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Abstract We show how cultural selection for learnability during the
process of linguistic evolution can be visualized using a simple iterated
learning model. Computational models of linguistic evolution typically
focus on the nature of, and conditions for, stable states. We take a
novel approach and focus on understanding the process of linguistic
evolution itself. What kind of evolutionary system is this process?
Using visualization techniques, we explore the nature of replicators in
linguistic evolution, and argue that replicators correspond to local
regions of regularity in the mapping between meaning and signals.
Based on this argument, we draw parallels between phenomena
observed in the model and linguistic phenomena observed across
languages. We then go on to identify issues of replication and selection
as key points of divergence in the parallels between the processes of
linguistic evolution and biological evolution.

1 Introduction

Linguistic evolution is the process by which languages themselves evolve as they are transmitted
from one generation to another [5]. But to what degree does the process of linguistic evolution
mirror that of biological evolution? At first glance the two processes share similarities. Both result in
the transmission of information from one generation to another, both result in adaptation, and both
appear to be driven by the differential retention of some unit of replication. In this article we explore
these parallels using visualization techniques: we aim to understand the degree to which language
itself can be considered an evolutionary system. Previous work in this area has focused on the
construction of computational models (e.g., [16, 2]). These models aim to explain the conditions
under which linguistic structure emerges. Here, stable states1 represent adaptations to the problem of
cultural transmission, and it is these states that are taken as the focus of explanation. In this article we
take a slightly different approach, and focus on the process of cultural adaptation. What kind of
evolutionary system do models of linguistic evolution represent?

In order to address this question, we present a simple model of linguistic evolution designed
solely to enable us to visualize the process of cultural adaptation. This approach provides a unique
way of understanding what we term the middle scale properties of the evolutionary system. Typically,
models of linguistic evolution are analyzed with respect to either (1) global measures that conflate
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several adaptive processes, or (2) detailed analyses of particular states of the model. Using
visualization techniques, we show how models of linguistic evolution can be understood in terms
of competition between replicators. One key problem in understanding linguistic evolution, as well as
biological evolution, is formalizing precisely what kind of entities we regard as replicators. The
approach we take here is geared toward this endeavor: visualization allows us to begin to shed some
light on the middle scale between the very specific and the very general. Our conclusion is that, after
examining computational models and their relation to the process of language change and evolution,
the notion of selection during linguistic evolution is best regarded as an analogue process of
replication in which replicators are localized mappings between meanings and signals. We argue that
the degree to which the notion of linguistic evolution parallels that of biological evolution remains
very much an open problem.

2 Background

The complex structural properties of human language make it quite unlike any other communication
system found in nature. Although languages differ substantially, they nevertheless exhibit universal
tendencies. One of the achievements of modern linguistics is to show how all languages, past and
present, can be described as particular configurations of linguistic parameters. In this sense, all
languages are essentially the same, and exhibit only superficial differences. We are interested in why
language has these very specific structural properties: we seek an explanation for how this system,
exhibiting unsurpassed complexity in relating sound and meaning, came to exist.

One approach to identifying why languages have their characteristic structure is to ask why the
innate human faculty for language has the structure that it does. Such an enterprise could proceed
with an attempt to identify the cognitive structures responsible for processing language. But would
such an analysis tell us the whole story? In this section we argue that it would not, and we discuss a
substantially revised conceptual framework. We will argue that universal tendencies in language are to
some degree adaptive solutions to the problem of cultural transmission. This view is central to the
remainder of the article: we will improve our understanding of the notion of cultural adaptation
using visualization techniques.

2.1 Language as an Expression of the Genes
Among those interested in language, a widespread hypothesis is that language, like the visual system, is
an expression of the genes (e.g., [7]). Differences between languages, according to this position, are
tightly constrained by innately specified dimensions of variation. So, returning to the original question,
if we are interested in the structural hallmarks of language, then we should seek a wholly psychologi-
cal (i.e., cognitive, mentalistic, or internalist) explanation. In short, by understanding those parts of
the human cognitive system relevant to language we can understand why languages have certain
structural characteristics and not others. This position is largely substantiated by the argument from the
poverty of the stimulus, where justification for the notion of linguistic nativism is based on the observation
that the yield of the process of language acquisition (knowledge of a specific language) is significantly
underdetermined by the input available to the learner [6]. Language, therefore, should be considered
part of our biological endowment, just like the visual system. The intuition is that one would not want
to claim that we learn to see, and the same way, we should not claim that we learn to speak.

2.2 Cultural Selection for Learnability
Linguistic nativism is far from accepted in the extreme form presented above (e.g., [9, 13]). An
alternative to this hypothesis is that the structure of language, to some extent, is learned by children:
humans can arrive at complex knowledge of language without the need to have hardwired (innately
specified) expectations of all dimensions of linguistic variation. This is the view that we will adopt in
this article. We assume that to some degree language is learned through inductive generalizations
from linguistic data, but to what degree it is learned is unclear. Previously, we have argued that the
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degree to which language is learned through a process of inductive generalization has a profound
effect on the explanatory framework used to understand why language has the structure that it does
[4]. To do this we take an evolutionary perspective, and seek to explain how, from a non-linguistic
environment, linguistic structure can emerge through cultural evolution. In short, this view casts
doubt on the view that the hallmarks of language are, as Chomsky states, ‘‘coming from inside, not
from outside’’ [7].

In this article we examine the process by which structure arises through cultural selection for
learnability. What exactly does this mean? Consider how languages persist from one generation to
another. Firstly, languages are transmitted via human minds. Minds act as the conduit for the
transmission of particular languages. Secondly, linguistic transmission is mediated through learning:
Humans learn language from conspecifics. Transmission of a particular language from one mind to
another occurs through cultural transmission. The capacity for processing language persists as a result
of genetic transmission. It is the process of cultural transmission that we have argued has a profound
effect on the structure of languages we see (see also [8, 11, 14]). To summarize, we claim that uni-
versal tendencies in language cannot be explained entirely in terms of a psychological theory. We also
require a theory of how certain linguistic forms are adaptive with respect to constraints on cultural
transmission.

2.3 Natural Language from Artificial Life
We have laid down the theoretical basis for studying language as a system exhibiting structural
properties that exist as adaptations to cultural transmission. To test this hypothesis we build agent-
based computational models. We term these models iterated learning models (see [17] for a review). An
iterated learning model comprises a series of agents arranged into generations. These agents are
initially identical. Each agent, in turn, learns an abstract language on the basis of the linguistic
behavior of agents in the previous generation. This modeling framework captures the fact that
humans learn language on the basis of input from an existing speech community. As one might
expect, progress in understanding linguistic structure as a set of cultural adaptations is often sought
by constructing more elaborate models. We might seek accurate models of language acquisition,
plausible models of semantic structure, or more informed models of population dynamics. The
more we experiment with concepts such as these, the more elaborate are the theories we can
propose. In this article, rather than elaborate on existing models, we will strip the iterated learning
process bare, and shed some light on an understanding of cultural selection for learnability. The
model we develop is designed solely to facilitate visualization: We will make several simplifying
assumptions in order to frame the problem in such a way that visualization is possible. Where
appropriate, we will highlight these assumptions.

3 Iterated Instance-Based Learning

In this section we will develop a basic iterated learning model. Although the model will address the
issue of the emergence of linguistic structure, the design of the model will be geared toward
visualization. At each stage in the construction of the model we will seek the most basic set of
computational modeling decisions. First, we will describe a model of language based on a mapping
between two Euclidean spaces. Second, we will develop a model of language learning based on the
instance-based learning paradigm. With these components in place, along with a basic model of
cultural transmission, we will then be in a position to visualize the process of iterated learning.

3.1 Language as a Mapping
Language is a relationship between sound and meaning. Language, therefore, can be regarded as
mapping between two spaces. The precise structure of these spaces is little understood, but what we
will term the meaning space corresponds to the set of structures relating to an internal representation
interfacing with the conceptual/intentional aspects of the cognitive system (also known as LF, or
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logical form, in Chomskyan terms). The signal space corresponds to external signals. With respect to
the traditional view of the language faculty, signals are derived from another internal linguistic
representation interfacing with the articulatory-perceptual systems (known as PF, or phonetic form).
Figure 1a depicts the relationship between these linguistic representations and the surrounding (non-
linguistic) cognitive system. We will discuss language as a mapping between the meaning and the
signal space, but abstract away from the details of the structure of these spaces. In fact, we will treat
both the meaning space and the signal space as bounded Euclidean spaces in R2. This abstraction
may appear to wash away any notion of linguistic plausibility, but a fundamental linguistic property of
interest, compositionality, remains intact. Compositionality is a property of the relationship between
sound and meaning. A compositional language is one where the meaning of a signal is a function of
the meaning of its parts. Other compositional communication systems can be found in nature, but
language is the only one that is learned. For example, ants [19] and honeybees [22] have commu-
nication systems that are both compositional and innate.

Figure 1. Modeling language. In (a), the relationship between meanings, signals, and the traditional view of the language
faculty is detailed. The mapping shown in (b) is random; the neighbors surrounding a point in the meaning space suggest
nothing about the location of the corresponding signal. In (c) and (d), similar meanings map to similar signals; these two
languages represent a topographic relation between meanings and signals.
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As an example of compositionality in language, consider the compositional utterance ‘‘large
olive pike’’. Parts of the signal correspond to parts of the meaning. Similarly, the utterance ‘‘large
olive tench’’ shares parts of the signal, and therefore, parts of the meaning. If language were
non-compositional, arbitrary signals would be associated with each meaning. These examples illus-
trate the fact that much of language is neighborhood related: nearby meanings tend to map to
nearby signals. Although this is a rather crude characterization of language as a whole, the property
of compositionality can be considered an absolute language universal: all languages exhibit
compositionality.

Given a model of language in which meanings and signals are points in R2, Figure 1b–d illus-
trates three degrees of compositionality. In Figure 1b, which represents a non-compositional lan-
guage, meanings are randomly associated with signals: similar meanings are unlikely to be associated
with similar signals. In contrast, Figure 1c represents a language for which similar meanings do map
to similar signals. Figure 1d represents a fully distance-correlated mapping, and like Figure 1c, we can
consider it a topographic mapping [21]. Given the language model presented here, compositionality
is a matter of degree.

To summarize, in the model of language used in the following experiments, meanings and signals
are drawn from two-dimensional real-valued number spaces, denoted by M and S , respectively.
More precisely, some meaning m aM is the pair (x, y) where x, y aR such that both 0 < xV 100
and 0 < y V 100. Similarly, signals are points in the space S where some s a S is the pair (x, y)
where x, y a R such that both 0 < x V 100 and 0 < y V 100.

3.2 An Instance-Based Associative Memory
Within the iterated learning model each agent will observe the linguistic performance of another
agent. On the basis of this performance, which is represented by a series of meaning-signal pairs,
the agent is expected to derive a competence, that is, the ability to produce signals for all meanings.
The agents must therefore generalize beyond the data they experience: They are required to yield
signals for meanings they have never observed. Each agent can be thought of as a learning algo-
rithm. The learning algorithm is required to take a finite set of meaning-signal pairs O ¼{ p1,
p2, . . . ,pr} where each pair pi ¼ hmi , sii is such that mi a M and si a S. The algorithm must then
induce a function F : m a M i s a S defined for all m a M. In other words, given a finite subset
of some infinitely large language, the learning algorithm must induce a hypothesis that relates an
infinite number of meanings to their appropriate signals.

These are the functional requirements of an agent. First, the agent learns by observing the
behavior of the agent in the previous generation. Second, once the learner has learned through
observation, it is expected to produce signals for any given meaning. To perform these two tasks, we
use an instance-based learning algorithm (see [1]) augmented so that, rather than producing
classification decisions, it produces signals. The operational details are as follows:

� Learning. The learner observes r instances of the mapping (language) of the agent in the
previous generation. These instances are stored as is, without any further processing.

� Production. When called to express some arbitrary meaning m, the learner finds the three
nearest neighbors among the r stored instances. These nearest neighbors are examples of
production, and as such can be used to inform the production of m. Using vector
geometry, an appropriate signal s for m can be calculated as a linear combination of the
vectors relating m’s three nearest neighbors. Note that if m has already been observed,
which is extremely unlikely, then the agent will just produce the signal observed in
conjunction with m.

So, rather than as a classifier, the instance-based learning algorithm is acting as an associative
memory. We describe this process in more detail in the Appendix, but for the purposes of this
discussion, the key point is that the learning algorithm is in the spirit of the instance-based learning
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approach: we assume that the nearest neighbors of m should inform the production of m. The
associative memory therefore contains a bias: The assumption is that signals for novel meanings will
conform to any local transformation between nearby meanings and their corresponding signals. To
summarize, each agent memorizes a finite set of observed meaning-signal associations. Then, armed
with a nearest-neighbor decision rule, it can produce signals for all meanings on the basis of local
transformations between the stored meaning-signal associations.

3.3 Putting It All Together
A model of language and a model of learning are now in place. In this section the remaining details
required for a fully specified iterated learning model will be fleshed out. To retain the simplicity of the
model, we will consider an iterated learning model where each generation contains a single agent. A
simulation of n iterations of the model will therefore comprise a series of agents A1;A2; :::;An. Each
agent, in turn, first observes linguistic behavior and then produces linguistic behavior. Figure 2
illustrates this process. The agents act as a conduit for the evolving language. The agents themselves
do not evolve in any way; it is only the language that changes. Recall that each agent induces its
linguistic competence on the basis of r observed meaning-signal pairs. The agent will then be
prompted to produce signals for r random meanings. These production decisions, which also
represent a series of r meaning-signal pairs, will form the input to the agent in the next generation.
The first agent is always given r meaning-signal pairs drawn from a random language in which each
meaning maps to a random signal.

A crucial component of the model, which so far has only been implicitly introduced, is the notion
of the transmission bottleneck. The transmission bottleneck refers to the fact that agents never observe
the entire language of the previous generation. This restriction is paralleled in the learning of natural
language by human infants, and is closely related to the notion of the poverty of stimulus, discussed
above. Because each agent has infinite generative capacity, and the transmission of this capacity is
transmitted on the basis of a finite set, the transmission bottleneck is unavoidable. Because an infinite
set is being transmitted over a channel with a finite capacity, the precise number of observations each
agent learns from is of little interest to this discussion. The parameter r determines the rate at which
a structure appears in the mapping. The qualitative outcome of the model will therefore be invariant
over sensible values of r. The initial random language will change to reflect the bias present in the
learners: the remnants of the first-generation language will be washed out as the evolving language
passes through each agent. We will show that, as the simulation progresses, the language will begin to
exhibit compositional structure. Each generation is therefore passed linguistic data containing the
structural residue laid down by the production behavior of previous agents.

The experimental details are now in place. We have a model of language in which both meanings
and signals are points in a two-dimensional real-number space. A model of learning takes examples
of language performance and derives language competence. This model of learning contains a bias
toward neighborhood preservation. We also have a model of cultural transmission: a single-agent-
per-generation iterated learning model.

Figure 2 . The iterated learning model. The language evolves as it passes through each agent.
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4 Visualizing Iterated Learning

Typically, an analysis of an iterated learning model will proceed by tracing some measure of interest,
such as the degree of compositionality in the language [3], the stability of the system [2], or the
generative capacity or size of the evolved grammars [16]. An analysis of this sort conflates several
properties of the system into a single measure and provides a useful indication of the global state of
the system over time. We can also take a complementary approach where we analyze individual
languages or agents. By focusing on individual states we gain an understanding of the details of the
system. However, performing this kind of analysis over the course of a simulation is intractable for
simulations lasting hundreds of thousands of generations. In this section, we will use visualization
techniques to analyze the iterated learning model at a middle scale lying between an analysis of global
measures and an analysis of individual states.

Before conducting an analysis, it is worth considering how we go about using iterated learning
models to inform an explanation. An individual simulation run can be thought of as a trajectory
through the language space. If this trajectory corresponds to a random walk, then the model can tell us
very little. Of more interest is a situation in which multiple runs of the model lead to some subset of
the language space being consistently visited. In this situation we can conclude that this region of the
language space is occupied by languages exhibiting adaptive properties. Ultimately, by running the
model multiple times with differing initial conditions, the hope is that the model can shed light on
the occurrence of these properties in nature. For example, we may seek to explain compositional and
recursive structure [16], or languages with irregular and regular forms [15]. Here, the stable states of
the model are of interest: they are interpreted as a model of the phenomena being explained.

Another source of explanatory force relates to the process of iterated learning. For example, in
what sense is iterated learning an evolutionary system? To achieve any degree of explanatory force,
this question must be resolved. As well as identifying the occurrence of particular states, we also need
to explain how and why these states are reached. Now, the design of the experiment detailed above
was driven by the need to trade off the ability to draw insightful conclusions about the stable states of
the model in favor of being able to gain a firmer grasp on the process of iterated learning. It is a
feature of desirable explanations that both of these issues are fully understood: we seek to
understand how certain states are emergent properties of the dynamics, and we seek a satisfactory
conceptual framework for understanding the dynamics. This is the desired output of the research
program. So, in this section, we attempt a foray into understanding the process of iterated learning
through visualization. Visualization is important because we need to gain a grasp on the middle scale
between global behavior and the behavior of individual agents.

4.1 Coarse-Grained Visualization: Interpolated Grid Projection
Visualizing the behavior of the iterated learning developed above will require the visualization of a
mapping over time. Specifically, we are interested in the formation of topographic mappings over
time. The visualization of topographic mappings is a feature of research into the formation of self-
organizing maps in associative memories such as the Kohonen network [21, 18]. As a first cut, we
will adopt a similar procedure. First, we take a set of points in the meaning space and, using the
learning algorithm represented by the agent, map these points to the signal space. The result will be
some distortion of the relationship between the points in the meaning space. The points in the
meaning space we project are the 81 points defining a 9 by 9 grid of equally spaced locations in the
meaning space. This grid represents a sample of the meaning space. Figure 3a illustrates this process
using a 3 by 3 grid. The projected points are joined by lines to indicate how the signal space topology
is related to meaning space topology. In the case depicted in Figure 3a, the mapping between
meanings and signals is neighborhood preserving: neighbors in the meaning space map to neighbors
in the signal space.

Figure 3b depicts the application of this visualization method over the course of 140 iterations
(generations) of the iterated learning model discussed in the previous section. The structure of the
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grid becomes increasingly apparent as the simulation progresses, through a process of the untangling
of competing submappings. What we will refer to as a submapping, or a fragment of the mapping, is a
mapping from some neighborhood of the meaning space to some set of signals in the signal space.
These signals, of course, will only occupy a neighborhood themselves if the submapping is topo-
graphic. Figure 3b illustrates how fragments of the mapping establish themselves—a local topo-
graphic relation—but may disappear due to the pressure imposed by some more dominant and
globally coherent topographic relation. After the 90th iteration, the mapping is untangled in the sense
that all competing submappings have roughly the same orientation. This structure is stable, and
persists for some time afterwards with the mapping suffering from local distortions. The mapping is
never entirely stable. Although these results represent the behavior of a single simulation run, the
behavior is typical. The main feature of interest is the stability of the topographic relation between
meanings and signals. This relationship persists, and in this sense is propagating itself. We can con-
clude that topographic mappings, in this context, are adaptations to the problem of iterated learning.

Before discussing this process in more detail, it is worthwhile noting some deficiencies in
the visualization method. First, there is no way of telling, early on in the emergence of the mapping,

Figure 3 . Coarse-grained visualization. Part (a) illustrates how the visualization procedure is used in the projection of a
3 by 3 grid. In (b), this method is used to visualize 140 iterations of the model using a 9 by 9 grid.
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the relative orientation of the submappings. Second, the process of interpolation hides interesting
discontinuities in the mapping. Note that, in contrast, the application of this visualization method to
understanding the development of self-organizing maps does not entail any interpolation: each
activation unit is represented in the grid. Unfortunately, when visualizing the language model
developed here, a significant amount of information is lost due to the process of interpolation.

4.2 Fine-Grained Visualization: Image Projection
We now extend the basic visualization method in two ways. First, in order to visualize the mapping
with minimal interpolation, we increase the rate at which we sample the meaning space. To do this,
instead of projecting the intersecting points of the grid, we project all points drawn from some test
image. These points are not interpolated in any way once they are projected into the signal space.
Because the meaning space is infinitely large, the projected test image will still represent an approxi-
mation to the ‘‘true’’ mapping. The second extension to the basic visualization method is to assign
colors to the points being projected. By doing this, we can use a color test image with some discern-
ible structure such that the orientation of the fragments of the mapping can be recovered visually.

This procedure, along with the test image, is shown in Figure 4. The test image is a color map
over which we have superimposed (a) a grid and (b) arrows pointing to each of the four corners of
the test image. Figure 5 depicts the state of a single simulation run over 500 generations. By far the
most insightful application of this visualization method, however, is gained by viewing successive
states in the form of an animation. We have a number of MPEG movie files illustrating the evolution
of structure in the mappings using this visualization method.2

We can identify the following phases in the evolution of topographic maps:

� Phase 1. In the initial state, every point in the meaning space is mapped randomly to
a point in the signal space.

� Phase 2. Structure begins to emerge in the mapping between meanings and signals.
Competition begins between many dramatically different transformations.

� Phase 3. We see increasing dominance of a collection of mutually supporting contiguous
submappings. Rogue fragments of the mapping continue to compete, but are highly
unlikely to establish themselves or grow, due to the continued growth of the dominant
mapping.

� Phase 4. One observes the eventual dominance of a continuous but fluid collection of
mappings sharing transformational identity.

� Phase 5. A global topographic tendency remains, with the projected image continually
floating and being repelled by the edges of the space.

Visualizing the system in this way illustrates how iterated learning can result in the cumulative
evolution of structure. The language, as it passes down each generation, progressively acquires a
general tendency toward structure preservation in the mapping. But in what way, if any, is this
an evolutionary system? What kind of conceptual framework should we invoke to describe the
development of the stable, structured states? These experiments raise some problematic questions,
which we will now discuss.

4.3 Analysis
Part of our motivation for employing visualization techniques is the need to further our under-
standing of iterated learning as an evolutionary system. More specifically, in what way does infor-
mation transmission through learning constitute an adaptive system, and in what way is this system

2 These are available on the web; see http://www.ling.ed.ac.uk/~henryb.
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related to biological evolution? Before considering these questions it is worthwhile relating the
behavior of the model to the linguistic phenomenon we are interested in.

4.3.1 Relating Model Behavior to Language
The model we have developed can only superficially be related to specific examples of linguistic
phenomena. However, the utility of the approach we take concerns a more general analysis of
information transmission through learning. Given this level of abstraction, the relevant parallel
between language and the model is that both can be understood as examples of a culturally
transmitted system relating two structured spaces. In light of this similarity, we believe fairly strong
parallels can be drawn. For example, the initial phase in linguistic evolution, where we see a transition
from a system of relating meanings to signals arbitrarily to a system of relating meanings to signals
compositionally, mirrors the transition from protolanguage to full human language discussed by
Wray [23]. However, the principal parallel we draw relates to individual states in the model that, when
visualized, depict competing and inconsistent structured regions of the mapping between meanings
and signals. We also see this in language. For example, Latin has five noun declensions: every noun
belongs to one of these declensions, and each declension has an associated system of case endings.

Figure 5 . Fine-grained visualization of the evolving language over 500 generations.

Figure 4 . The fine-grained visualization method.
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These systems of case endings are regular but, importantly, differ across declensions. Thus we see
competing systems of regularity being transmitted in both language and the model. In short, both language
and the model exhibit idiosyncrasies despite widespread regularity (e.g., [10]). It is at this level of
abstraction that the model can provide insight.

An analysis of the system over many generations reveals how imperfections in the process of
transmission can profoundly alter the evolutionary trajectory, the result being an occasional
wholesale reorientation of the mapping. In language, similar processes are at work. For example,
the rich case structure of Latin, through phonological change, became ambiguous during the history
of French. As a result of this ambiguity, development from Old to New French saw the
abandonment of the case system in favor of word order [20]. This example, where small changes
lead to subsequent restructuring, is a characteristic feature of the process of language change. We can
draw a strong parallel between that process and the behavior of the simple iterated learning model
we present here. Our model tells us that a patchwork of local transformations can retain a general
tendency despite imperfect transmission. Inaccuracies are inevitable during the transmission of this
mapping, and we see that deformations introduced can lead to either first, a fleeting discontinuity or,
second, a more profound restructuring of the mapping. As this discussion suggests, the model allows
us to visualize (1) the emergence of regularity from an initial state of irregularity, and (2) subsequent
transmission and variation of this regularity. We will now use these points to inform a discussion
focusing on the evolutionary nature of the system.

4.3.2 Iterated Learning as an Evolutionary System
When considering language as an evolutionary system, to begin with we must consider the notion of
selection. If we define the notion of selection as the differential retention of some unit of replication,
then the first problem we arrive at is that it is far from clear what is being selected in the model
presented here. In other words, what is the unit of replication? Two observations are important.
Firstly, it is clear that features of the mapping persist for lengthy periods of the simulation. A feature,
in this context, could be defined as one or more contiguous regions of the mapping between
meanings and signals. These regions must represent approximately the same relationship between
meanings and signals. For example, they might represent approximately the same scaling and a
rotation of the meaning space. Secondly, neither the nature of this relationship between meanings and
signals in one of these regions, nor the size of the region, is ever entirely identical from one generation
to the next. To begin to explain this behavior in terms of replication, we must then question the
essentially binary notion that these features of the mapping are either passing unaltered between two
agents, or being selectively blocked. This brings us to one fundamental difference between linguistic
and biological evolution. In the case of biological evolution we can speak of relatively direct copying
of DNA. In the case of, for example, asexual selection, this DNA is either transmitted or it is not. In
the case of linguistic evolution we do not see this direct copying. The mapping is first translated into
externalized utterances, and then, for this information to then be transmitted successfully, these
utterances need to be reverse translated back into a grammar. Put another way, the notion that a
property of the mapping can be copied or transmitted directly does not apply in the case of linguistic
evolution. Instead, during linguistic evolution copying occurs as a result of the combination of learning
and production, and any notion of selection will turn on the nature of these processes. In light of this
argument, we note that replication in this model is matter of degree: It is more informative to regard
replication as an analogue process exhibiting varying degrees of copying fidelity. Copying fidelity will
necessarily be subject to the vagaries of the processes of learning and production, rather than a digital
process within which features of the mapping are either copied unaltered or not copied at all.

As we have suggested, replicators in the model are structured compositional regions of the
mapping between meanings and signals. These regions represent some local regular transformation
in much the same way as a noun declension represents a local system of regularity in Latin. Because
these regions are compositional, they can be generalized from: A signal for a novel meaning in this
region can be calculated that conforms to the local transformation. Regularity in a region of the

Artificial Life Volume 12, Number 2 239

Visualizing Linguistic EvolutionH. Brighton and S. Kirby



mapping will therefore increase the probability that the region will be transmitted accurately. We can
draw a parallel here with language, as the regularity of the case endings within noun declension
applies to many nouns, and therefore this regularity is more likely to be transmitted than some
idiosyncratic system related to few nouns.

Through visualization, the analysis of the model and its parallels with language suggest that we
can rightfully speak of the differential retention of units of replication. These units are local systems
of regularity—a hallmark of language. These systems of regularity compete with each other and
undergo deformation as they are transmitted across generations. This analysis has also raised what
we believe to be a key point of divergence between linguistic and biological evolution. In contrast to
the transmission of DNA, linguistic structure is not copied directly but undergoes translation and
reverse translation. It is far from from clear how the analogue process of selection we have argued
for in linguistic evolution is related to the digital process of selection we see in biological evolution.
We view this issue as one requiring further investigation.

5 Summary

First we outlined the theoretical basis for treating language as a complex adaptive system in which
certain structural properties are adaptations to the problem of cultural transmission. We argued that
rather than a purely psychological theory, an explanation for the universal tendencies in language
requires a theory explaining why these structural properties are adaptive. Typically, models of
linguistic evolution focus on explaining how specific properties of language emerge, and the range of
conditions for emergence. We have taken a slightly different approach, one where we try to
characterize the process of linguistic evolution in evolutionary terms. To investigate this issue we
then developed a simple iterated learning model. The construction of this model was guided by the
need to visualize the dynamics of iterated learning. In order to visualize the evolving system,
language was modeled as a mapping between a two-dimensional meaning space and a two-
dimensional signal space. Coordinates in these space are real numbers. Linguistic agents were
modeled as augmented instance-based learners capable of mapping meanings to signals. Designing
the iterated learning model in this way allowed us to visualize the evolution of linguistic structure.

Using two visualization methods, we demonstrated how linguistic evolution can be understood in
terms of competition between local transformations. Stable states were characterized by a fluid col-
lection of locally consistent transformations. When invoking an evolutionary explanation for devel-
opment of these states, the notion of selection is, at first sight, problematic. Subsequent states in the
model only superficially suggest replication. In order to account for this process, we argued that an
analogue process of replication occurs. This analogue process differs from the essentially binary
nature of selection of DNA in that linguistic structure is both translated to, and reverse-translated
from, externalized utterances. Any change introduced as a result of these processes will be trans-
mitted and inherited by the next generation of language users. Drawing a parallel with language, we
discussed how a similar process underlies the phenomenon of language change where the retention
of structural tendencies occurs while at the same time language is never fully stable. To our knowl-
edge, this is the first time visualization techniques have been used to understand the process of
linguistic evolution. Several important issues remain in understanding this process, and we regard the
experiments reported here as a first step in understanding linguistic evolution in the context of
evolutionary theory.
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Appendix: Signal Production

The most obvious production scheme is the following. Given the meaning m, the three nearest
neighbors of m are found, along with their corresponding signals. Now, using these three observed
examples of the mapping, given by hm1; s1i, hm2; s2i, and hm3; s3i, we can say that the relationship
between m and its neighbors m1, m2, and m3 in meaning space should somehow be reflected in the
relationship between s, the signal to be produced for m, and the signals s1, s2, and s3. That is, any local
relationship between meanings and signals should guide our choice of s. The problem of production,
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characterized in this way, is in line with the motivation behind instance-based learning. To exploit the
relationship suggested by this approach, we can first represent m as a linear combination of two
vectors, denoted as p and q, derived from m1, m2, and m3:

p ¼ m2 � m1 ð1Þ

q ¼ m3 � m1 ð2Þ

Representing m as a linear combination of p and q, we use two scalar constants A and B:

m ¼ Apþ Bq ð3Þ

Now, A and B represent the multiplicative factors of the vectors p and q that give m when added
together. Rewriting Equation 3, we have

mx

my

0
@

1
A ¼ A 	

px

py

0
@

1
Aþ B 	

qx

qy

0
@

1
A: ð4Þ

Rearranging, we get

A ¼ qymx � qxmy

pxqy � pyqx
ð5Þ

B ¼ pymx � pxmy

qxpy � qypx
ð6Þ

Next, we perform a similar operation in the signal space. Using s1, s2, and s3, we construct another
two vectors v and w, which mirror the vectors p and q used in the meaning space:

v ¼ s2 � s1 ð7Þ

w ¼ s3 � s1 ð8Þ

The process of induction used to postulate the signal s proceeds by using A and B in the signal
space. As A and B capture the relationship between m and its neighbors induction occurs because we
assume the same relationship holds between s and the corresponding signals of m’s neighbors:

s ¼ Av þ Bw ð9Þ

Any structured relationship between m and its neighbors will now be reflected in the relationship
between s and its neighbors. This procedure for finding an appropriate signal given a meaning
represents a bias toward structure preservation. Any existing relationship between the meaning space
and the signal space is used to inform the choice of new signals.
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