speculate that the LAD emerged rapidly, in essentially its
modern form, as a side-effect of the development of large general-purpose brains
(possibly in small heads) and/or sophisticated conceptual representations. These
accounts not only speculate that the LAD emerged in a single and extremely
unlikely evolutionary step (e.g. Pinker and Bloom, 1990), but also neglect the
fact that selection pressure is required to maintain a biological trait (e.g. Ridley,
1990). Without such selection pressure, we would expect a trait to be whittled
away by accumulated random mutations in the population (i.e. genetic drift,
e.g. Maynard-Smith, 1998:24f). However, with such selection pressure, a newly
emerged trait will probably continue to adapt, especially if the environmental
factors creating the selection pressure are themselves changing, as languages do.
A saltationist account, then, requires the assumption that language, and conse-
quently the ability to learn one fast and reliably with a LAD, confers an adaptive
advantage just as much as a gradualist account requires the same assumption.

Therefore, even if the first LAD emerged by macromutation, evolutionary theory

15



predicts it may have been further refined by genetic assimilation.

Nevertheless, a number of potential problems have been raised for accounts of
either the emergence or subsequent evolution of the LAD via grammatical assim-
ilation, even though some such account appears to be the only possibility which

is both plausible and consistent given general evolutionary considerations.

Newmeyer (2000) goes one stage further than other saltationists, arguing that,
given the assumptions that: 1) the LAD incorporates a universal grammar based
on government-binding theory (Chomsky, 1981); 2) the language(s) extant in the
environment of adaptation were exclusively SOV rigid order languages with gram-
matical properties similar to their attested counterparts; and 3) such attested
languages do not manifest most of the universal linguistic constraints posited in
government-binding theory, then the LAD, if it exists, could not have emerged as
a result of grammatical assimilation and must be the result of saltation. All three
of these assumptions are highly controversial. However, the definition of the LAD
in terms of inductive bias, developed in section 2 is in no way dependent on any
specific linguistic constraints, or even on the existence of any absolute linguistic
universals, and none of the argumentation in this paper rests on anything like
such strong and speculative assumptions about the prehistoric environment of

adaptation.

Lightfoot (1999, 2000) argues that the LAD is not fully adaptive and, therefore,
could not have evolved by gradual genetic assimilation since, by definition, this
is an adaptive process. He uses the example of the putative universal constraint
against some forms of subject extraction from tensed embedded clauses, which
prevents the asking of questions like: *Who do you wonder whether/how solved

the problem?. Lightfoot argues that such phenomena show that aspects of the
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LAD are dysfunctional since the constraint reduces the expressiveness of human
languages and provides evidence that the constraint is circumvented by various
ad hoc strategies in different languages — in English, such questions become gram-
matical if the normally optional complementiser that is obligatorily dropped: Who
do you think (*that) solved the problem?. He argues that the presence of such a
maladaptive constraint in the LAD entails that the LAD could not have evolved
gradually, even though this constraint is a by-product of an adaptive more gen-
eral condition on extraction. However, evolutionary theory does not predict that
traits will be or will remain optimal in all environments. Although evolution is an
optimisation process, complex and dynamic fitness landscapes typically contain
many local optima which are far more likely to be discovered than the global
optimum, should it exist (e.g. Kauffman, 1993). It may simply be that any
genetically encodable extraction constraint aiding parsability and/or learnabil-
ity also has unwanted side-effects for expressiveness. Furthermore, a dynamic
fitness landscape entails that even an optimal solution at one time can become
suboptimal. For instance, one might speculate that this constraint on extraction
was assimilated into the LAD in an environment in which protolanguage(s) did
not exhibit embedded clauses at all (e.g. Carstairs-McCarthy, 2000). Subse-
quently, when embedded clauses evolved through linguistic selection for greater
expressiveness, aspects of the previously fully adaptive constraint became mal-
adaptive, but by this stage this component of the LAD had gone to fixation in

the population.

Waddington, himself, (1975:307) noted that if there is an adaptive advantage
to attenuating the process of grammatical acquisition, then we might expect

assimilation to continue to the point where no learning (plasticity) would be re-
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quired, because a fully specified grammar had been genetically assimilated. In
this case acquisition would be instantaneous and fitness would be maximised in
a language-using population. Clearly, this hasn’t happened, as there are around
6000 attested languages each with (varyingly) different grammatical systems, as
well as distinct vocabulary. Given a coevolutionary scenario, in which languages
themselves are complex adaptive systems, a likely explanation for continuing
grammatical diversity is that social factors favouring innovation and diversity
create linguistic selection pressure (e.g. Nettle, 1999). Genetic transmission, and
thus assimilation, will be much slower than cultural transmission, therefore, con-
tinued plasticity in grammatical acquisition is probable, because assimilation will
not be able to ‘keep up with’ all grammatical change, and too much assimilation
will reduce individuals’ fitness, if linguistic change subsequently makes it hard or

impossible for them to acquire an innovative grammatical (sub)system.

Deacon (1997) and Worden (2001) also assume a coevolutionary scenario, but
argue that genetic assimilation of specifically linguistic, grammatical information
is unlikely precisely because languages evolve far faster than brains. If languages
evolve one or more orders of magnitude faster than brains, since attested lan-
guages have shifted major grammatical system within 1000 years which is a mere
50 or so generations, then, they argue, it is far more likely that grammatical
systems have evolved to be learnable by a preexisting general-purpose learning
mechanism than that this mechanism adapted to language. One might question
this argument on the grounds that the relevant hominid population was in all
likelihood small, and therefore genetic evolution would have been faster, whilst
linguistic evolution might well have been slower, particularly if there were close

contact between most members of this population in the environment of adap-
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tation. However, the main weakness of the argument is that it fails to take
any account of the potential space of possible grammatical systems. Most lin-
guists would probably argue that this space was potentially infinite prior to the
emergence of a LAD, whilst the claim that the LAD restricts the class of pos-
sible grammars of human languages to be finite, even if vast (on the order of
30 million grammars), remains controversial (e.g. Pullum, 1983). In this case,
no amount of rapid change between attested grammatical systems can count as
evidence against grammatical assimilation of linguistic constraints that rule out
the (infinitely) many unattested grammars that could not have been sampled in

the period of evolutionary adaptation (Briscoe, 2000a).

Given that grammatical assimilation only makes sense under a coevolutionary
scenario in which (proto)language(s) create selection pressure and given that lan-
guages change, Waddington’s notion of genetic assimilation should probably be
replaced with the more general one of coevolution (e.g. Futuyma and Slatkin,
1983; Kauffman, 1993:242f) which is taken to include the possibility of gene-
culture interactions (e.g. Durham, 1991). Even without considering putative
gene-culture interactions which may, for example, underlie the higher incidence
of lactose intolerance in humans from cultures with little history of animal hus-
bandry and milk consumption, it is clear that general evolutionary considerations
do not rule out the possibility of cross-species gentic interactions, and thus ge-
netic assimilation, in situations where there is considerable asymmetry in the
speed of evolution. Host-parasite coevolution is well-documented and in one in-
fluential theory is the explanation for the evolution of sexual reproduction, and
thus potentially faster recombination of favourable mutations, to enable hosts to

evolve parasitic defences more quickly (e.g. Maynard-Smith, 1998:234). From
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this perspective, genetic assimilation of environmental information is not pre-
cluded by the fact that aspects of the the environment, in this case the parasite,
are changing faster than the host organism can evolve. However, the coevolution-
ary perspective does imply that biological evolution is not guaranteed to succeed:
an assimilative response to the environment may well become maladaptive if the
environment subsequently changes. This in turn has led to the hypothesis that
sexual reproduction also preserves genetic heterogeneity, which helps preserve
the plasticity of immune systems and thus a species’ ability to respond to par-
asites. The logic of this argument is analogous to the argument given above
for preserving plasticity in the LAD in the face of grammatical change. How-
ever, the putative mechanism is reduced genetic specification rather than more

heterogeneous specification as is the case with the immune system.

The remaining problems for grammatical assimilation accounts concern the as-
sumed relationship between genotype and phenotype. Biological pathways from
genome to phenotype are not well understood for most traits, and certainly not
for the putative LAD. This raises two issues. Firstly, has there been enough time
since hominid divergence from chimps for the gradual evolution of the LAD? And
secondly, is there enough correlation between the genetic encoding of the LAD

and its (variant) behaviour to support grammatical assimilation?

There have probably been about 400,000 generations since hominids diverged
from chimps. There is an upper bound to the rate at which evolution can alter
the phenotype of a given species. The rate of evolution of any trait is dependent
on the strength of the selection pressure for that trait, but too much selection
pressure and a species will die out. Estimates of the the upper bound vary be-

tween 1 and 400 bits of new information per generation (Worden, 1995; Mackay,
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1999) creating an upper bound of between 4Kbits and 160Mbits of new genetic in-
formation expressed in the species’ phenotype. If the correct answer is close to the
lower estimate then this places severe demands on any account of the emergence
of a species-specific LAD, and means that exaptation of preexisting cognitive ap-
paratus will play a critical part of any plausible gradualist scenario. On the other
hand, if the higher estimate is closer to the truth, then it appears that there has
been time for the de novo evolution of quite complex cognitive traits. Finally,
the logic of the speed-limit argument collapses, given a saltationist account based
on macromutation. Under this scenario, a single genetic mutation event brings
about a complex of extremely unlikely but broadly adaptive phenotypic changes

which spreads rapidly through the population.

The second and related argument is based on the observation that the relation-
ship between genes and traits is rarely one-to-one and that epistasis (or ‘linkage’)
and pleiotropy are the norm. In general, the effect of epistasis and pleiotropy will
be to make the pathways more indirect from selection pressure acting on pheno-
typic traits to genetic modifications increasing the adaptiveness of those traits.
Therefore, in general terms, we would expect a more indirect and less correlated
genetic encoding of a trait to impede or perhaps even prevent genetic assimila-
tion. Mayley (1996) presents a general exploration of the effects of manipulating
the correlation between genotype (operations) and phenotype (operations) on
genetic assimilation. In his model, individuals are able to acquire better phe-
notypes through ‘learning’ (or another form of within lifetime plasticity), thus
increasing their fitness. However, the degree to which the learnt phenotype can
be assimilated into the genotype of future generations, thus attenuating learning

and/or increasing its success and further increasing fitness, depends on the cor-
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relation between possible ‘moves’ in learning ‘space’ between variant phenotypes

and mutations in genotype ‘space’ encoding these phenotypes.

5 Simulations of Genetic and Grammatical As-
similation

One way to explore the arguments and counter arguments outlined in the last
section is to build a simulation and/or a mathematical model. The latter is,
in principle, preferable as analytic models of dynamical systems yield absolute
results, whilst those generated by stochastic computational simulation are statis-
tical (e.g. Renshaw, 1991). However, to date, no analytic model of grammatical

assimilation has been developed.

There are a number of commonalities between these simulation models that I
will introduce before briefly describing general simulations of genetic assimilation
and then describing and evaluating extant simulations of grammatical assimila-
tion. Each model consists of an evolving population of individuals. Individuals
are endowed with the ability to acquire a trait by learning. However, the start-
ing point for learning, and thus individuals’ consequent success is determined to
an extent by an inherited genotype. Furthermore, the fitness of an individual,
that is the likelihood with which individuals will produce offspring, is determined
by their successful acquisition of the trait. Offspring inherit starting points for
learning (genotypes) which are based on those of their parents. Inheritance of
starting points for learning prevents any form of Lamarckian inheritance of ac-
quired characteristics, but allows for genetic assimilation, in principle. Inheri-
tance either takes the form of crossover of the genotypes of the parents, resulting

in a shared mixed inheritance from each parent, and overall loss of variation in
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genotypes over generations, and/or random mutation of the inherited genotype,

introducing new variation.

Hinton and Nowlan (1987) describe the first computational simulation of genetic
assimilation. In their (very abstract) simulation a population of 1000 neural
networks with 20 potential connections which can be unset (7), on (1), or off
(0) was evolved using a genetic algorithm. A ‘successful’ neural net had all 20
connections on, but networks were initialised randomly with connection (‘gene’)
frequencies of 0.5 for 7 and 0.25 for 1 or 0 at each position. Each network was
able to set unset connections through learning on the basis of 1000 trials during
its lifetime. The fitness of a network was defined as 1 4+ 19n/1000 where 7 is
the number of trials after it has learnt the correct settings, making a network
with all connections initially set to on 20 times fitter than a network which never
learnt to set them correctly. Reproduction of offspring was by crossover of initial
connections from two parents whose selection was proportional to their fitness. In
the early generations most networks had the same minimum fitness through being
born with one or more off settings, however this soon gave way to exponential
increases in networks with more on settings, less unset settings and no off settings,
then in the later stages the increase of on settings and decrease of unsets tailed

off once the population had evolved to genotypes enabling successful learning.

Hinton and Nowlan point out that the fitness landscape for this model is like
a needle in a haystack: only one final setting of all 20 connections confers any
fitness advantage whatsoever. Therefore, evolution unguided by learning would
be expected to take on the order of 2?° trials (i.e. genotypes) to find a solution. If
increased fitness required evolution of two such networks in the same generation,

as would be the case for coordinated communicative behaviour, evolution would
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be expected to take around 2% trials to find a solution (without even consid-
ering further restrictions created by limits on population size). However, with
learning (modelled as random search of connection settings) the model always
converges within 10-15 generations on a viable genotype (i.e. after generating
100-150K networks). Furthermore, the model shows clearly that once success-
ful networks appear, their superior performance rapidly leads to the spread of
genotypes which support successful learning. However, networks with unset con-
nections persist for over 500 generations despite the pressure exerted by the fitness
function to minimise the number of learning trials required to find the solution
(Harvey, 1993). Hinton and Nowlan suggest that this is a result of weak selec-
tion pressure once every network is capable of successful learning. Harvey (1993)
analyses the model using the tools of population genetics and argues that, since
many settings in genotypes of successful networks derive from the genotype of
the first such successful network to emerge, there is a significant chance factor in
the distribution of on and unset initial connections within the population at each
connection site. Given this ‘bottleneck’ factor when a single successful genotypes
evolves and dominates subsequent generations, it is possible for an unset connec-
tion to become ‘prematurely’ fixated, despite the selective pressure exerted by
the fitness function in favour of shorter learning periods. The use of a mutation
operator would presumably allow populations to converge to the optimum geno-
type, provided that selection pressure was strong enough to curtail the effects of

subsequent random mutation and genetic drift.

This initial result has been extended by Ackley and Littman (1991), Cecconi et
al(1995) and French and Messenger (1994), variously demonstrating genetic as-

similation can occur without a fixed externally-defined fitness criterion, can result
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in complete assimilation of a trait where learning has a significant cost and the
environment remains constant, and, when this occurs, can result in loss of the now
redundant learning component through deleterious genetic drift. An important
caveat on these positive results is that Mayley (1996) demonstrates that assimi-
lation can be slowed and even stopped if the degree of neighbourhood correlation
between genotype and phenotype is reduced. In Mayley’s model individuals have
separate encodings of genotype and corresponding phenotype. Learning alters
the latter, whilst the directness of the encoding of phenotypes in genotypes and
the relationship between learning rules and genetic operators determines the de-
gree of genetic assimilation possible, in interaction with the shape of the fitness

landscape and the cost of learning.

The first computational simulation of grammatical assimilation is that of Batali
(1994), who demonstrates that the initial weight settings in a recurrent neural
network (RNN), able to learn by backpropagation to recognise strings generated
by a restricted class of deterministic context-free grammars, can be improved by
genetic assimilation. An evolving population of RNNs with randomly initialised
weights was exposed to languages from this class and the networks best able to
recognise strings from these languages were kept and also used to create offspring
with minor variations in their initial settings. RNNs evolved able to learn final
weights which yielded much lower recognition error rates for strings from any
of this class of languages. Batali also discusses how his approach might yield
an account of the critical period for language acquisition. However, from the
perspective of this paper, this work is chiefly relevant for its demonstration of
the potential for genetic assimilation in a precise computational setting on a non-

trivial learning task. The RNN model of grammatical acquisition fails to meet
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most of the desiderata identified in section 2 above, because the RNNs do not
model the mapping between structure and meaning and cannot (approximately)

recognise strings from languages exhibiting cross-serial dependencies.

In a related simulation, Livingstone and Fyfe (2000) start with a population of
networks able to represent the mapping between undecomposable finite signal-
meaning correspondences and demonstrate that spatially-organised networks will
genetically assimilate an increased production capacity by switching on further
hidden nodes in their networks, given selection for interpretative ability and ex-
posure to a larger vocabulary. They argue that in a spatially organised setting
this amounts to a form of kin selection since networks receive no direct benefit
from an increased production ability. They suggest that their approach might be
extended to grammatical competence. However, it is difficult to see how, as the
network architecture is only able to represent finite signal-meaning correspon-

dences.

Turkel (2001) adapts Hinton and Nowlan’s (1987) simulation more directly by
adopting a principles and parameters model of grammatical acquisition. Individ-
uals in the evolving population are represented by a genotype of 20 binary-valued
principles/parameters which can be set to on (1), off (0) or unset (?) again. Un-
set, values represent parameters which are set during lifetime learning, and values
represent nativised principles of universal grammar. Learned settings of unset
parameters define variant phenotypes of a given genotype interpreted as differ-
ent grammars learnable from the inherited variant of universal grammar. The
fitness of a genotype is determined by the speed with which individuals acquire
compatible settings for unset parameters. A population of randomly initialised

individuals each with 10 unset parameters attempts to set them in order to com-
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municate with another random individual using the same grammar. Individuals
able to communicate are more likely to produce offspring with new genotypes de-
rived from their own by crossover with those of another individual. Populations
evolved genotypes which increased the speed and robustness of learning. How-
ever, despite the cost of learning, they did not converge on genotypes with no
remaining parameters, probably for similar reasons to those identified by Harvey
in his analysis of Hinton and Nowlan’s original work. Turkel’s approach does not
suffer from the weaknesses of neural network based models, because he does not
specify how genotypes encode grammars capable of generating sentence-meaning
correspondences. Turkel, like Hinton and Nowlan, sees the simulation more as
an abstract demonstration of how genetic assimilation provides a mechanism for
canalizing a trait, and thus, as a demonstration of how a LAD might have arisen
on the basis of natural selection for communicative success. However, because
of the unspecified relationship between genotypes and actual grammars, the only
really substantive difference from Hinton and Nowlan’s model is the use of a
frequency-dependent rather than fixed fitness function which creates an overall

lower degree of selection pressure.

Kirby and Hurford (1997) extend Turkel’s model by encoding sentences in terms
of the principle/parameter settings required to accurately parse them and by
modifying Gibson and Wexler’s (1994) Trigger Learning Algorithm. Appropriate
parameter settings are learnt by individuals as a function 1) of the parsability of
individual sentences, where more parsable sentences are generated by grammars
defined by on settings at the first 4 loci, and 2) of their distance from the indi-
vidual’s current parameter settings. This introduces linguistic selection into the

model as grammars which generate more parsable sentences can be learnt more
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easily. The initial population consists of individuals with all settings unset (i.e.
no LAD) exposed to enough sentences to be able to learn some grammar. As the
population evolves, fitness increases through grammatical assimilation of settings
which shorten the learning period and therefore increase communicative success.
Kirby and Hurford demonstrate that grammatical assimilation without linguistic
selection results in attenuation of the acquisition period, but also often results in
assimilation of linguistically non-optimal settings in the genotype. However, in
conjunction with linguistic selection, the population fixates on a genotype that
is compatible with the optimal grammars, because linguistic selection guarantees
that the population converges on optimally parsable languages, via the inductive
bias built into the learning algorithm, before genetic assimilation has time to
fixate individual loci in the genotype. They conclude that functional constraints
on variation will only evolve in the LAD if prior linguistic selection means that
the constraints are assimilated from an optimal linguistic environment, and thus,
that natural selection for communicative success is not in itself enough to ex-
plain why functional constraints could become nativised. This work is important
because it develops a coevolutionary model of the interaction between linguistic
selection for variant grammars via cultural transmission with natural selection
for variant LADs via genetic assimilation. However, the model remains under-
specified in terms of the connection between genotypes and actual grammars, the
grammatical acquisition procedure does not meet the desiderata of section 2 even

when this mapping is fully specified (e.g. Brent 1996; Briscoe, 1999, 2000a).

Yamauchi (2000a,b) replicates Turkel’s simulation but manipulates the degree of
correlation in the encoding of genotype and phenotype. He continues to repre-

sent a grammar as a sequence of N principles or parameters but determines the
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inherited value at each locus from a look-up table which uses K 0/1s (where K
can range from 1 to N-1) to encode each on/off/unset value (and presumably
ensure that all possible genotypes can be encoded). A genotype is represented as
a sequence of N 0/1s. A translator reads the first K genes from the genotype and
uses the look-up table to compute the value of the first locus of the phenotype.
To compute, the value of the second locus of the phenotype, the K genes starting
at the second locus of the genotype are read and looked up in the table, and so
on. The translator ‘wraps around’ the genotype and continues with the first locus
when K exceeds the remaining bits of the genotype sequence. Yamauchi claims,
following Kauffman (1993), that increases in K model increases in pleiotropy and
epistasis. Increased K means that a change to one locus in the genotype will
have potentially more widespread and less predictable effects on the resulting
phenotype. It also means that there is less correspondence between a learning
‘move’, altering the value of single phenotypic locus, and a genetic ‘move’, po-
tentially altering many in differing ways or none depending on the look-up table.
For low values of K, genetic assimilation occurs, as in Turkel’s model, for values
of K around half N genetic assimilation is considerably slowed, and for very high

values it is stopped.

Yamauchi does not consider how the progressive decorrelation of phenotype from
genotype affects the degree of communicative success achieved or how linguistic
systems might be affected. In part, the problem here is that the abstract nature
of Turkel’s simulation model does not support any inference from configurations
of the phenotype to concrete linguistic systems. Yamauchi, however, simply does
not report whether decorrelation affects the ability of the evolving population to

match phenotypes via learning. The implication, though, is that, for high values
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of K, unless the population starts in a state where genotypes are sufficiently
converged to make learning effective, then they cannot evolve to a state better
able to support communication. Kauffman’s original work with the NK model
was undertaken to find optimal values of K for given N to quantify the degree
of epistasis and pleiotropy likely to be found in systems able to evolve most
effectively. Both theretical predictions and experiments which allow K itself to
evolve suggest intermediate values of K are optimal (where the exact value can
depend on N and other experimental factors). Despite these caveats, Yamauchi’s
simulation demonstrates that (lack of) correlation of genotype and phenotype
with respect to the LAD is just as important an issue for accounts of grammatical

assimilation as it is for accounts of genetic assimilation generally.

6 My Simulation Model

The model that I have developed (Briscoe, 1997, 1998, 1999, 2000a,b, 2001) is
similar to that of Hurford and Kirby (1997), in that it supports both linguis-
tic selection for grammatical variants and natural selection for variant LADs,
however, it incorporates a considerably more detailed and adequate account of
grammatical acquisition which, in turn, supports a much more precise account of
the range of grammatical systems that can potentially be adopted by a speech
community. Thus, the model makes more concrete linguistic predictions based

on the presence or absence of grammatical assimilation.

6.1 Language Agents

A language agent (LAgt) is a model of a language learner and user consisting of a

1) learning procedure, LP, which takes a definition of a universal grammar, UG,
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and a sentence-meaning (‘logical form’) pair or ‘trigger’, ¢ and returns a specific
grammar, g; 2) a parser, P which takes a grammar and a trigger, ¢, and returns a
logical form, LF, for ¢ if ¢ is parsable with g and otherwise reports failure; and 3)
a generator, G, which given a grammar, g, and a randomly selected LF' produces

a trigger compatible with this LF'.

I have developed several accounts of LP based on a theory of UG known as
Generalized Categorial Grammar and an associated parsing algorithm P. In
what follows, I assume the Bayesian account of parametric learning developed in
Briscoe (1999) with minor modifications. Briscoe (1999, 2001) outlines how the
general purpose Bayesian learning mechanism might have been integrated with
the grammatical representation, itself an exaptation and minor modification of a
preadapted conceptual representation system. Grammatical acquisition consists
of incrementally adopting the most probable, and thus most compact, grammar

defined by UG compatible with the nth trigger in the sequence seen so far:

g = argmazgeuc p(9) p(ts | 9)

Briscoe (1999) shows how this formula can be derived from Bayes theorem and
how prior probability distributions can be placed on ¢ € UG in terms of the
number and type of parameters required to define g, broadly favouring regularity
and compactness. The probability of ¢ given ¢ is defined in terms of the poste-
rior probabilities of the grammatical categories required to parse ¢t and recover
the correct LF. These posterior probabilities are updated according to Bayes
theorem after each new trigger is parsed and LP searches a local space, defined
parametrically, around g, to find a parse for ¢ if necessary. This account of LP

meets the desiderata described in section 2 (Briscoe, 1999, 2000a).
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In the experiments reported below, L P does not vary, however, the starting point
for learning and the hypothesis space can be varied. UG is defined by a P-setting
consisting of 20 binary principles/parameters which define possible grammars
and the exact prior probability distribution on them. Each individual p-setting
is represented by a fraction: % represents an unset parameter with no prior bias

on its value; £ and % represent default parameters with a prior bias in favour

)
of specific settings. However, this bias is low enough that consistent evidence

for the alternative setting during learning will allow LP to move the posterior

probability of this parameter through the - (unset) point to take on its other

1
2
setting. Principles, which have been nativised, have prior probabilities so close

1
50

49

to 1 or 0, typically =

or z=, that LP will not see enough evidence during learning
to alter their settings. How a P-setting defining UG is initialised for specific
LAgts determines their exact inductive bias and hypothesis space. The ‘weakest’
minimal or no LAD variant is one in which all p-settings are unset parameters.
If all have absolute values, either a single grammar is available to a LAgt or
no grammar is available (as some ‘off’ settings preclude any form of message
decomposition or are mutually incompatible). Mutation and one-point crossover
operators are defined over P-settings and designed to not bias evolution towards
adoption of any one of the three types of p-setting. However, if default settings or
principles are acquired this clearly constitutes grammatical assimilation because
it creates either soft or absolute inductive bias in favour of subclasses of grammars
with specific linguistic properties. This bias is additional too the general and

domain-independent bias in favour of generalisation or compactness inherited

through exaptation of the general purpose learning mechanism.

The space of possible grammars in UG is defined in terms of canonical constituent
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order, possible non-canonical variations and categorial complexity. These are
adopted from the typological literature on attested variation (e.g. Croft, 1990)
but model most as independent. There are 70 full languages and a further 200
subset languages of these full languages, generated by grammars which have some
parameters unset or off. Further details of these grammars and language frag-
ments are given in Briscoe (1997, 1998, 2000a). Assimilated default or absolute
settings for any of these parameters, therefore create clear and concrete forms
of specifically grammatical inductive bias in favour of specific constituent orders,

and so forth.

In addition, each LLAgt has an age, between 1 and 10, and a fitness, between 0 and
1. LAgts can learn until they exceed age 4 and interact (i.e. parse or generate)
with whatever grammar they have internalised between 1 and 10. The simplest
version of fitness measures LAgts’ communicative success as a ratio of successful
to all interactions, but other factors can be included in fitness such as the de-
gree of expressiveness of the grammar acquired. A successful interaction occurs
when the trigger generated by a ‘speaking’ LAgt can be parsed by the ‘hearing’
LAgt to yield the same LF which does not require that the LAgts share identical

grammars. S0, to summarise, a language agent has the following components:

LAgt:

LP(UG,t) =
P(g,t) =LF
G(g,LF) =t
Age : [1—10]

Fitness: [0 —1]
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6.2 Populations and Speech Communities

A population is a changing set of LAgts. Timesteps of the simulation consist of
interaction cycles during which each LAgt participates in a prespecified number of
interactions. On average each LAgt generates for half of these interactions. LAgt
pairs participating in interactions are drawn randomly without bias from the
entire population. After each time step, the age of each LAgt is incremented and
those over age 10 are removed, the fitness of each LAgt over that interaction cycle
is computed, and LAgts aged 4 or more who have greater than mean fitness can
reproduce a new LAgt by single-point crossover of their P-settings with another
such LAgt with whom they have successfully interacted. The resulting P-setting
can also optionally undergo random unbiased single-point mutation creating new
p-setting values at specific loci. The number of new LAgts per timestep is capped
to prevent the proportion of learning LAgts to exceed one-third of the overall

population.

The mean number of interactions is set so that accurate grammatical acquisition
is possible from many initialisations of UG, including ‘no LAD’ for which all
p-settings are unset parameters. Therefore, if a simulation run is initialised with
no mutation and a mixed age 5 or over population of LAgts endowed with the
same p-settings who have internalised the same full grammar, then grammatical
acquisition will be 99% accurate or better, and communicative success will be
around 98%, the 2% accounting for learners who have temporarily internalised a
subset grammar. In this case, the population constitutes a stable homogeneous
speech community, in which no significant grammatical variation is present and

no grammatical change takes place. If grammatical variation is introduced into
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such a population, then linguistic drift, analogous to genetic drift, means that
the population will converge on one variant within around 2N timesteps (where
N is population size) due to sampling effects on learning LAgts’ input (Briscoe,
2000b). Grammatical variation can be introduced by initialising the simulation
with LAgts who have internalised different grammars or by periodic ‘migrations’
of groups of such LAgts. In this case, it makes sense to think in terms of contact
between speech communities. However, the dynamic of the simulation is always
to recreate a single such community with a high overall communicative success
because all LAgts in the current population interact with each other with equal
probability regardless of the grammar they have internalised, their provenance,

or their age.

Linguistic selection, as opposed to drift, occurs whenever any factor other than
the frequency of a grammatical variant plays a role in its ability to be passed
on to successive generations of learning LAgts. Such factors might be the rela-
tive parsability of variants and their consequent learnability, the probability with
which they are generated, or the degree to which inductive bias in the LAD mil-
itates for or against them, their expressiveness, social prestige, and so forth. In
simple cases of linguistic selection (Briscoe, 1998, 2000a), the population typ-
ically converges to the more adaptive variant within N timesteps (where N is
population size). In this simulation model, once linguistic variation is present
there is a tendency for populations to converge on subset grammars and asso-
ciated languages. These grammars require fewer parameters to be set and thus
can be learnt faster. However, if all LAgts utilise the same subset language then
communicative success will remain high. This tendency can be countered by in-

troducing a further factor into LAgt fitness which adds an extra cost for utilising
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a subset grammar each time a LLAgt generates a sentence. This creates selection
for grammars able to express the widest range of LF's. In the experiments below
the only form of linguistic selection considered will be that created by natural

selection for communicative success and expressiveness.

6.3 Coevolution and Grammatical Assimilation

Linguistic selection can occur without natural selection for, or any genetic evo-
lution of, LAgts (i.e. P-settings), if they are initialised with p-settings creating
inductive bias. However, if mutation is enabled on P-settings and reproduction is
random, then simulation runs inevitably end with populations losing the ability
to communicate because accumulated genetic drift in p-settings eventually pre-
vents learning LAgts acquiring any grammar. If reproduction is fitness-guided,
then there is modest selection pressure for p-settings which attenuate the learn-
ing process and increase fitness at age 4, and more severe pressure for p-settings
which allow reliable accurate grammatical acquisition by the end of the learning

period at age 5.

Previous experiments with a variety of different P-settings and several variants
of LP have demonstrated that grammatical assimilation occurs with natural se-
lection for communicative success in this simulation model and that populations
continue to utilise full grammars and associated languages if there is also natu-
ral selection for expressiveness (Briscoe, 1998, 1999, 2000a, 2001). Reproduction
is typically by high probability crossover of two above mean fitness LAgts’ P-
settings with a low probability of subsequent unbiased mutation of one p-setting
value to another, representing a different p-setting type. Natural selection prefers

p-setting variants which aid grammatical acquisition in the current linguistic en-
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vironment. Inducing rapid linguistic change in the environment does not prevent
grammatical assimilation, though it does cause it to asymptote rather than con-
tinue to the point where the population fixates on a single nativised grammar.
Rapid linguistic change also creates a preference for the assimilation of default
p-settings over principles, since the latter are potentially more damaging when
subsequent linguistic change renders a principle maladaptive for learners. If the
population were exposed to the entire space of grammatical variation within the
time taken for a variant p-setting to go to fixation, then assimilation would not
occur. However, for this to happen, the rate of linguistic change would be so great
that communication would breakdown and the population would not consitute a
speech community in which the majority of interactions are successful. Below I
describe one such experiment using the L P and simulation model outlined above,

taken from Briscoe (1999).

Populations of LAgts were initialised with LADs consisting of 3 principles and
17 unset parameters all speaking one of seven attested full grammars. 10 runs
were performed under each condition. Simulation runs lasted for 2000 interac-
tion cycles (about 500 generations of LAgts). Reproduction was proportional to
communicative success and expressiveness, and was by crossover and mutation
of the initial p-settings of the ‘parent’ LAgts. Constant linguistic heterogeneity
was ensured by migrations of adult LAgts speaking a distinct full language with
1-3 different parameter settings at any point where the dominant (full) language
utilised by the population accounted for over 90% of interactions in the preceding
interaction cycle. Migrating adults accounted for approximately one-third of the
adult population and were initialised to have initial p-settings consistent with

the dominant settings already extant in the population; that is, migrations were
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Figure 1: Proportions of P-setting Types and Mean fitness

designed to increase linguistic, not genetic, variation.

Over all these runs, the mean increase in the proportion of default parameters
in all such runs was 46.7%. The mean increase in principles was 3.8%. These
accounted for an overall decrease of 50.6% in the proportion of unset parame-
ters in the initial p-settings of LAgts. Qualitative behaviour in all runs showed
increases in default parameters and either maintenance or increase in principles.
Figure 1 shows the relative proportions of default parameters, unset parameters
and principles in the overall population and also mean fitness for one such run.
Overall fitness increases as the learning period is truncated, though there are

fluctuations caused by migrations and/or by increased proportions of learners.

In these experiments, linguistic change (defined as the number of interaction cy-
cles taken for a new parameter setting to go to fixation in the population) is
about an order of magnitude faster than the speed with which a genetic change
(new initial p-setting) can go to fixation. Typically, 2-3 grammatical changes

occur during the time taken for a principle or default parameter setting to go to
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fixation. Grammatical assimilation remains likely, however, because the space of
grammatical variation (even in the simulation) is great enough that typically the
population is only sampling about 5% of possible variations in the time taken for
a single p-setting variant to go to fixation (or in other words, 95% of the selection
pressure is constant during this period). Though many contingent details of the
simulation are arbitrary and unverifiable, such as the size of the evolving pop-
ulation, size of the grammar set, and relative speed at which both can change,
it seems likely that the simulation model massively underestimates the size of
the potential space of grammatical possibilities. Thus, there would very proba-
bly have been more opportunity to restrict the hypothesis space by grammatical
assimilation than is predicted by the simulation model. Nevertheless, there is a
limit to grammatical assimilation in the face of ongoing linguistic change, in simu-
lation runs with LAgts initialised with all default parameters, populations evolve

away from such fully-assimilated LADs when linguistic variation is maintained.

6.4 Neighbourhood Correlation

The above experiments did not take account of the potential effect of (lack of)
neighbourhood correlation. However, we know from Mayley’s (1996) and now
from Yamauchi’s (2000a,b) work that this may undermine the results. In Briscoe
(2000a), I pointed out that my model assumes full correlation between genotype
and phenotype and operations defined on them in genetic and learning ‘space’.
In the absence of any great understanding of the biological pathways from genes
to neural mechanisms, or of the neural mechanisms underlying the putative LAD,
it is impossible to draw definitive conclusions about this assumption. However,

Kauffman’s (1993) work on NK models does suggest that such pathways are likely
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to evolve towards a degree of epistasis and pleiotropy so that systems evolve op-
timally ‘at the edge of chaos’. It is fairly straightforward to explore the exper-
imental effects of introducing progressive decorrelation in several different ways
into the simulation model. As is often the case, the results of these experiments
were surprising (at least to me) and much more subtle in terms of their interpre-
tation than expected, underlining once again the need for careful simulation of

the interaction of variant assumptions in such complex dynamical models.

The modified model does not distinguish genotype and phenotype, instead util-
ising a single P-setting which encodes both the initial state (UG) and subsequent
states during learning, as parameter probabilities, and consequently their set-
tings, change. P-settings are defined by a sequence of fractions which define the
prior probability of each of three possible settings: unset, default parameter and
absolute principle. Arbitrary manipulation of denominators and numerators is
very likely to result in values outside the range 0-1. A NK-like scheme based on
a binary sequential ‘genetic’ encoding of these fractions with single-point muta-
tion by bit flipping will nearly always produce new absolute principles (under the
fairly natural assumption that values outside the range 0-1 are interpreted this
way). So instead the mutation operator was modified so that it created unbiased
movement of parameters between default and unset settings at multiple random
points in a P-setting. The maximum number of p-settings that could be modified
in a single mutational event was the main parameter varied in these simulation
runs, but the exact number modified, the points in the p-setting modified and the
resultant settings, were all independent stochastic variables of each such event.
The fractional values defining prior probabilities remained fixed, as defined in

section 6.1 above.
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New simulation runs were performed identical to those reported in section 6.3,
except that the parameter controlling the degree of decorrelation between mu-
tation and parameter (re)setting was varied, and half the runs did not include
migrations. The general effect of migrations is to add greater linguistic variation
and therefore to increase the potential for linguistic selection. However, linguistic
selection will also occur in a population in which the LAD is evolving because
different variants of the LAD can force even a homogeneous speech community
to shift to a new language. For example, if a new LAgt inherits a mutated
p-setting which alters a directional default, that learner may acquire a variant
grammar compatible with this default if the input sample does not exemplify
the non-default setting reliably enough to override the default. If that LAgt and
some of its descendents achieve better than mean fitness, because this default
only affects a proper subset of sentences in the language or because it is reset
effectively, then the default initial setting may spread through the population.
The likelihood of such LAgts achieving better than mean fitness is lower in an
environment where the remaining population are all learning accurately, but is
increased in one in which some other new LAgts are inheriting mutated P-settings

which disadvantage them more seriously.

The main effect of progressively decorrelating the mutation operator from the
learning procedure is to increase the rate of linguistic selection and, despite natu-
ral selection on the basis of expressiveness, to cause populations to tend to recon-
verge to successively less expressive subset languages. Often, linguistic change
is coextensive with a few new LAgts appearing who fail to learn any language.
However, swift shifts to variant (often less expressive) languages mean that other

genetically similar LAgts do acquire the variant language. Thus, although decor-
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relation modestly increases the number of subset learning, mislearning and non-
learning L Agts, this, in turn, creates linguistic selection for other more learnable
languages given the evolving genetic make up of the learning population. When
the decorrelation rate is very high, potentially affecting all of the P-setting during
one mutational event, then the number of non-learners appears to go through a
phase transition increasing about a thousand-fold over the previous increment.
In these runs, populations always converge to a minimal subset language, which
is learnable by setting three p-settings, and in most cases several of these settings

have evolved as default parameters across the population.

Tracking the rate of evolution of default parameters over these runs reveals that
this rate increases by about 5% over runs without decorrelation, as measured by
the number of default parameters in the population at the end of each run. This
increase is broadly constant across all the runs regardless of the level of decorre-
lation and the presence or absence of migrations. However, as the decorrelation
rate increases the standard deviation of the mean also increases reflecting the
size of the potential changes induced by the increasingly dramatic mutational
events. That is, for higher rates of decorrelation, distinct runs diverge more as
the stochastic factors in the mutational operator affect the exact behaviour of

individual runs to a greater extent.

An increase in the number of default parameters in the LAD only counts as gram-
matical assimilation if the evolved defaults are compatible with the language(s)
in the environment. Examining the timing of changes in P-settings and linguistic
changes reveals that decorrelation is often the cause of a linguistic change, rather
than assimilatory. Grammatical assimilation is defined as the assimilation of en-

vironmental constancy to aid grammatical acquisition. The changes to the LAD
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which are not assimilative, yet become adaptive and spread, are ones which drive
rapid linguistic change, so that these preemptive genetic changes rapidly become
indistinguishable from assimilative ones. A default setting which is correct and
thus assimilative in the current linguistic environment reduces the number of
parameter settings required to learn the language, attenuating grammatical ac-
quisition and making it more robust against sampling variation in learner input.
If a default is assimilated, then it is likely to spread through the population,
creating added linguistic selection pressure for subsequent linguistic change to
remain compatible with the default setting. If a mutated default is incompat-
ible with the current linguistic environment but spreads to other LAgts, either
because grammatical acquisition is generally less accurate or because sampling
variation allows enough learners to override the default without significant fitness
cost, then it will exert increasing linguistic selection pressure, both because more
learners will have the default setting and because less LAgts will generate the

counterexamples that would cause the default setting to be overridden.

The lefthand plot in Figure 2 shows the rate of increase of default parameter
settings within the population for a low and high degree of decorrelation in two
runs with no migrations and otherwise identical initialisations. The lefthand plot
shows the corresponding decrease in the number of parameters which are (re)set
by learners in the same two runs. Although the overall increase in defaults is
consistently higher, and the number of (re)sets is mostly correspondingly lower
with more decorrelation, in this run resets converge towards the end, because
there is a less close a ‘fit” between the languages of the speech community and
the form of the LAD with higher degrees of decorrelation at the end of the run.

This is a tendency in other runs with no migrations. However, the effect is
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Figure 2: Change in Defaults and Resets with Low/High Decorrelation

removed and to some extent even reversed in runs with migrations, presumably
because migrations provide linguistic variation supporting more rapid linguistic

selection of variants more compatible with the evolving LAD.

One conclusion that can be drawn from these experiments is that if non-assimilatory
random mutations were a factor in the evolution of the LAD, then these muta-
tions would rapidly mesh with linguistic systems, because of the greater speed
and responsiveness of linguistic selection. Subsequently such mutations appear
to be cases of grammatical assimilation, unless one has access to the precise
nature and timing of the mutational event, linguistic environment and any sub-
sequent linguistic change — something one cannot hope to have access to outside
the simulation ‘laboratory’. The experiments also suggest that high degrees of
decorrelation and thus non-assimilatory changes are unlikely, in line with Kauff-
man’s (1993) more general results. The predicted consequence of such changes
is that linguistic prehistory would be punctuated by the periodic emergence of

mislearners and nonlearners sometimes coupled with bursts of rapid linguistic
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change, often in the direction of less expressive languages and despite natural
selection for expressiveness. This is contrary to what most non-assimilationists
have argued, but, it is not clear whether any evidence beyond the simulation

results and general theoretical conclusions bears on the issue.

A simulation model in which greater expressiveness, or acquisition of innovative
grammatical variants, outweighed learnability in LAgt fitness might predict nat-
ural selection for less restrictive LADs or loss of emerging LADs. A model which
integrated some of the social pressures maintaining linguistic diversity discussed,
for example, by Nettle (1999), might counterbalance the tendency for learnabil-
ity to outweigh expressiveness. However, given that there is a strong relationship
between the size of the hypothesis space and the amount of data required to
reliably acquire a specific grammar (e.g. Nowak et al 2001), a model in which
expressiveness regularly overcame learnability would predict that the learning
period would increase over time or, if a critical period had been nativised, that
the reliability of grammatical acquisition would degrade. The existence of a crit-
ical period for grammatical acquisition, the accuracy of grammatical acquisition,
and its selectivity in the face of variant input (e.g. Lightfoot, 1999) all suggest
that this is an implausible evolutionary dynamic. However, integration of a more
realistic account of expressiveness into the simulation model would certainly be

a worthwhile extension of these experiments.

A further set of similar experiments was undertaken in which the mutational
operator was modified so that the fractional values defining initially unset pa-
rameters mutated randomly by increasingly large amounts. The increasing bias
of this operator is to create absolute parameters as the base of the fractions in-

creases and as they exceed the 0-1 range, so that LP becomes unable to move
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them through the % threshold which alters a setting. Unsurprisingly, in these
experiments, there were many more cases of nonlearners, since principles rather
than just default settings were acquired. This mutation operator is exceedingly
unlikely to create new unset parameters, and increasingly likely to only create
principles with greater degrees of decorrelation. Overall the rate of increase in
defaults and principles was slightly higher in these experiments. However, just
as in the previous ones, many of the mutational events are at least partly pre-
emptive rather than assimilative, and where the preemption results in principles
incompatible with the linguistic environment, a learning LLAgt has less chance of
reproducing, unless the overall accuracy of grammatical acquisition in the popu-
lation has degraded significantly. Thus, as in the previous experiments, the trend
in linguistic change is towards successive reconvergence on subset languages until
the population is speaking a minimal subset language compatible with default

parameter settings or principles that have spread through the population.

In general, the greater the degree of decorrelated mutational events involving pre-
emptive non-assimilatory changes, the more the simulation model predicts that
the coevolutionary dynamic would bias the hypothesis space until only one gram-
matical system remained. If the mutation operator is prevented from creating
principles or increasingly stronger defaults, as in the first series of experiments,
then there is a limit to this effect, but removing this, as in the second series of
experiments, strengthens this tendency. A more direct implementation of the
NK model of neighbourhood decorrelation utilised by Kauffman (1993), Mayley
(1996) and Yamauchi (2000a,b) would further increase this effect for increasing

values of K.
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7 Conclusions

The simulation case for grammatical assimilation as the primary mechanism of
the emergence and subsequent evolution of the LAD remains, in my opinion,
strong. However, low degrees of decorrelation of genotype and phenotype predict
that some genetic changes might have been partially preemptive rather than fully
assimilative, forcing subsequent linguistic change. One way of interpreting this
finding would be to argue that it partially vindicates some aspects of the saltation-
ist position, since it implies that some commonalities amongst human languages
are a consequence of nonadaptive side effects or ‘spandrels’ in the evolution of the
LAD. Another would be to argue, in the spirit of Deacon (1997), that preemptive
mutations are not evidence for nativisation of grammatical knowledge. Rather
rapid consequent linguistic evolution has created the close ‘fit’ between extant

languages and the language acquisition procedure.

High degrees of decorrelation of genotype and phenotype are unlikely on general
evolutionary grounds (Kauffman, 1993) and predict an implausible coevolution-
ary dynamic in the case of the coevolution of the LAD and languages, at least
according to the current simulation model. There is no evidence that linguis-
tic evolution is punctuated by a series of dramatic mutational events leading
to significant breakdown in the cultural transmission of language and followed
by subsequent rapid linguistic evolution of new but often less expressive gram-
matical systems. The natural fixed point of such a dynamic is one expressively
restrictive but genetically specified grammatical system. Clearly, this is not what
has occurred. Instead the evidence suggests that humans have converged on a

genetic specification of a LAD which supports robust acquisition of a wide range
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of grammatical systems.

As always, it is important to emphasise that simulation work, however careful
and sophisticated, is not enough to establish the truth of what remains a partly
speculative inference about prehistoric events. The value of simulations, and
related mathematical analysis, lies in uncovering the precise set of assumptions
required to predict that grammatical assimilation will or will not occur. Since
many of these assumptions relate to cognitive abilities or biases which should
remain manifest today, these predictions are not, in principle, untestable. For
example, we have seen that inductive bias is at the heart not only of (grammati-
cal) assimilation but also of any satisfactory model of grammatical acquisition and
the linguistic evolution of modern languages from protolangue(s). On the other
hand, the relative weight of factors relating to learnability and expressiveness in
the LAgt fitness function remain largely speculative, though not, in principle,
untestable, since they should, for example, be manifest in attested grammatical

changes, including those occurring right now (e.g. Kegl et al 1999).
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