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1 Introduction

This paper is part of an ongoing research effort (Briscoe, 1997, 1998, 1999a,b,c,d)
to develop a formal model of language acquisition, demonstrate that an innate
language acquisition device could have coevolved with human (proto)language(s)
given plausible assumptions, and explore the consequences of the resulting model
of both language and the language faculty for theories of language change. The
paper builds on the earlier work by examining the model’s ability to account for
the process of creolization (Bickerton, 1981; 1984; 1988; Roberts, 1998) within a
selectionist theory of language change.

§1.1 and §1.2 describe the theoretical background to this research. §2 presents
a detailed model of the LAD utilizing generalized categorial grammars embedded
in a default inheritance network integrated with a Bayesian statistical account of
parameter setting. §3 reports experiments with this model demonstrating feasible
and effective acquisition of target grammars for a non-trivial fragment of UG. §4 de-
scribes the simulation of an evolving population of language learners and users. §5
reports experiments with the simulation model which demonstrate linguistic selec-
tion for grammatical variants on the basis of frequency and learnability. §6 reports
further experiments demonstrating evolution of the LAD by genetic assimilation of
aspects of the linguistic environment of adaptation. §7 describes the experiments
modelling the demographic and linguistic context of creolization. §8 summarizes
the main findings and outlines areas of further work.

1.1 Grammatical Acquisition

Human language acquisition, and in particular the acquisition of grammar, is a
partially-canalized, strongly-biased but robust and efficient procedure. It is a near-
universal feat, where (partial) failure appears to correlate more with genetic deficits
(e.g. Gopnik, 1994) or with an almost complete lack of linguistic input during the
critical period (e.g. Curtiss, 1988), than with measures of general intelligence (e.g.
Smith and Tsimpli, 1991) or the quality or informativeness of the learning environ-
ment (e.g. Kegl and Iwata, 1989; Ochs and Sheiffelin, 1995). Yet children prefer,



for example, to induce lexically compositional rules (e.g. Wanner and Gleitman,
1982:12f) in which atomic elements of meaning are mapped to individual words de-
spite the use, in every attested human language, of constructions which violate this
preference, such as morphological negation or non-compositional idioms. Despite
or perhaps because of these often counterfactual biases, grammatical acquisition
remains highly robust.

Within the parameter setting framework of Chomsky (1981), the Language Ac-
quisition Device (LAD) is taken to consist of a partial genotypic specification of (uni-
versal) grammar (UG) complemented with a parameter setting procedure which, on
exposure to a finite positive sample of triggers from a given language, fixes the values
of a finite set of finite-valued parameters to select a single fully-specified grammar
from within the space defined by UG. Many parameters of grammatical variation
set during language acquisition appear to have default or so-called unmarked values
retained in the absence of robust counter-evidence (e.g. Chomsky, 1981:7f; Hyams,
1986; Wexler and Manzini, 1987; Lightfoot, 1992).

Thus, the LAD incorporates both a set constraints defining a possible human
grammar and a set of biases (partially) ranking possible grammars by markedness.
A variety of explanations have been offered for the emergence of an innate LAD with
such properties based on saltation (Berwick, 1998; Bickerton, 1990, 1998) or genetic
assimilation (Pinker and Bloom, 1990; Kirby, 1998). Formal models of parameter
setting (e.g. Clark, 1992; Gibson and Wexler, 1994; Niyogi and Berwick, 1996;
Brent, 1996) have demonstrated that development of a psychologically-plausible
and effective parameter setting algorithm, even for minimal fragments of UG, is not
trivial. The account developed in Briscoe (1997, 1998, 1999a,b,c,d) and outlined
here improves the account of parameter setting, and suggests that biases as well
as constraints evolve through a process of genetic assimilation of properties of hu-
man (proto)language(s) in the environment of adaptation for the LAD, but these
constraints and biases in turn influence subsequent development of language via
linguistic selection.

1.2 Linguistic Selection

In recent generative linguistic work on diachronic syntax, language change is pri-
marily located in parameter resetting (reanalysis) during language acquisition (e.g.
Lightfoot, 1992, 1997; Clark and Roberts, 1993; Kroch and Taylor, 1997). Dif-
ferential learnability of grammatical variants, on the basis of learners’ exposure to
triggering data from varying grammatical sources, causes change. Language can be
viewed as a dynamic system which adapts to its niche — of human language learners
and users (e.g. Cziko, 1995; Hurford, 1987; 1998; Keller, 1994). Thus, language
itself is evolving, on a historical timescale, and the primary source of linguistic selec-
tion is the language acquisition ‘bottleneck’ through which successful grammatical
forms must pass repeatedly with each generation of new language learners. Under
this view, the core evolutionary concepts of (random) variation, (adaptive) selection
and (differential) inheritance are being used in their technical ‘universal Darwinist’
sense (e.g. Dawkins, 1983; Cziko, 1995) and not restricted to evolution of biological
organisms.

To study linguistic evolution, it is necessary to move from the study of indi-
vidual (idealized) language learners and users, endowed with a LAD and acquiring
an idiolect, to the study of populations of such generative language learners and
users, parsing, learning and generating a set of idiolects constituting the language
of a community. Once this step is taken, then the dynamic nature of language
emerges more or less inevitably. Misconvergence on the part of language learn-
ers can introduce variation into a previously homogeneous linguistic environment.
And fluctuations in the proportion of learners to adults, or migrations of different



language users into the population can alter the distribution and nature of the pri-
mary linguistic data significantly enough to affect grammatical acquisition. Once
variation is present, then properties of the LAD become critical in determining
which grammatical forms will be differentially selected for and maintained in the
language, with language acquisition across the generations of users as the primary
form of linguistic inheritance.

2 The Language Acquisition Device

A model of the LAD must incorporate a theory of UG with an associated finite set
of finite-valued parameters defining the space of possible grammars, a parser for
these grammars, and an algorithm for updating initial parameter settings on parse
failure during acquisition (e.g. Clark, 1992). It must also specify the starting point
for acquisition; that is, the initial state of the learner in terms of the default or
unset values of each parameter of variation (e.g. Gibson and Wexler, 1994).

2.1 The (Universal) Grammar

Classical (AB) categorial grammar uses one rule of application which combines a
functor category (containing a slash) with an argument category to form a derived
category (with one less slashed argument category). Grammatical constraints of
order and agreement are captured by only allowing directed application to adja-
cent matching categories. Generalized categorial grammars (GCGs) extend the
AB system with further rule schemata (e.g. Steedman, 1988, 1996). Each such
rule is paired with a corresponding determinate semantic operation, shown here
in terms of the lambda calculus, which compositionally builds a logical form from
the basic meanings associated with lexical items. The rules of forward application
(FA), backward application (BA), generalized weak permutation (P) and forward
and backward composition (FC, BC) are given in Figure 1 (where X, Y and Z
are category variables, | is a variable over slash and backslash, and ... denotes
zero or more further functor arguments). Generalized weak permutation enables
cyclical permutation of argument categories, but not modification of their direc-
tionality. Once permutation is included, several semantically equivalent deriva-
tions for simple clauses such as Kim loves Sandy become available, Figure 2 shows
the non-conventional left-branching one. Composition also makes alternative non-
conventional semantically-equivalent (left-branching) derivations available.

This set of GCG rule schemata represents a plausible kernel of UG; Hoffman
(1995, 1996) explores the descriptive power of a very similar system, in which
P is not required because functor arguments are interpreted as multisets. She
demonstrates that this system can handle (long-distance) scrambling elegantly and
generate some mildly context-sensitive languages (e.g. languages with cross-serial
dependencies such as a™, b", c”, though not some MIX languages with arbitrarily in-
tersecting dependencies, e.g. Joshi et al, 1991). The majority of language-particular
grammatical differences are specified in terms of the category set, though it is also
possible to parameterize the rule schemata by, for example, parameterizing the
availability of P, FC or BC and whether P can apply post-lexically.

The relationship between GCG as a theory of UG (GCUG) and as a specification
of a particular grammar is captured by defining the category set and rule schemata
as a default inheritance network characterizing a set of (typed) feature structures.
The network describes the set of possible categories, each represented as a feature
structure, via type declarations on network nodes. It also defines the rule schemata
in terms of constraints on the unification of feature structures representing the
categories. Type declarations CON (T'ype, C) consist of path value specifications



Forward Application:
X/YY=X Ay [X(y)] (v) = X(y)

Backward Application:

YX\Y =X Ay X ) = X(y)
Forward Composition:

X/)YY/Z = X/Z Ay [X(y)] Az [Y(2)] = Az [X(Y(2))]
Backward Composition:

Y\Z X\Y = X\Z Az [Y(2)] Ay [X(y)] = Az [X(Y(2))]

(Generalized Weak) Permutation:

X|Y1)-- Y= XY Y10 Ayn--oy1 X(yr--o¥a)] = Ao y1,9n X1 --

5Yn)]

Figure 1: GCG Rule Schemata

Kim loves Sandy
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Figure 2: GCG Derivation for Kim loves Sandy

(PV'Ss). An inheritance chain of (super)type declarations (i.e. a set of PV Ss)
defines the feature structure associated with any given (sub)type (see Lascarides et
al., 1995; Lascarides and Copestake, 1999, for further details of the grammatical
representation language, and Bouma and van Noord (1994) for the representation
of a categorial grammar as a constraint logic grammar.! Figure 3 is a diagram of
a fragment of one possible network for English categories in which PV Ss on types
are abbreviated informally, T denotes the most general type, and meets display the
(sub)type / (default) inheritance relations. Vi inherits a specification of each atomic
category from which the functor intransitive verb category is constituted and the
directionality of the subject argument (hereafter subjdir) by default from a type
gendir. For English, gendir is default ‘rightward’ (/) but the PV S in Vi specifying
the directionality of subject arguments, overrides this to ‘leftward’, reflecting the

n fact, the representation of P as a constraint may be problematic. Instead it may be better
represented as a unary rule which generates further categories. See Briscoe and Copestake (1997)
for a discussion of lexical and other unary rules in the nonmonotonic representation language
assumed here. Sanfilippo (1994) provides a detailed description of the encoding of categories for
English verbs.
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NP gendir (/)
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\NP

: (S\NP)/NP

Figure 3: Fragment of an Inheritance Semi-Lattice

NP gendir subjdir objdir ndir
A1/T DO/R D1/L ?77? 77

Figure 4: A p-setting encoding for the category fragment

fact that English is predominantly right-branching, though subjects appear to the
left of the verb. Transitive verbs, Vt, inherit structure from Vi and an extra NP
argument with default directionality specified by gendir. Nevertheless, an explicit
PV S in the type constraints for Vit could override this inherited specification. We
will refer to this PV'S as objdir and the equivalent specification of the determiner
category’s argument as ndir below. A network allows a succinct definition of a set
of categories to the extent that the set exhibits (sub)regularities.

The parameter setting procedure utilizes a function P-setting(UG) which en-
codes the range of potential variation defining ¢ € G where UG is an invariant
underspecified description of a CCG and P-setting encodes information about the
PV Ss which can be varied. For the experiments below a CCG covering typolog-
ical variation in constituent order (e.g. Greenberg, 1966; Hawkins, 1994) was de-
veloped, containing 20 binary-valued unset or default-valued potential parameters
corresponding to specific PV Ss on types which are represented as a ternary sequen-
tial encoding (A=Absolute (principle), D=Default, ?=unset, 0=Rightward/False,
1=Leftward,True, ? = unset) where position encodes the specific PVS and its
(partial) specificity. Figure 4 shows a p-setting encoding of part of the network in
Figure 3, where S and N are the only definitely invariant principles of UG, though
this p-setting also encodes NP as an absolute absolute specification and, therefore,
effectively a principle of UG. This encoding reflects the fact that PV Ss specifying
directionality for the object of a transitive verb or argument of a determiner are
redundant as directionality follows from gendir. CON (Type, C) defines a partial
ordering on PV Ss in p-settings, which is exploited in the acquisition procedure. For
example, gendir is a PV'S on a more general type than subjdir and thus has more
global (default) consequences in the specification of the category set, but subjdir
will inherit its specification from gendir in the absence of an explicit PV S for Vt.

The eight basic language families in G are defined in terms of the unmarked,
canonical order of verb (V), subject (S) and objects (O). Languages within fam-
ilies further specify the order of modifiers and specifiers in phrases, the order of
adpositions, and further phrasal-level ordering parameters. In this paper, familiar
attested p-settings are abbreviated as “German” (SOVv2, predominantly right-
branching phrasal syntax, prepositions, etc), and so forth. Not all of the resulting
300 or so languages are (stringset) distinct and some are proper subsets of other



gen vl subj obj v2 mod spec rcl adpos

n
“English” R F R L R F R R R R
“German” | R F R L L T R R R R
“Japanese” | L F L L L F L L L L

~ w8

Figure 5: The Constituent Ordering Parameters

languages. “English” without P results in a stringset-identical language, but the
grammar assigns different derivations to some strings, though their associated log-
ical forms are identical. Figure 5 shows the settings for the 11 constituent ordering
parameters utilized for some familiar languages. In addition, there are 3 p-setting
elements which determine the availability of application, composition and permuta-
tion, 5 which determine the availability of specific categories (S,N,NP,Prep,Compl),
and one, argorder, whose marked value allows a subject argument to combine first
with a verbal functor for ‘true’ VOS or OSV languages.? Some p-setting configura-
tions do not result in attested grammatical systems, others yield identical systems
because of the use of default inheritance. The grammars defined generate (usually
infinite) stringsets of lexical syntactic categories. These strings are sentence types
since each defines a finite set of grammatical sentences (tokens), formed by selecting
a lexical item consistent with each lexical syntactic category.

2.2 The Parser

The parser uses a deterministic, bounded-context shift-reduce algorithm (see Briscoe,
1998, 1999b) for further details and justification). It represents a simple and nat-
ural approach to parsing with GCGs which involves no grammar transformation
or precompilation operations, and which directly applies the rule schemata to the
categories defined by a GCG. The parser operates with two data structures, an in-
put buffer (queue), and an analysis stack (push down store). Lexical categories are
shifted from the input buffer to the analysis stack where reductions are carried out
on the categories in the top two cells of the stack, if possible. When no reductions
are possible, a further lexical item is shifted onto the stack. When all possible shift
and reduce operations have been tried, the parser terminates either with a single
‘S’ category in the top cell, or with one or more non-sentential categories indicating
parse failure. The algorithm for the parser working with a GCG which includes
all the rule schemata defined in §2.1 is given in Figure 6. This algorithm finds the
most left-branching derivation for a sentence type because Reduce is ordered before
Shift. The algorithm also finds the derivation involving the least number of pars-
ing operations because only one round of permutation occurs each time application
and composition fail. The category sequences representing the sentence types in
the data for the entire grammar set are unambiguous relative to this ‘greedy, least
effort’ algorithm, so it will always assign the correct logical form to each sentence
type given an appropriate sequence of lexical syntactic categories. Thus each sen-

2The p-setting encoding of the non-ordering parameters does not correspond to a single PV'S
in the grammatical representation language. We make the assumption for the parameter setting
model that the definitions of rule schemata and of complex categories are predefined in UG as
sets of PV'Ss but that a single element must be switched ‘on’ for them to become accessible. This
could correspond to the PV S that links these definitions to the rest of the inheritance network
by, for example, specifying that application is a subtype of binary-rule. However, even this is
a simplification in the case of complex categories since these will typically inherit subcomponents
from several places in the part of the network defining the category set. These assumptions speed
up learning but do not alter fundamental results concerning convergence, provided that a more
direct encoding retained a finite number of such finite-valued ‘parameters’.



1. THE REDUCE STEP: if the top 2 cells of the stack are occupied,
then try
a) Application (FA/BA), if match, then apply and goto 1), else b),
b) Composition (FC/BC), if match then apply and goto 1), else c),
c¢) Permutation (P), if match then apply and goto 1), else goto 2)

2. THE SHIFT STEP: if the first cell of the Input Buffer is occupied,
then pop it and move it onto the Stack together with its associated
lexical syntactic category and goto 1),
else goto 3)

3. THE HarLr STEP: if only the top cell of the Stack is occupied by a
constituent of category S,
then return Success,
else return Fail

THE MATCH AND APPLY OPERATION: if a binary rule schema matches the
categories of the top 2 cells of the Stack, then they are popped from the Stack
and the new category formed by applying the rule schema is pushed onto the
Stack.

THE PERMUTATION OPERATION: each time step 1c) is visited during the Re-
duce step, permutation is applied to one of the categories in the top 2 cells of
the Stack (until all possible permutations of the 2 categories have been tried
in conjunction with the binary rules). The number of possible permutation
operations is finite and bounded by the maximum number of arguments of
any functor category in the grammar.

Figure 6: The Parsing Algorithm

tence type or potential trigger in the dataset encodes a surface form and asociated
logical form as a sequence of determinate lexical syntactic categories when parsed
with this algorithm.

2.3 Parameter Setting

The parameter setting algorithm used here is a statistical extension of an n-local
partially-ordered error-driven parameter setting algorithm utilizing limited mem-
ory. Briscoe (1997, 1998) discusses related proposals (e.g. Gibson and Wexler,
1994; Niyogi and Berwick, 1997) and Briscoe (1999b,c) motivates the statistical
approach to parameter setting). The algorithm only adjusts p-settings on parse
failure of trigger input given the learner’s current grammar. If flipping the settings
of n parameters results in a successful parse, then these settings receive further
support and after a few such consistent observations the learner’s p-setting will be
more permanently updated, though there is nothing to stop subsequent triggers
reversing the settings. The setting of parameters is partially-ordered in the sense
that the partial order on PV'Ss corresponding to particular parameters defined by
the inheritance network determines the manner in which updating proceeds. More
general supertype parameters inherit their evidence and settings from their more
specific subtype parameters. A p-setting not only encodes the current settings of
parameters but also the degree of evidence supporting that setting, as a probability,
and this determines how easily a setting can be updated. The statistical approach
adopted is Bayesian in the sense that initial p-settings encoded a prior probabil-
ity for a parameter setting and posterior probabilities for settings are computed in
accordance with Bayes’ theorem.



Bayes’ theorem, given in (1), adapted to the grammar learning problem states
that the posterior probability of a grammar, g € G, where G defines the space of
possible grammars, is determined by its likelihood given the triggering input, t,,
multiplied by its prior probability.

p(9)p(ta | 9)
p(tn)
The probability of an arbitrary sequence of n triggers, t,, is usually defined as in

(2).
(2) p(tn) = _ p(ta | 9) pl9)

geG

(1) plgeq|t,) =

Since we are interested in finding the most probable grammar in the hypothesis
space, G, given the triggering data, this constant factor can be ignored and learning
can be defined as (3).

(3) g=argmaz,eq p(g) p(tn | 9)

A sentence type / trigger is a pairing of a surface form (SF), defined as an
ordered sequence of words, and a logical form (LF) representing (at least) the cor-
rect predicate-argument structure for the surface form in some context: t; = {<
w1, Wy, ..w, >, LF;}.2 A valid category assignment to a trigger (VCA(t)) is de-
fined as a pairing of a lexical syntactic category with each word in the SF of ¢,
< Wiy :C1,Ws : Ca,... W, : Cy > such that the parse derivation, d for this sequence of
categories yields the same LF as that of ¢.4

Each grammar, g, interpreted as a stochastic generator of L(g), should yield a
probability distribution over sentence types, which (indirectly) will define a distri-
bution for triggers, ¢ for g, and g must also have a prior probability defined in terms
of the probabilities of its components. We augment the account of GCG from §2.1
with probabilities associated with path value specifications (PV Ss) in type declara-
tions on nodes in the default inheritance network, CON (T'ype, C). The probability
of a PV S with an ‘uninteresting’ absolute value is simply taken to be 1 for the pur-
poses of the experiments reported below. A PV'S which is specified in a p-setting
and which, therefore, plays a role in differentiating the class of grammars g € G
will be binary-valued so p(PV'S; = 0) and 1 — p(PV'S; = 1). An unset PVS; =7 is
assigned a prior probability of 0.5. The probability of each such PV'S is assumed to
be independent, so the prior probability of a category is defined as the product of
the probabilities of the PV'Ss in the type declarations which define it CON (¢, C),
in (4).

4) plceg) = II »o®vs)

PVSeCON(c,C)
The prior probability of a grammar, g is the product of the probabilities of all its
PV Ss, as in (5).

(5) plg) = 1T p(PVS)

PVSeCON(Type,C)

3The definition of a LF is not critical to what follows. However, we assume that a logical form
is a (possibly underspecified) formula of a well-defined logic representing at least the predicate-
argument structure of the sentence (see e.g. Alshawi, 1996). It is possible that the definition of a
trigger could be further relaxed to allow underdetermined predicate-argument structure(s) to be
associated with a SF.

4We assume that the parse recovered will be that yielded by the parser of §2.2; namely, the least
effort, most left-branching derivation. Strict equivalence of LFs could be relaxed to a consistency
/ subsumption relation, but this would not affect the experiments described below.



CON(Type, C) is the grammatical representation language which defines the de-
fault inheritance network, which in turn denotes a minimal set of feature structures
representing the category set for a particular grammar. The probability of an unset
PVS is always 0.5, so grammars g € G are differentiated by the product of the
probabilities of the default and absolute valued PV Ss represented in a p-setting.
Therefore, (5) defines a prior over G which prefers succinctly describable maximally-
regular and minimally-sized category sets.® These constraints are enough to ensure
that prior probabilities will be assigned in such a way that >, cq) p(g) = 1.

The likelihood, p(t, | g), is defined as the product of the probabilities of each
trigger (6).

6) ptalg)=]]ptl9)

tet,

Where the probability of a trigger is itself the product of the probabilities of each
lexical syntactic category in the valid category assignment for that trigger, VCA(t),
as in (7).

M ptlg= J[ »ll9

cEVCA(L)

And the probability of a lexical category, ¢, is the product of the probabilities of
the PV Ss in the type declarations which define it, (8).

8)  plclg) = 11 p(PVS)

PVSECON(c,C)

This is sufficient to define a likelihood measure, however, it should be clear that
it yields a deficient language model (Abney, 1997) in which the total probability
mass assigned to sentences generated by g will be less than one and some of the
probability mass will be assigned to non-sentences (i.e. sequences of lexical syntactic
categories which will not have a derivation or VCA given g).

The assumption of independence of PV Ss rests partly on the semantics of the
grammatical representation language in which a feature structure is a conjunction of
atomic path values each specified by a single PV S. It represents a claim about the
cognitive representations and procedures involved in language acquisition, rather
than a claim that the different aspects of grammatical information encoded in dis-
tinct PV Ss show no dependencies. In other words, we are claiming that language
learners utilize an approximate statistical model of language. Similarly, the use of
such a deficient model amounts to the cognitive claim that learners are sensitive to
lexical probabilities but not the derived probabilities of phrases or clauses (see e.g.
Merlo 1994).5

5Because the parameters of variation are a set of binary-valued PV'Ss with uniform probability
assigned to unset PV Ss, the product of these PV Ss effectively defines an informative prior on G
consistent with the Minimum Description Length Principle (Rissanen, 1989). A more sophisticated
encoding of the grammar would be required to achieve this if the parameters of variation differed
structurally or ‘unset’ / unused PV Ss were not assigned a uniform probability.

6The definition of probabilistic GCGs given here could be straightforwardly extended to define
‘lexically-probabilistic’ GCGs in which the probability of a trigger is conditioned on the lexical
items, w which occur in the trigger p(w | ¢). However, we do not do so here since in the experiments
which follow we assume that valid category assignments, VCA(t), are given, and thus abstract away
from the lexicon and lexical probabilities. Extending the model in this fashion would be critical
if we wanted to deal with (probabilistic) selection between valid category assignments in order to
resolve ambiguity.



P-setting Type Prior Posterior Setting

— T T
Principle 26 26 0
49 49
50 50 1
Default Parameter & : 0
4 4
5 5 1
Unset Parameter 3 3 ?

Table 1: Probabilities of Parameter Types

2.4 Implementation

The Bayesian account of parameter setting has been partially implemented as an
on-line, incremental grammar acquisition procedure which updates probabilities as-
sociated with the subset of PV Ss which define (potential) parameters as each trigger
is parsed. Though acquisition is restricted to the space defined by P-setting(UG),
the preference for the most succinct descriptions within this space requires that set-
tings on more general types are updated to reflect the bulk of the probability mass
of subtypes which potentially inherit settings from them. The resulting learner finds
the locally maximally probable grammar given the specific sequence of triggers, t,,
seen so far, (9).

(9) g =locmazgec p(g) p(tn | 9)

Each element of a p-setting is associated with a prior probability, a posterior
probability and a current setting, as shown in Table 1 for the different types of
possible initial p-setting (before exposure to data). The current setting is 1 iff the
posterior probability associated with the parameter is >0.5, 0 iff it is <0.5 and unset
(?) iff p = 0.5. Probabilities are stored as fractions so that incremental updates
based on new observations can be expressed as additions to denominators and/or
numerators, and larger denominators can be used to represent stronger priors. In
the experiments reported below the values shown in Table 1 are used to initialize
simulations, but values of numerators and denominators in priors can be modified by
mutation and crossover operators during the reproduction of new language agents
(see §4 below).

The Bayesian approach to incrementally updating the posterior probability of
each parameter is approximated by incrementally computing the maximum like-
lihood estimate for each parameter but smoothing this estimate with the prior
probability.” Firstly, the posterior probability is initialized to the (inherited) prior
probability and these values are used to compute the parameter settings which de-
fine the starting point for learning. Then, as the learner successfully parses sentence
types, the posterior probability of each parameter expressed in the sentence type is
updated, reinforcing the probabilities of the parameter settings required to assign

7Strictly smoothing the maximum likelihood estimate with the prior does not conform to Bayes
theorem in the limit because, given (9), if the likelihood is 1 or 0 then the prior has no effect.
Very similar and strictly Bayesian results could be had in the implementation by using a Laplace-
corrected estimate of the likelihood (that never goes to 1 or 0), corresponding to the assumption
that in incremental updating of likelihood probabilities the data observed so far may not constitute
a representative sample. The simpler and perhaps more psychologically-plausible (Cosmides and
Tooby, 1996) approximation used here only differs in assigning more weight to the prior than would
be achieved by multiplying the prior by a Laplace-corrected likelihood.
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them the correct LF. However, when a sentence type cannot be successfully parsed,
the acquisition procedure flips the settings of n parameters in a p-setting, and, if
this results in a successful parse, updates posterior probabilities according to these
revised settings. The effect of this acquisition procedure is that a trigger does not
usually cause an immediate switch to a different grammar. Rather the learner is
more conservative and waits for enough evidence to shift a posterior probability
through the p = 0.5 threshold before changing a setting more permanently.® For
unset parameters at the beginning of the learning period, a single trigger, ¢, will suf-
fice to set the parameter appropriately for VC A(t), but incorrect default parameters
will require a few more consistent observations, as will initially unset parameters
which become inappropriately set as a result of noise or misanalysis.

Categorized triggers, VCA(t), are encoded in terms of the most specific p-
settings required to parse them successfully. However, each time posterior prob-
abilities of most specific parameters are updated, it is necessary to examine the
probabilities of their supertypes, and the pattern of default inheritance from them
to subtype categories, in order to determine the most probable grammar p(g €
P-setting(UQG)) for these settings. The probability of a supertype PV'S is defined
as the sum of the probabilities of those subtypes which inherit that PV S. Since
inheritance is default, not all subtypes will necessarily inherit a given PV S from a
supertype, they may instead override it with an explicit specification on the sub-
type. Both the value of the supertype PV'S and its probability are determined
by the amount of evidence supporting specific values for that PVS on subtypes.
For example, in the grammar fragment introduced above the PV S for gendir is
a supertype of subjdir, objdir (subject and object argument direction for verbal
functors, respectively) and of ndir (general direction of arguments in nominal func-
tors). The value of the PV S for gendir (right / left) is determined by the values
required on its subtypes and the probabilities associated with the subtype values.
For example, if both objdir and ndir are ‘right’ (0) (i.e. their posterior probabili-
ties are both < 0.5) but subjdir is ‘left’ (1), then the PV'S for gendir will be set
to ‘right’ with probability derived from the sum of the probabilities of these two
inheriting subtypes. However, subjdir will override the supertype with an explicit
PV S whose probability will not affect that of the supertype since the inheritance
chain has been broken. This will ensure that the resulting grammar has the min-
imal number of explicit PV Ss on types required to specify a grammar consistent
with the data observed (so far) and thus that this is the most probable grammar
a priori.® If subsequent evidence favours a ‘left’ setting for ndir or objdir then
the PV S for gendir will be revised to ‘left’ and the remaining rightward subtype
will become the one requiring an explicit PV S to override the default. Similarly, if
subjdir in the above example had an unset (7, p = 0.5) value, then the setting of
gendir rightward on the basis of the evidence from ndir and objdir would cause
the learner to adopt a default rightward setting for subjdir too.

Figure 7 summarizes the algorithm used to find the most probable grammar
compatible with the evidence for PV'Ss on the most specific types, where PV S; de-
notes a path value specification in a potential inheritance chain of type declarations

8For example, suppose parameter i has a prior and initial posterior probability of 1/5, and
thus a default value of 0. A single successful parse of sentence type expressing ¢ as 0 will cause
the denominator of the posterior probability to be incremented by 1, yielding a new posterior of
1/6. A single observation of a sentence type expressing i as 1 which gets a successful parse when
n parameter settings are flipped, including that for i, will cause the numerator and denominator
to be incremented by 1, yielding a new posterior probability of 2/6. Thus, it will take at least 4
such observations to take the posterior past p = 0.5 and cause the learner to change the parameter
setting.

9In the implementation the redundancy of a PV'S is modelled by assigning it a probability of
0.5 (i.e. by treating it as unset). Equivalent results would be obtained if the probability of g € G
was computed by removing such PV'Ss altogether.
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Vsupertype; € g
VPV S; € subtypesy of supertype;
if
| PVS; =1 € subtypesy | > | PVS; =0 € subtypes, |
then
p(PVS;) € supertype; =) p(PVS; =1) € subtypesi
(and vice-versa)
else
if
> p(PVS; =1) € subtypesy > Y. p(PVS; =0) € subtypes;
then
p(PVS;) € supertype; =Y p(PVS; =1) € subtypesi
(and vice-versa)
else
p(PVS;) € supertype; = 0.5

Figure 7: Algorithm for computing posterior probabilities of supertypes

which may or may not need to be explicitly specified to override inheritance. The
complete learning algorithm is summarized in Figure 8. Potential triggers, t of g*
are encoded in terms of p-schemata inducing V C A(t), following Clark (1992). This
obviates the need for on-line parsing of triggers during computational simulations.
It also means that flip can be encoded deterministically by examining the param-
eter settings expressed by a trigger in the p-schemata and computing whether any
resetting of n parameters will yield a successful parse. If so, then these parameters
are deemed to have been flipped and posterior probabilities are updated. The use of
a deterministic flip speeds up convergence considerably and amounts to the strong
assumption that learners are always able to determine an appropriate VCA(t) for
a trigger outside their current grammar if it is reachable with n parameter changes.
However, as their are finite finite-valued parameters, relaxing this assumption and,
say, making random guesses without examining the trigger encoding would still
guarantee eventual convergence.

3 Feasible and Effective Grammatical Acquisition

Two learners were defined on the basis of the grammar acquisition procedure de-
scribed in §2. Both learners can flip up to 4 parameters per trigger and differ only
in terms of their initial p-settings. Unset learners were initialized with p-settings
consistent with a minimal inherited CGUG consisting of Application with the NP
and S categories already present. All the remaining p-settings were genuine param-
eters for both learners. The unset learner was initialized with all these unset, while
the default learner had default settings for the parameters argorder, gendir, sub-
jdir, v1 and v2 which specify a minimal SVO right-branching grammar.!?. The
initialization of p-settings is in terms of their prior probabilities, as in Table 1, in
accordance with the probabilistic model defined in §2.3, so that the prior probability
of supertype PVSs is calculated from the priors associated with their subtypes.
Each variant learner was tested against a source grammar generating one of seven
full languages in the grammar set (§2.1) which are close to an attested language;
namely, “English” (SVO, predominantly right-branching), “Welsh” (SVOv1, mixed

10For a more detailed description of the effect of these five parameters in the model see Briscoe
(1998, 1999b).
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Data: {Sl, SQ, P Sn}

if
VCA(S;) € P-setting;(UG)
then
P-setting; (UG) = Update(P-setting;(UG))
else
P-setting; (UG) = Flip(P-setting;(UG))
unless
VCA(S;) € P-setting; (UG)
then
RETURN P-setting;(UG)
else
RETURN Update(P-setting; (UG))
Flip:

Flip or set the values of the first n default or unset most specific parameter(s)
in a left-to-right search of the p-schemata representation of VCA(t).

Update:

Adjust the posterior probabilities of the n successfully flipped parameters and
of all their supertypes so that they represent the most probable grammar given
the data so far (see Figure 7 etc.).

Figure 8: The Parameter Setting Algorithm

Learner Language

SVO SvVOvl VOS VSO SOV SOVv2 OVS OSV
Unset (n4) 33 32 34 32 34 32 32 32
Default (n4) | 19 32 21 39 20 21 22 23

Table 2: Convergence Times for Two Learners

order), “Malagasy” (VOS, right-branching), “Tagalog” (VSO, right-branching), “Japanese”
(SOV, left-branching), “German” (SOVv2, mixed branching), “Hixkaryana” (OVS,
mixed branching), and a hypothetical OSV language with left-branching phrasal
syntax. In these tests, a single learner parsed and, if necessary, updated parameters
from a randomly drawm sequence of unembedded or singly embedded (potential)
triggers, t from L(g') with VCA(t) preassigned. The predefined proper subset of
triggers used constituted a uniformly-distributed fair sample capable of distinguish-
ing each g € G (e.g. Niyogi and Berwick, 1996). The first figure in Table 2 shows the
mean number of potential triggers required by the learners to converge on each of
the eight languages. These figures are each calculated from 1000 trials and rounded
to the nearest integer. Presentation of 150 sentence types for each trial ensured
convergence with p > 0.99 on all languages tested for both learners. As can be
seen, the unset learner converges equally effectively on all eight languages, however,
the preferences incorporated into the default learner’s initial p-setting make lan-
guages compatible (e.g. SVO) or partially compatible (e.g. VOS, SOV, etc) with
these settings relatively faster to learn, and ones largely incompatible with them
(e.g. VSO) a little slower than the unset learner. Thus, the initial configuration of
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a learner’s p-setting (i.e. the prior probabilities) can alter the relative learnability
of different languages. Many experiments of this kind with these and other pre-
defined variant learners demonstrate experimentally that convergence is possible,
under these assumptions, for the 70 full and over 200 subset languages defined by
P-setting(UG) (see Briscoe, 1997, 1998, 1999a,b).

The mean number of potential triggers required for convergence may seem unre-
alistically low, however, this figure is quite arbitrary as it is effectively dictated by
the number of n flippable parameters, the distribution and size of the trigger set, t,
preassignment of VC A(t) and the deterministic flipping of parameters (as well as
the encoding of p-settings). The more general requirement for convergence is that
their be a trigger path from the learners’ initial settings which allows the (re)setting
of all parameters for g in n-local steps. For this the trigger set must constitute a
fair sample capable of uniquely identifying g* € G' and the sequence of triggers in
a trigger path supporting a n-local algorithm must be observed frequently enough
during the learning period to support the n parameter updating steps at each stage.
The number of triggers required will depend, primarily, on the proportion of trig-
gers for which VCA(t) is hypothesized by the learner. A demonstration of the
feasibility of the algorithm depends on replacing these optimal assumptions with
more empirically motivated ones. Such modifications would be unlikely to alter the
relative learnability results of Table 2, though they could increase the mean number
of potential triggers required for convergence by several orders of magnitude (see
Niyogi and Berwick, 1996). Here we focus on exploring the consequences of allowing
some miscategorizations of trigger input and of allowing spurious triggers not from
gt in the learner’s input.

The results of Table 2 are computed on the basis that the learner is always able
to assign the appropriate lexical syntactic categories to a sentence type / trigger
(i.e. that VCA(t) is always given). However, this is an unrealistic assumption.
Even if we allow that a learner will only alter parameter settings given a trigger,
that is, a determinate SF:LF pairing, there will still be indeterminacy of parameter
expression. For example, Clark (1992) discusses the example of a learner acquiring
“German” (SOVv2) in which triggers such as S-V, S-V-0, S-V-01-02, S-Aux-V will
occur (where S denotes subject, O for object, and so forth, indicating informally a
SF:LF pairing). These triggers are all compatible with a SVO grammar, though if
“German” is the target language, then SVO triggers such as Aux-S-V-O will not
occur, while other non-SVO ones such as O-V-S, S-Aux-O-V, O-Aux-S-V, and so
forth will (eventually) occur. That is, neither SVO or SVOv2 is a subset of the
other, but they share a proper subset of triggers. Thus, for a trigger like S-V-0
there is indeterminacy over the setting of the objdir parameter: it might be ‘right’
in which case VO grammars will be hypothesised, or ‘left’ with v2 ‘on’ in which case
OVv2 grammars will be hypothesised, and under either hypothesis the correct LF
will be recovered. Thus, depending on the precise order in which specific triggers
are seen by a learner, a deterministic learner might converge to an incorrect target
grammar.

In the Bayesian framework parameters can, in principle, be repeatedly reset
during the critical period for learning and their setting is conservative, based on
observing a consistent series of triggers supporting a specific setting. The robust-
ness of the acquisition procedure in the face of examples of such indeterminacies
of parameter expression can be explored by exposing a learner to sentence types
from the proper subset of SVO triggers (with VCA(t) predefined) which overlap
with SOVv2, as well as to SOVv2 triggers. This simulates the effect of a learner
miscategorizing a proportion of the triggers compatible with SVO (i.e. assigning a
VCA(t) valid given the current state of the learner, but incorrect with respect to g*).
In these circumstances, the Bayesian parameter setting procedure should converge
reliably to SOVv2 provided that the proportion of miscategorized triggers (to their
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Lner/L(g%) Trigger Proportions |

SVO-N/L(¢%) | 15/85 30/70 40/60 50/50 60/40
SOVv2
Unset (n4) 100 97.7 8.8 508 226
Default (n4) | 100 976 879 622 288
SVOv1
Unset (n4) 100 97.7 899 572 238
Default (n4) | 100 96.6  90.1 59 25.1

Table 3: Percentage Convergence to SOVv2 / SVOv1 with SVO Miscategorizations

correctly categorized counterparts) does not cause any particular parameter to be
expressed incorrectly in around 50% of all relevant triggers. The precise proportion
will depend, of course, on whether the initial value is unset or default-valued and,
if the latter, the relative strength of the prior. For a default-valued parameter with
a strong prior probability whose correct value is marked, it is possible that quite
a low proportion of miscategorized triggers could prevent its resetting within the
learning period.

The two learners were tested on a mixture of 150 triggers randomly drawn
from SVO-N-PERM-COMP and SOVv2 or SVOv1 in various proportions. SVO-
N-PERM-COMP is the language corresponding to the proper subset of ambiguous
triggers between “English” (SVO) and “German” (SOVv2), and also to a proper
subset of ambiguous triggers between SVO and “Welsh” (SVOv1).!! In each case,
SVO-N-PERM-COMP triggers conflict with SOVv2 and SVOv1 in two parameters:
objdir and bf v2, and argorder and v1, respectively. The percentage convergence
to the ‘target’” SOVv2 or SVOvl grammars over 1000 trials is given in Table 3.
The first column gives percentage convergence when a miscategorized trigger was
randomly drawn 15% of the time, the second 30% of the time, and so on until the
proportion of miscategorized triggers exceeds that of the target grammar 60/40. By
this stage most trials for both learners are converging to a SVO subset language,
usually with some features determined by the full source grammar.

The percentages given in Table 3 include cases where the learner initially con-
verged to the target and then switched to SVO. These accounted for from 4% up
to 50% of the overall convergence rate, increasing as the proportion of SVO miscat-
egorized triggers increased. One could posit, that the proportion of miscategorized
triggers would decrease or cease over the learning period. Or that the n updatable
parameters per trigger over the learning period decrements; that is, the learner be-
comes more conservative towards the end of the learning period. Or that the learner
knows when every parameter has been (re)set or ‘reinforced’ and then terminates
learning. In each case, similar exploratory experiments indicate that the incidence
of such ‘postconvergence’ to a different language, not actually exemplified in the
source can be drastically reduced or eliminated.

The experiments suggest that the Bayesian approach to parameter setting, in
principle, provides a robust and general solution to the indeterminacy of parameter
expression. However, contingent details such as the frequency and order of specific
(mis)categorized triggers, the weighting of priors, and so forth will determine the
detailed behaviour and effectiveness of such learner in practice. The differences
between the unset and default learners are minor in the results in Table 3 and only

11Syubset languages are denoted by mnemonic names, where —F indicates that property F is
missing, so —N indicates no multiword NPs, and -PERM and -COMP that permutation and
composition are not available in derivations.
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emerge, as expected, when the data has least influence on the initial settings; that
is, when the proportion of miscategorized subset triggers to correctly categorized
full language triggers is higher, so though two of the parameters receive more in-
correct support, the majority are simply observed less frequently. Therefore, on
balance, prior probabilities have a greater effect on posterior probabilities because
the likelihood probabilities are less informative overall. Then the default learner
converges slightly more successfully to either target grammar because, provided
that the learner sees enough correctly categorized triggers to reset the two conflict-
ing parameters with respect to each target, the rest of the directional parameter
settings for each target grammar are correctly set by gendir’s default ‘right’ value,
so these need less exemplification. Nevertheless, the probability that the two con-
flicting parameters will be correctly set for either target declines more for the default
learner than the unset learner, as their initial default values also conflict with that
required by each target. Therefore, increasing the prior weight of all the default
valued parameters, or just of the two conflicting parameters, and rerunning the
experiment would almost certainly yield a worse convergence rate for the default
learner.

The non-statistical acquisition procedure of Briscoe (1997, 1998), as well as
those of Gibson and Wexler (1994) and Niyogi and Berwick (1996), are excessively
sensitive to miscategorizations of triggers or to other forms of noise in triggering
input. If the learner is exposed to an extragrammatical or miscategorized trigger
given the target grammar at a critical point, this can be enough to prevent con-
vergence to the correct grammar. For example, given the deterministic parameter
setting procedure of Briscoe (1997, 1998), a learner who has converged to a SVO
grammar with right-branching phrasal syntax will, by default, assume the target
grammar utilizes postnominal relative clauses. However, at this point exposure to a
single trigger (mis)categorizable as containing a prenominal relative clause will be
enough to override the default assumption of rightward looking nominal functors
and, for the specific case of nominal functors taking relative clauses, permanently
define these to be prenominal. On the other hand, a memoryless parameter setting
procedure like the Trigger Learning Algorithm (Gibson and Wexler, 1994) will con-
tinue to switch between grammars, as mutually inconsistent sequences of triggers
are observed, until the learning period ends. So effectively the final trigger and its
(mis)categorization will determine the grammar selected (e.g. Niyogi, this volume).
Clearly, the problem here is a special case of that of the indeterminacy of param-
eter expression. In the Bayesian framework, small proportions of noisy triggers
encountered at any point in the learning period will not suffice to permanently set a
parameter incorrectly. More systematic miscategorizations based on the indetermi-
nacy of parameter expression will only result in misconvergence if the distribution
of the triggering data allows the learner to miscategorize a high proportion of all
triggers expressing a given parameter.

4 Populations of Language Agents

A language agent (LAgt) is minimally defined as a language learner, generator and
parser endowed with the model of the LAD described above and a simple generation
algorithm. The latter outputs a sentence type generated by the LAgt’s current
grammar (if any) drawn randomly according to a uniform distribution. In addition,
LAgts have an age, which is used to determine the length of the learning period,
and a fitness which can be used to determine their reproductive success and time
of death.

A population of LAgts participates in a sequence of interaction cycles consist-
ing of a specified number of random linguistic interactions between its members.
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A linguistic interaction consists of a randomly chosen generating LAgt emitting
a sentence type to a randomly chosen distinct parsing agent. The interaction is
successful if their p-settings are compatible. Compatibility is defined in terms of
the ability to map from a given SF to the same LF, rather than in terms of the
sharing of an identical grammar. Populations are sometimes initialized with LAgts
speaking a specific full language. Linguistic heterogeneity can then be introduced
and maintained by regular migrations of further adults speakers with identical ini-
tial p-settings, but speaking a distinct full language. Alternatively, populations can
be initialized to speak a variety of languages so that the range of variation can be
controlled directly.

A LAgt’s age is defined in terms of interaction cycles. LAgts can learn from age
one to four; that is, during the first four interaction cycles. If a LAgt is a learner
and cannot parse a sentence type during a linguistic interaction, then it is treated as
a potential trigger and the LAgt applies the parameter setting procedure given its
current p-setting. LAgts are removed from the population, usually at age 10. Two
LAgts can reproduce a third at the end of an interaction cycle, if they are both aged
four or over, by single point crossover and single point mutation of their p-setting
encodings. The crossover and mutation operators are designed to allow variant
initial p-settings to be explored by the population. For example, they can with
equal probability flip the initial value of a default parameter, make a parameter into
a principle or vice versa, and so forth, by altering the prior probabilities inherited
by a new LAgt. LAgts either reproduce randomly or in proportion to their fitness.
The fitness of a LAgt is defined by its communicative success; that is, the ratio of
its successful interactions over all its interactions for the previous interaction cycle.
The rate of reproduction is controlled so that a population always consists of >60%
adult LAgts.

The simulation model and typical values for its variables are outlined in Fig-
ure 9. Further details and motivation are given in Briscoe (1998, 1999a). The
mean number of interactions per LAgt per cycle are fixed so that acquisition of the
target grammar in a linguistically homogeneous population is reliable (p > 0.99)
for either of the predefined learners. The simulation can be used to study the pro-
cess of learning and consequent linguistic selection for grammatical variants, or to
study the interaction of linguistic selection with natural selection for more effective
learners defined in terms of variant initial p-settings.

5 Linguistic Selection Experiments

Linguistic selection can be seen as a population level, and therefore dynamic, coun-
terpart to the learner’s problem of the indeterminacy of parameter expression. For
example, if we initialize a population of LAgts so that some speak the SVO-N-
PERM-COMP subset language, corresponding to the proper subset of triggers which
overlap with “German” (SOVv2), and the remainder speak “German”, then learners
should reliably converge to “German”, even when exposed to triggers from all the
population, provided that SVO-N-PERM-COMP triggers do not much exceed 15%
of all triggers (see the results of §3). On the other hand, if the initial proportion
of SVO-N-PERM-COMP speakers is higher, but still below 50%, then we would
expect a minority of learners to converge to SVO subset languages or mixtures of
the two sources. However, as the simulation run continues, SVO (subset) speakers
will disappear because the relative frequency of SOVv2 speakers will increase with
each new batch of learners and as the original SVO-N-PERM-COMP adults die
out.

A series of simulations were run to test these predictions, in which an initial
population of either 32 default or unset learner LAgts reproduced randomly and
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LAgt: <P-setting(UG),Parser,Generator,Age,Fitness>

POP,,: {LAgty, LAgto, ... LAgt,}

INT(LAgt;,LAgt;), i # j, Gen(LAgt,, ti),Parse(LAgt;, tx)
SUCC-INT: Gen(LAgt;, tx) — LF; A Parse(LAgt;, tx) — LF

REPRO: (LAgt;,LAgt;), i # j,
Create-LAgt(Mutate(Crossover(P-setting(LAgt;,P-setting(LAgt;)))))

LAgt Fitness:
1. Generate cost: 1 (GC)
2. Parse cost: 1 (PC)
3. Success benefit: 1 (SI)
4. Fitness function: %JFII%Y

LAgt Death: Age 10

Variables Typical Values
POP,, Initially 32
Interaction Cycle Mn. Ints/LAgt 65
Simulation Run Int. Cycles 1k
Crossover Probability 0.9
Mutation Probability 0
Migrations per cycle 2

dominant 1g 90%

Figure 9: The Evolutionary Simulation
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Figure 10: Linguistic Selection between Languages

the number of SVO-N-PERM-COMP, SOVv2 and SOVv2 subset language speakers
was tracked through interaction cycles. In these simulations there is no variation
amongst LAgts, and so no evolution at the ‘genetic’ (initial p-setting) level — all
learners are either default or unset nd learners as defined in §3. However, there
is linguistic selection between the languages, where the ultimate units of selection
/ inheritance are competing parameter values. The selection pressure comes from
two conflicting sources: learnability and relative frequency. SVO-N-PERM-COMP
is easier to learn than SOVv2 because it requires the setting of fewer parameters,
but it may be less frequently exemplified in the primary linguistic data than SOVv2,
depending on the proportions of speakers in the initial population.

Figure 10 plots the languages spoken across interaction cycles for a population
of default learners initialized with 10 SVO-N-PERM-COMP and 22 SOVv2 adult
LAgts with ages varying randomly from 5-9; so the first generation of learners
will be exposed, on average, to 30% SVO-N-PERM-COMP triggers. This plot is
typical: the SVO-N-PERM-COMP speakers dwindle rapidly, though a few SVO
superset language learners emerge briefly, until cycle 10 when only SOVv2 speakers
and SOVv2-N learners remain. In 19 out of 20 such runs, the population converged
fully on SOVv2 in a mean 9.8 interaction cycles (with the exception of learners
speaking a SOVv2 subset language); that is, within two and a half full generations
of LAgts. (It is not possible for full convergence to occur in less than 6 interaction
cycles unless no initial SVO-N-PERM-COMP adult is aged 5.) After the first
interaction cycle in which learners were present, no subsequent learner converged
to a SVO (subset) language in any of these runs. However, in the one other run,
the population converged on a full SVO language after 11 interaction cycles, and in
around half the other runs, a few learners briefly spoke the full SVO language. In
runs with a lower proportion of initial SVO-N-PERM-COMP speakers, linguistic
selection for SOVv2 was 100%. In the runs initialized with unset learners, the
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results were similar except that there was much less tendency for learners to visit
the full SVO language on the path to SOVv2. However, in an otherwise identical
series of runs initialized with 16 SVO-N-PERM-COMP and 16 SOVv2 speakers, an
equally clear opposing result was obtained: populations nearly always converged on
SVO-N-PERM-COMP within 15 interaction cycles. Here ease of learnability swayed
the balance in favour of the subset language when each was exemplified equally in
the learners’ data, regardless of whether the population comprised default or unset
learners.

These experiments examine the interplay of the relative frequency with which
linguistic variants are exemplified and the relative learnability of languages in de-
termining what learners acquire. They are sufficient to demonstrate that linguistic
selection is a viable approach to accounting for some types of language change.
In Briscoe (1998, 1999b) more experiments are reported which look at the role of
parsability and expressibility in linguistic selection and also at the potential impact
of natural selection for LAgts on this process. Whenever there is linguistic hetero-
geneity in speech community, a learner is likely to be exposed to sentence types
deriving from more than one source grammar. In reality this is the norm rather
than the exception during language acquisition. Learners are typically exposed to
many speakers, none of whose idiolects will be entirely identical, some of them may
themselves be learners with an imperfect command of the target grammar of their
speech community, and some may come from outside this speech community and
speak a different dialect / language. The Bayesian approach to parameter setting
predicts that learners will track the frequency of competing variants in terms of
the posterior probabilities of the parameters associated with the variation. This
accords with the empirical behaviour of learners in such situations (e.g. Kroch,
1989; Kroch and Taylor, 1997; Lightfoot, 1997). They appear to acquire both vari-
ants and choose which to produce on broadly sociolinguistic grounds in some cases,
and to converge preferentially to one variant in others. This behaviour could be
modelled, to a first approximation in the current framework, by assigning varying
weights to prior default-values and postulating that parameters are set permanently
if their posterior probabilities reach a threshold value (say, > 0.95 for 1, and < 0.05
for 0). In this case, parameters which never reached threshold might be accessi-
ble for sociolinguistically-motivated register variation, while those which did reach
threshold within the learning period would not.!?

6 Coevolution of the LAD and of Language

The acquisition experiments of §3 demonstrated the effectiveness of the Bayesian
parameter setting procedure with several initial p-settings on some full languages,
even in the presence of noise and indeterminacy of parameter expression. The
simulations of populations of default learner LAgts of §5 demonstrated linguistic
selection on the basis of learnability and the relative frequency of conflicting triggers
without any variation at the genetic, initial p-setting level. Introducing variation
in the initial p-settings of LAgts, allows for the possibility of selection for better
initial settings, at the same time as languages, or their associated grammars, are
themselves being selected.

Variation amongst LAgts can be introduced in two ways. Firstly, by initializing
the population with LAgts with variant p-settings, and using a crossover operator
during LAgt reproduction to explore the space defined by this initial variation. And

12 A modification of this type might also form the basis of a less stipulative version of the critical
period for learning in which L Agts simply ceased to track posterior probabilities of parameters once
they reached threshold; see, e.g. Hurford and Kirby, 1997 for discussion and putative explanations
of the critical period for language acquisition.
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secondly, by also using a mutation operator during reproduction which can intro-
duce variation during a simulation run, with reproduction via crossover propagating
successful mutations through the population. Single point crossover with a prespec-
ified probability of 0.9 is utilized on a flat list of the numerators and denominators
representing the prior probabilities of each p-setting. The mutation operator can
modify a single p-setting during reproduction with a prespecified probability (usu-
ally p = 0.05). Mutation alters an element of a p-setting, with equal probability,
from its existing type (absolute principle, default or unset parameter) and initial
setting (1, 0, ?) to a new type and/or initial setting. Thus, no evolutionary bias
is introduced at this level, but mutation can alter the definition of UG by making
a principle a parameter or vice-versa, and alter the starting point for learning by
altering the prior probabilities of parameters.

Briscoe (1998, 1999a,b) argues in detail that, under the assumption that com-
municative success confers an increase in fitness, we should expect the learning
period to be attenuated by selection for more effective acquisition procedures in the
space which can be explored by the population; that is, we should expect genetic
assimilation (e.g. Waddington, 1942, Pinker and Bloom, 1990). In the context of
the Bayesian acquisition procedure, genetic assimilation corresponds to the evolu-
tion of the prior probabilities which define the starting point for learning to more
accurately reflect properties of the environment (during the period of adaptation).
Staddon (1988) and Cosmides and Tooby (1996) independently argue that many
aspects of animal and human learning behaviour can be accounted for under the
assumption that learning is Bayesian, priors evolve, and this general learning mech-
anism can be exapted to specific problems with domain-specific representational
and inferential components. Nevertheless, the selection for better language acquisi-
tion procedures will be relative to the dominant language(s) in the environment of
adaptation (i.e. the period before the genetic specification of the LAD has gone to
(virtual) fixation in the population). And these languages will themselves be sub-
ject to changing selective pressures as their relative learnability is affected by the
evolving LAD, creating reciprocal evolutionary pressures, or coevolution. However,
the selective pressure favouring genetic assimilation, and its subsequent mainte-
nance and refinement, is only coherent given a coevolutionary scenario in which
(proto)language(s) supporting successful communication within a population had
already itself evolved on a historical timescale (e.g. Hurford, 1987; Kirby, 1998),
probably with many of the constraints and biases subsequently assimilated already
present in the (proto)language(s) as a consequence of linguistic selection, perhaps
initially driven by quite general cognitive constraints such as working memory lim-
itations.

Here we report the results of a series of simulation experiments designed to
demonstrate that the LAD evolves towards a more specific UG (more principles)
with more informative initial parameter settings (more default-values) consistent
with the dominant language(s) in the environment of adaptation, even in the face
of the maximum rate of language change consistent with maintenance of a language
community (defined as mean 90% adult LAgt communicative success throughout
a simulation run). Populations of LAgts were initialized to be unset learners all
speaking one of the seven attested languages introduced in §3. Simulation runs
lasted for 2000 interaction cycles (about 500 generations of LAgts) and each condi-
tion was run ten times. Reproduction was proportional to communicative success
and was by crossover and mutation of the initial p-settings of the ‘parent’ LAgts.
Constant linguistic heterogeneity was ensured by migrations of adult LAgts speak-
ing a distinct full language with 1-3 different parameter settings at any point where
the dominant (full) language utilized by the population accounted for over 90%
of interactions in the preceding interaction cycle. Migrating adults accounted for
approximately one-third of the adult population and were initialized to have initial
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Figure 11: Proportions of p-setting types and Mean fitness

p-settings consistent with the dominant settings already extant in the population;
that is, migrations are designed to introduce linguistic, not genetic, variation. Popu-
lations typically sampled about 100 languages with the dominant language changing
about 40 times during a run.

The mean increase in the proportion of default parameters in all such runs was
46.7%. The mean increase in principles was 3.8%. These accounted for an over-
all mean decrease of 50.6% in the proportion of unset parameters in the initial
p-settings of LAgts. Figure 11 shows the relative proportions of default parame-
ters, unset parameters and principles for one such typical run with the population
initialized to unset n4 learners. It also shows the mean fitness of LAgts over the
same run; overall this increases as the learning period gets shorter, though there are
fluctuations caused by migrations or by an increased proportion of learners. These
results, which have been replicated for different languages, different learners, and so
forth (see Briscoe, 1997, 1998, 1999a) are clear evidence that a minimal LAD, incor-
porating a Bayesian learning procedure, could evolve the prior probabilities and UG
configuration which define the starting point for learning in order to attenuate the
acquisition process by making it more canalized and robust. On average, a shorter
learning period will result in increased communicative success because learners will
be able to parse the full range of sentence types from the dominant language by an
earlier age.

In these experiments, linguistic change (defined as the number of interaction cy-
cles taken for a new parameter setting to go to fixation in the population) is about
an order of magnitude faster than the speed with which a genetic change (new initial
p-setting) can go to fixation. Typically, 2-3 grammatical changes occur during the
time taken for a principle or default parameter setting to go to fixation. Genetic
assimilation remains likely, however, because the space of grammatical variation
(even in the simulation) is great enough that typically the population is only sam-
pling about 5% of possible variation in the time taken for a single p-setting variant
to go to fixation (or in other words, 95% of the selection pressure is constant during
this period).

Though many contingent details of the simulation are arbitrary and unverifiable,
such as the size of the evolving population, size of the set of grammars, G, and rel-
ative speed at which both can change, it seems likely that the simulation model
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massively underestimates the size of the potential space of grammatical possibili-
ties. Few linguists would baulk at 30 independent parameters of variation, defining
a space of billions of grammars, for an adequate characterization of a parameter set-
ting model of the LAD, while even fewer would argue that the space of possibilities
could be finitely characterized at all prior to the emergence of a LAD (e.g. Pullum,
1983). Thus, although there is a limit to the rate at which genetic evolution can
track environmental change (e.g. Worden, 1995a), while the speed limit to major
grammatical change before effective communication is compromised will be many
orders of magnitude higher, it is very likely that 95% of this space would not be
sampled in the time taken for fixation of any one parameter of variation in the LAD,
given plausible ancestor population sizes (e.g. Dunbar, 1993). Nevertheless, there is
a limit to genetic assimilation in the face of ongoing linguistic change, in simulation
runs with LAgts initialized with all default parameters, populations evolve away
from such ‘fully-assimilated’ LADs (e.g. Briscoe, 1998) when linguistic variation is
maintained.

7 Creolization

The abrupt transition from pidgin to creole, which Bickerton (1981, 1984, 1988)
argues occurs in one generation, constitutes one of the most dramatic and radical
attested examples of language change. In more recent work, Roberts (1998), using
a large database of Hawaiian pidgin and creole utterances, has revised Bickerton’s
original claim slightly, by arguing that some aspects of the transition in Hawaii
took two generations. Nevertheless, this careful empirical work by-and-large con-
firms Bickerton’s original claims that the creole emerges very abruptly and embod-
ies a much richer grammatical system than the pidgin, whose properties are not
directly exemplified in the super- or sub-stratum languages to which learners might
be exposed and are very similar to the properties of other creoles which emerged
at geographically and historically unrelated points. Bickerton (1984:173) has de-
scribed the process by which learners acquire a creole grammar as one of invention
in terms of an innate bioprogram.

Creolization represents a potential challenge for the account of language learn-
ing and language change presented here. Though we claim that language learning
is partially innate and that many of the constraints and biases incorporated into
the LAD have evolved via genetic assimilation, the parameter setting algorithm is
purely selectionist and largely data-driven, and the associated account of change
is thus also selectionist. Confronted with variation, a language learner will prefer-
entially acquire variants which are more learnable or more robustly exemplified in
the primary linguistic data.!® If there is an element of ‘invention’ in creolization
how could this arise? The account that we will pursue here is that in some respects
the primary linguistic data that creole learners are exposed to is so uninformative
that they retain their prior default-valued parameter settings as a direct conse-
quence of the Bayesian parameter setting procedure. However, this is not enough
to ensure that a rich and full grammatical system will emerge if the data never
exemplifies, however indirectly, a particular grammatical phenomenon. When ex-
posed exclusively to a subset language, the Bayesian parameter setting procedure
reliably acquires that subset language and does not go ‘beyond the evidence’ to pre-
dict a full language ‘extension’ of the subset language learners have been exposed
to. Critically, although the p-setting encoding adopted assumes that a supertype
parameter, gendir, determines ordering of arguments to all functors by default, the

131n addition, parsability and expressibility may also play a role either by affecting learnability
or by influencing speakers’ choice of sentence types in order to optimize communicative success;
see Briscoe (1998, 1999b) for further discussion.
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use of the 5 category parameters (see §2.1, means that complex catgories, such as
those associated with a complementizer or nominal modifier, are only accessible to
a learner if expressed in a trigger.

Plantation creoles arise as a result of unusual and radical demographic condi-
tions (Baker and Corne, 1982; Bickerton, 1988). In the initial preparatory phase
of plantation colonization, the speech community consists of European managers
and technicians and some native labourers. At this stage, the labourers may learn
the European language with reasonable proficiency on the basis of frequent contact
with the Europeans. However, in the second exploitative stage, when the planta-
tion is up and running, the (indentured or slave) labour population increases five to
tenfold within a single generation as successive waves of immigrants are brought in
from diverse parts of the world to increase the labour force and also to compensate
for the typically high mortality rates. These new immigrants do not share a native
language and have much reduced exposure to the European superstratum language
as the proportion of colonialists to labourers decreases radically and the original
native population or earlier arrivals take on much of the day-to-day management of
the plantation. In these circumstances, the lingua franca of the labouring commu-
nity rapidly develops into an extremely impoverished pidgin language, consisting
of a limited vocabulary, learnt indirectly via the original native population from
the European superstratum language, and virtually no grammatical system (see
Bickerton, 1990:122f) for a summary of the properties of pidgins). Children born to
labourers during the third stage of the community are predominantly exposed to the
pidgin language — contact with the Europeans is limited, many parents are of mixed
descent and do not share a native language, and the children are mostly brought up
by a few older women in large groups, while all able bodied men and women labour
for long hours in the fields (Bickerton, 1984:215). The birthrate in most plantation
communities was not particularly high, with under twelves typically accounting for
no more than 25% of the population, except in Hawaii where birthrates were higher
(Bickerton, personal communication). The mixture and composition of substra-
tum native languages spoken by the labourers varied widely between communities.
Nevertheless, in the third stage when native creole speakers emerge, remarkably
similar grammatical extensions of the impoverished pidgins, which provide the bulk
of the learners’ primary linguistic data, have been documented (see Roberts, 1998
for recent discussion and argument that such similarities cannot be the result of
substratum language influences).

Bickerton (1984:179) describes the prototypical creole grammar, based on Sara-
maccan, as a minimal SVO right-branching grammar with distinct syntactic cate-
gories for determiners, adjectives, numerals, nouns, verbs, auxiliaries and complementizers.
The predefined default learner of §3 incorporates prior probabilities favouring a SVO
right-branching grammar consistent with a Saramaccan-like grammar but underde-
termining all the properties of the creole language. The questions that we will
attempt to answer experimentally in the remainder of this section are: What dis-
tributions of primary linguistic data would cause learners hypothetically endowed
with this initial p-setting via coevolution (see §6) to converge to a Saramaccan-like
grammar? And how well do these distributions accord with the known demographic
conditions governing the emergence of creoles? We will make no attempt to model
the emergence of an impoverished pidgin language but concentrate entirely on the
stage three pidgin-creole transition in which learners exposed to predominantly pid-
gin data rapidly converge to a creole language.

In all the experiments which follow, the initial population contains 64 LAgts,

14

14Many similarities, such as the tense-modality-aspect morphosyntactic systems of creoles or
choices for lexicalization of specific grammatical properties, are not modelled in the set of grammars
used in the current simulation so cannot be investigated directly here. Nevertheless, the main
points about the acquisition process made below should carry over to these phenomena too.
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who live for 20 interaction cycles and reproduce randomly without mutation. All
LAgts are either unset of default learners in the initial population, and thus all
new LAgts reproduced during these runs are also either default or unset learners.
The birth rate is set to six new LAgts per interaction cycle which grows quickly
to a stable population of around 115 LAgts always containing 18 learners. The
highest proportion of learners to adults occurs around the sixth interaction cycle,
before the adult population has peaked, when learners constitute about 28% of
the total population. We do not model high mortality rates or influxes of new
immigrants directly but rather keep the original adult population constant over the
first twelve interaction cycles. This represents the assumption that the pidgin and
sub-/super-stratum trigger distribution heard by learners remains constant over the
first three generations. However, the fact that new learners are added at the end
of each interaction cycle means that the first learners reach the end of the learning
period in the fourth interaction cycle, and that the proportion of learners to adults
grows over the first few cycles. Thus, the overall linguistic distribution of triggers
does change, as learners and new adults begin to form a significant proportion of
the population and participate in interactions; and therefore, the degree to which
early learners converge consistently to a specific language significantly affects the
probability that later learners will follow suit by skewing the distribution of triggers
in favour of this language..

We model a pidgin as a subset language without embedded clauses or multi-
word NPs in which a wide variety of constituent orders is possible, perhaps partly
influenced by the substratum native languages of the individual speakers and/or by
pragmatic factors. In a first series of experiments, populations of adult LAgts were
initialized to speak such subset languages with between three and five of the six basic
word orders available (SVO, SOV, VSO, VOS, OSV, OVS) in equal proportions (as
before, all conditions were run 10 times). Thus learners were exclusively exposed to
subset language input, either exemplifying SVO order or not, with a variety of other
orders also present. This corresponds to the hypothesis that learners are exclusively
exposed to pidgin triggers and either do not hear sub-/super-stratum utterances or
do not treat them as triggering data. When SVO subset triggers are present, even
if this only constitutes one fifth of the triggering experience of learners on average,
default learners reliably converge to the SVO subset language. By the fourth inter-
action cycle — the end of the first generation — a mean 95% of learners are speaking
a SVO subset language. From that point, new learners all converge to SVO subset
grammars. The results for similar runs with unset learners show a similar overall
preference for SVO subset grammars, but a lower proportion of learners speak SVO
in the early cycles and in a minority of runs the learner population still contains
non-SVO subset language speakers beyond the third generation. When SVO trig-
gers are not present learners converge to non-SVO subset languages. The picture
that emerges, then, is largely expected given the Bayesian learning paradigm. The
great majority of default learners, faced with conflicting triggering input, converge
to SVO order because the prior probabilities of their inherited p-settings tend to
dominate over the likelihood probabilities acquired during learning, as these are
inconsistent and broadly ‘uninformative’. Nevertheless, if SVO is never exemplified
in the data, learners never converge to it though they frequently converge to ‘close’
right-branching grammars. Default learners do not overgeneralize and converge to
a full language as the triggering data does not express parameters for complex nom-
inal categories, and so forth. On the other hand, the tendency for unset learners to
converge to SVO subset grammars, though weaker, was not expected and must be
a consequence of the ‘topology’ of the hypothesis space created by the encoding of
P-setting(UG). However, the most important point is that no population of LAgt
learners converged to a superset language in any of these runs. Thus, no process of
creolization occurred.
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In further experiments, populations were initialized with adult LAgts speaking
a variety of languages exemplifying five of the six basic constituent orders, but also
some sub-/super-stratum language utterances. In a first series of runs one fifth of
the LAgts were full SVO right-branching speakers and the remaining four fifths
spoke four non-SVO subset languages. Thus the average trigger distribution for
initial learners consisted of 80% non-SVO pidgin utterances, 7% SVO pidgin or
superstratum language utterances, and 13% SVO superstratum utterances. Cor-
responding to the hypothesis that creole learners are exposed to a small minority
of “English” superstratum language triggers. In these runs, populations of default
learners converged rapidly to SVO. By the second interaction cycle when twelve
learners were present, ten or more were speaking a SVO subset language with the
remainder, if any, currently speaking a subset language with VOS or SOV order.
By the end of fourth interaction cycle, most of the earliest learners had converged
to “English” with the minority speaking SVO subset languages compatible with it.
After this point, all subsequent learners converged to “English”. Similar runs with
unset learners also mostly converged to “English” by the third generation but in
about 40% of cases a non-SVO subset language was also being spoken by a signifi-
cant proportion of the new population. Furthermore, in the crucial early interaction
cycles a higher proportion of learners converged to non-SVO subset languages. On
average, by the end of the first interaction cycle only one learner had converged
to “English”. These runs demonstrate that the default learner, but not the unset
learner, predicts that creolization (that is, convergence to a SVO superset language)
will occur essentially within a generation with minimal exposure to a superstratum
language which is compatible with the acquired creole grammar.

The previous experiments ignored the role, if any, of the substratum languages.
In a further otherwise identical series of runs, populations were initialized with SVO,
two non-SVO subset languages, and two non-SVO languages with randomly-defined
full language extensions in equal proportions. This meant that initial learners were
exposed, on average, to 54% pidgin-like triggers with four equally-frequent non-SVO
orders, 26% non-SVO richer triggers further exemplifying two of these non-SVO or-
ders but otherwise randomly exemplifying more complex syntax, 7% SVO subset
pidgin or superstratum triggers, and 13% richer “English” superstratum triggers.
The non-SVO extensions are intended to model the rich and often conflicting va-
riety of fragments of substratum languages that creole learners might hear uttered
amongst the adult labouring population (e.g. Bickerton, 1984:182f). The broad
effect of adding this degree of substratum data (or interference) is to slow down
convergence to SVO for both types of learner. However, in the case of the default
learner the difference is negligible. By the fourth interaction cycle half the earliest
learners have converged to “English” and a mean 91.3% of all learners present are
speaking a SVO (subset) language. By the twelfth interaction cycle a full SVO lan-
guage is spoken by virtually all the new population, with “English” predominant
(though in some runs a second full SVO language with some substratum influences is
also present at this stage). With the unset learners, only a mean 60% of new adults
and learners are speaking a SVO subset language by the sixth interaction cycle. By
the twelfth interaction cycle the new population typically speaks a mixture of SVO
languages, with “English” dominant but other full SVO language and some adult
SVO subset language speakers present. These experiments suggest that positing
substratum interference does not affect the basic conclusion that creolization will
occur rapidly with default learners. Figure 12 plots the growth of SVO (subset)
language speakers in two typical runs with unset and default learners respectively.
The runs with default learners show more rapid and comprehensive selection of SVO
languages, than those with unset learners.

Though creoles display SVO right-branching syntax, it is not the case that the
superstratum language is always English or even SVO. It seems reasonable to as-
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sume that SVO order will always be exemplified to some extent in the pidgin data
to which learners are exposed, but the account we have developed so far relies on
initial learners’ exposure to 13% of richer “English” superstratum triggers. While
this might be plausible for Hawaii it is not for Berbice where Dutch, with a SOVv2
grammar, was the superstratum language. In a final series of experiments other-
wise identical to those above, SOVv2 was substituted for the superstratum language,
though SVO order remained one pidgin language, variant order. The initial trigger
distribution was 89% pidgin-like subset languages with 4% random non-SVO sub-
stratum extensions and 7% SOVv2 superstratum extensions. 28% of the pidgin-like
triggers had SVO order. The early dynamics of these runs are almost identical to
those described above: learners predominantly speak SVO (subset) languages from
the beginning and do so exclusively after the first two or three interaction cycles. By
the end of the twelfth interaction cycle in runs with unset learners, the new popula-
tion was speaking the SVO pidgin-like subset language in a mean 91.2% of cases; the
remainder spoke “English” or its subset without permutation. At the same point
in runs with default learners, the new population was speaking the SVO pidgin-like
subset language in a mean 68% of cases, 28.3% were speaking “English” without
permutation, and the rest “English”. Given that 18 of those currently speaking the
SVO pidgin-like subset were still learners and that “English” without permutation
was the best represented language by the twelfth interaction cycle with populations
of default learners, we would expect most if not all of these learners to converge to
this language. In 80% of these runs, the new population had converged to “English”
without permutation (and in one case “English”) by the twentieth interaction cycle.
Runs with a slightly lower proportion of initial SVO pidgin-like triggers resulted in
a slower convergence to SVO languages. These results suggest a slower convergence
rate to a SVO creole superset language when the superstratum language is SOVv2.
Nevertheless, “English” without permutation is the closest grammar to Saramaccan
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available in the set G used in the experiments.

The experiments suggest, then, that creolization could result as a consequence
of a Bayesian parameter setting learner adopting default settings for some param-
eters, acquired via the coevolutionary scenario outlined in §6. Prior probabilities,
and thus initial parameter settings, will play a bigger role in the acquired grammar
whenever the data the learner is exposed to are inconclusive. It seems plausible
that pidgin data are inconclusive about constituent order because pidgin speakers
order constituents in inconsistent ways. Nevertheless, order is necessarily expressed
in pidgin data, so the learner defaults to SVO order, and also predicts, by default,
that right-branching, head-first order will extend to more complex categories. The
encoding of P-setting(UG) and predefined definition of the default learner we uti-
lize does not allow the learner to hallucinate or invent more complex categories for
nominal modification, complementizers, and so forth. However, if such categories
are reliably expressed somewhere in the triggering data for each learner, even with
inconsistent ordering, then the default learner will ‘switch on’ a generic unordered
form of these categories, and predict their ordering behaviour by default. This ac-
count does not require that the superstratum language be SVO, or that substratum
languages consistently exemplify properties of the creole; merely, that richer trig-
gers expressing parameters for more complex categories be present in the primary
linguistic data. Thus, the learning procedure is different from that outlined by
Bickerton (1984): there is no invention or other special mechanism at work, rather
the grammar acquired is a consequence of the distribution of triggers and the prior
probabilities of the Bayesian learner.

The timing of creolization for the default learner runs with SVO superstratum
input is remarkably consistent with the timecourse documented by Roberts (1998),
especially given that the prior probabilities of the default learner were not modified
at all for these experiments. The Bayesian parameter setting framework and the
population model are quite capable of simulating variant accounts in which, for
example, prior probabilities are stronger and the data exemplifies some parame-
ters less, or the proportion and growth rate of learners during the third stage of
plantation communities is different. To refine the account developed here will re-
quire both a better understanding of the language learning procedure and a more
precise and detailed account of demographic change and speed of creolization in
different plantation communities. For instance, Bickerton (1984:178) suggests that
sub-/super-stratum influence cannot be important because some communities of
pidgin speakers were ‘marooned’ and learners did not have access to any speakers
of either. If this is accurate, then ‘invention’, or at least a propensity to acquire
superset grammars with default parameter settings on the basis of no triggering
evidence, will need to be reconsidered. However, such a model would conflict with
prevailing assumptions derived from learnability criteria, like the subset princi-
ple (e.g. Berwick, 1985), that predict that learners are conservative and do not
overgeneralize superset grammars because no parse failure could force subsequent
convergence to the target grammar. Moreover, the data concerning such marooned
communities is very sparse, so it is difficult to know whether learners did completely
lack sub-/super-stratum input.

8 Conclusions and further work

The experimental results reported above suggest that a robust and effective account
of parameter setting, broadly consistent with Chomsky’s (1981) original proposals,
can be developed by integrating generalized categorial grammars, embedded in a de-
fault inheritance network, with a Bayesian learning framework. In particular, such
an account seems, experimentally, to be compatible with local exploration of the
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search space and robust convergence to a target grammar given feasible amounts of
partly noisy or indeterminate input. It extends recent work in parameter setting by
integrating the learning procedure more closely with a fully-specified grammatical
representation language, by using a Bayesian statistical approach to resolve inde-
terminacies of parameter expression, and by demonstrating convergence for a more
substantial language fragment containing around 300 grammars / languages.

Human language learners, in certain circumstances, converge to grammars dif-
ferent from that of the preceding generation. Linguistic selection for more learn-
able variant constructions during language acquisition offers a promising formal
framework to account for this type of language change. Creolization represents a
particularly radical version of such change which is potentially challenging for a
selectionist and essentially data-driven account. However, given assumptions about
the starting point for learning, the initial distribution of triggers, and the changing
constitution of the plantation community, the model of the language acquisition
device developed here predicts that creolization will occur within the timeframe
identified by Roberts (1998) for SVO superstratum languages. The highly-biased
nature of language learning is a consequence of the coevolutionary scenario out-
lined in §6 in which there is reciprocal interaction between natural selection for
more efficient language learners and linguistic selection for more learnable gram-
mars. The range of distributions of triggers to creole learners is compatible with
the known linguistic and demographic data for the better studied cases, though
it does require that creole learners are influenced, albeit somewhat indirectly, by
sub-/super-stratum language triggers. The growth of the native learner and adult
population during the third stage of plantation communities partly determines the
speed of creolization and thus ideally requires more detailed examination.

Gold’s (1967) negative ‘learnability in the limit’ results have been very influential
in linguistic theory, accounting for much of the attraction of the parameter setting
framework and for much of its perceived inadequacy (e.g. Niyogi and Berwick,
1996; Gibson and Wexler, 1994; Muggleton, 1996). Within the framework explored
here, even a much weaker result, such as that of Horning (1969), that stochastic
context-free grammars are learnable from positive finite evidence is only of heuris-
tic relevance, since all such results rest crucially on the assumption that the input
comes from a single stationary source (i.e. a static and given probability distri-
bution over a target stochastic language). However, from the current evolutionary
perspective, contingent robustness or local optimization in an irreducibly historical
manner is the most that can be expected. The coevolutionary account suggests that
the apparent success of language learning stems more from the power of our limited
and biased learning abilities to select against possible but less easily learnable gram-
matical systems, than from the omnipotence of the learning procedure itself. Given
this perspective, there is little reason to retain the parameter setting framework.
Instead, learners might extend the model of universal grammar by adding path
value specifications to the default inheritance network to create new grammatical
categories when triggering data warranted it. An implementation of this aspect of
the model is a priority since it would also allow such innovations to be incorporated
into universal grammar via genetic assimilation, and this in turn would underpin
a better evolutionary account of the development and refinement of the language
acquisition device.

The model of a language agent assumes the existence of a minimal language
acquisition device, since agents come equipped with a universal grammar, associ-
ated learning procedure, and parser. Simulation runs demonstrate that an effective,
robust but biased variant learning procedures specialized for /on specific grammars
could emerge by genetic assimilation / coevolution. However, they do not directly
address the question of how such an embryonic language acquisition device might
emerge. Evolutionary theory often provides more definitive answers to questions

29



concerning the subsequent maintenance and refinement of a trait than to ones con-
cerning its emergence (e.g. Ridley, 1990). However, other work suggests that the
emergence of a minimal language acquisition device might have required only mi-
nor reconfiguration of cognitive capacities available in the hominid line. Worden
(1998) and Bickerton (1998) argue that social reasoning skills in primates provide
the basis for a conceptual representation and reasoning capacity. In terms of the
model presented here, this amounts to claiming that the categorial logic underlying
generalized categorial grammars’ semantics was already in place. Encoding aspects
of this representation (i.e. logical form) in a transmittable language would only
involve the comparatively minor step of linearizing this representation by introduc-
ing directionality into functor types. Parsing here is, similarly, a linearized variant
of logical deduction with a preference for more economical proofs / derivations.
Staddon (1988), Cosmides and Tooby (1996) and others have argued that many
animals, including primates and homo sapiens, exhibit reasoning and learning skills
in conditions of uncertainty which can be modelled as forms of Bayesian learning.
Worden (1995b) argues that Bayesian learning is the optimal approach to many
tasks animals face, and therefore the approach most likely to have been adopted by
evolution. If we assume that hominids had inherited such a capacity for Bayesian
learning, then evolution could construct a minimal language acquisition device by
applying this capacity to learning grammar, conceived itself as linearization of a
pre-existing language of thought. Given this scenario, much of the domain-specific
nature of language acquisition, particularly grammatical acquisition, would follow
not from the special nature of the learning procedure per se, as from the specialized
nature of the morphosyntactic rules of realization for the language of thought.
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