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Abstract

John Maynard Smith and Eörs Szathmáry argued that human language signified the eighth major tran
evolution: human language marked a new form of information transmission from one generation to anothe
nard Smith J, Szathmáry E. The major transitions in evolution. Oxford: Oxford Univ. Press; 1995]. Accord
this view language codes cultural information and as such forms the basis for the evolution of complexity in
culture. In this article we develop the theory that language also codes information in another sense: langua
information on their own structure. As a result, languages themselves provide information that influences th
survival. To understand the consequences of this theory we discuss recent computational models of lingu
lution. Linguistic evolution is the process by which languages themselves evolve. This article draws toget
recent work on linguistic evolution and highlights the significance of this process in understanding the ev
of linguistic complexity. Our conclusions are that: (1) the process of linguistic transmission constitutes th
for an evolutionary system, and (2), that this evolutionary system is only superficially comparable to the pro
biological evolution.
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1. Introduction

[. . .] if we view life on the largest scale, from the first replicating molecules, through simple cells,
ticellular organisms, and up to human societies, the means of transmitting information have ch
It is these changes that we have called the ‘major transitions’: ultimately, they are what ma
evolution of complexity possible[64, p. 3].
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At some point in the last five million years the arrival of human language signified what Ma
Smith and Szathmáry consider to be the eighth major transition in evolution[63,64]. Language, when
compared with every known communication system in the natural world, exhibits unsurpassed co
ity. It allows an indefinite number of concepts to be expressed by combining a discrete set of units
why, for Maynard Smith and Szathmáry, “[t]he analogy between the genetic code and human lang
remarkable”[64, p. 169]. Furthermore, human language, as a means of transmitting information, ex
defining characteristics of major evolutionary transitions. Firstly, language provided a new medi
information transmission across generations. Secondly, the mechanism used to solve the tran
problem is quite unlike those which preceded it. But in what sense does language carry inform
And what mechanisms underly and influence this mode of information transmission? This article
together a body of work that responds to these questions.

Language is undoubtedly required to support many cultural artifacts and practices such as, fo
ple, religion. It is this kind of complexity that Maynard Smith and Szathmáry appeal to when fra
language as a major transition in evolution. The complexity of human society and culture rests
productivity of language, and how it enables complex informational structures to withstand repea
tural transmission from one generation to the next. We will show in this article that there is anothe
in which language can be considered in evolutionary terms. Firstly, we will argue that the complex
see in human languages is determined to a significant degree by the manner in which they are tran
Secondly, we will show how the transmission of language is achieved using the mechanisms of la
learning and language production. These mechanisms impose constraints on transmission, such
guages can be said to undergo adaptation as a result of their transmission. This process is termedlinguistic
evolution[14,15,25,26,34]. In short, language can properly be regarded as an evolutionary system

The hypothesis that language should be understood in these evolutionary terms rests on the
tion that languages code information that determines the manner in which they are processe
cognitive system. This assumption is intimately related to a central question in linguistics and
tive science: to what degree is language an expression of the genes? Section2 focuses on this questio
by first considering the position known asstrongor Chomskyan nativism(see[29,72]). This position is
based on the hypothesis that the essential properties of languages we see are innately specified
retically significant degree (e.g.,[22,23]), and as such represents one extreme position on an unres
empirical question[32,76]. We will then briefly outline alternatives to this position which propose
at least some of the hallmarks of language are learned through inductive generalisations from da
alternative standpoint opens up a set of fundamental questions relating to the question of how la
evolved in humans. We argue that, given this standpoint, linguistic evolution forms a significant
the explanation for the evolution of linguistic complexity.

Section3 describes the interdisciplinary approach to evolutionary linguistics we adopt to develo
test the theory of linguistic evolution. Our discussions will draw on concepts taken from fields
as complex systems, computational learning, artificial life, and linguistics. We will then work to
strengthening the view of language as an evolutionary system, developing our argument using tw
computational models of linguistic evolution. Both models deal with the cultural evolution of com
tional structure, a hallmark of language and a test-case which demonstrates the explanatory po
our approach. In Section4 we present a simple associative model of language learning (as prese
[87]) which allows us to establish a link between a particular aspect of cultural transmission (atrans-
mission bottleneck) and the evolution of compositional structure. In Section5 this model is extende
to consider the role that the biases of language learners play in this evolutionary process, and
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Section6 takes a complementary perspective, and analyses the process of learning in terms of in
and compression according to a normative theory of induction called the minimum description
principle[9,11,12].

The insights of these models will be used to refine the theory of linguistic evolution developed i
tion 7. Here, we consolidate the insights of the models and develop the argument for viewing lang
an evolutionary system. In broad terms, then, this article will demonstrate recent progress in und
ing language in evolutionary terms, and in particular, understanding languageitself as an evolutionary
system. The overarching theme in this discussion will be the hypothesis that language adapts t
own survival by evolving certain types of structural complexity. In order to understand this phenom
we need a theory detailing the novel medium of linguistic transmission, and the mechanisms that
this transmission.

2. Background: Explaining the complexity of language

Language is a system relating form and meaning. Individual languages achieve this relation
different, but tightly constrained ways. That is to say that variation exists across languages, but th
of study for many linguists are the common structural hallmarks we see across the world’s lang
Why do all languages share these properties? A widespread hypothesis is that language, like th
system, is an expression of the genes:

It is hard to avoid the conclusion that a part of the human biological endowment is a specialize
guage organ’, the faculty of language (FL). Its initial state is an expression of the genes, com
to the initial state of the human visual system, and it appears to be a common human posse
close approximation[23, p. 85].

To support this view, we can note that children master complex features of language on the
surprisingly little evidence. Theargument from the poverty of the stimulusstates that the knowledg
of language children attain is surprising precisely because itcannotbe derived solely from informatio
made available by the environment (e.g.,[21,29,76,98]). This view can be traced back to Plato (427B
347BC), who noted that humans come to know more than that suggested by the evidence they en
with language being just one example of this general phenomenon.

If knowledge of language is in this sense innate, then why do languages exhibit so much va
The modern debate on the innateness of language attempts to resolve this problem by suggestin
framework for linguistic development is innate, while the linguistic environment merely serves to
an internally directed course of development:

[the environment] provides primary linguistic data that enable the linguistic system to develop,
it provides light and food that enable the visual and motor systems to develop[95, p. 523].

In this sense, languages themselves are not encoded entirely in the genes, but the fundamenta
properties of language are. How can we gain an understanding of these innately specified hallm
language? One possibility is that linguists, by conducting a thorough analysis of the world’s lang
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can propose a set of descriptive statements which capture these hallmarks of language. For exa
may identify properties common to all languages we encounter, properties that conform to a cer
tistical distribution, or implicational hierarchies of properties that fit with known languages. Collect
such descriptive statements constitute a theory oflanguage universals(e.g.,[28,31,70]). Linguistic uni-
versals define the dimensions of variation in language. Modern linguistic theory rests on the as
that it is these dimensions of variation that are genetically determined.

As an explanatory framework this approach to explaining why language exhibits specific str
characteristics is very powerful. One of its strengths is that, by coupling universal properties of la
tightly to a theory of innate constraints, our analysis of the structural hallmarks of language mus
on a wholly psychological (i.e., cognitive, mentalistic, or internalist) explanation. As a consequen
can understand why languages have certain structural characteristics and not others by unde
those parts of the human cognitive system relevant to language. In other words, our object of st
been circumscribed to encompass a physical organ: the brain. As we have seen, this position i
based on the argument from the poverty of the stimulus. One outcome of this hypothesis is that c
do not learn language in the usual sense, but rather they acquire it as a result of the internally d
processes of maturation. For example, Chomsky states that “it must be that the basic structure of l
is essentially uniform and is coming from inside, not from outside”[23, p. 93].

This claim is controversial, and will impact heavily on the discussion to come. Nevertheless, to
acterise the traditional position, we should note that language is often considered part of our bio
endowment, just like the visual system. The intuition is that one would not want to claim that we le
see, and in the same way, we should not claim that we learn speak.

2.1. Language learning under innate constraints

Linguistic nativism, at least in the extreme form presented above, is far from being universa
cepted (for a good coverage of the debate, see[29,32,46]). An alternative to this hypothesis is that t
structure of language is, to some extent, learned by children: humans can arrive at a sophisticate
edge of language without the need to have hard-wired (genetically determined) expectations fo
dimensions of linguistic variation. This is the view that we will adopt throughout this article. W
sume that, to some degree, language is learned through inductive generalisations from linguis
and therefore deviate, as do many others, from Chomsky’s position that knowledge of language g
beyond the presented primary linguistic data and is in no sense an ‘inductive generalisation’ from
data”[21, p. 33].

To what degree is it true that language is learned through inductive generalisations? Frustrating
is little concrete evidence either way. Linguistics lacks a rigorous account of which (if any) aspe
language are acquired on the basis of innate constraints. General statements such as “linguistic st
much more complex than the average empiricist supposes”[97, p. 283], and “the attained grammar go
orders of magnitude beyond the information provided by the input data”[98, p. 253]abound, and thes
claims are to some extent backed up with specific examples designed to show how children’s kno
of language extends beyond what the data suggests (e.g.,[3,30,48,56,57]). Nevertheless, many still argu
that the required information is in fact present in the linguistic data[75,76], and to claim that it is not is
“unfounded hyperbole”[75, p. 508].

It should be noted that, despite the debate being dominated by extremes, the issue is not one
ing that language has an innate biological basis. Only humans can acquire language, so any t
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language must consider an innateness hypothesis of some form. The real issue is the degree
language acquisition is a process of induction from data within constraints:

[. . .] our experience forms the basis for generalization and abstraction. So induction is the nam
game. But it is also important to recognize, that induction is not unbridled or unconstrained. I
decades of work in machine learning makes abundantly clear that there is no such thing as a
purpose learning algorithm that works equally well across domains. Induction may be the nam
game, but constraints are the rules that we play by[38].

As for the degree to which these constraints are language-specific, and can rightfully be con
genetically determined, the issue is an open empirical question:

I would also take it to be a matter for empirical investigation the extent to which it is necessary
tribute certain properties of grammars to the emergence in the course of learning of ‘innate stru
on the one hand, or to the application of specific learning procedures to a body of linguistic d
the other[32, p. 11].

In the light of this debate, we make an assumption that will be carried through the remainder
article: if we deviate from the position that language acquisition inno sense involves inductive gen
eralisations, then we must acknowledge that the linguistic environment must supplyinformation. This
information impacts on how languages are represented and processed within the cognitive s
linguistic data contains information about the structure of the mental grammar required to produ
data. In other words, in addition to its more obvious communicative content, language encodes in
tion about the structure of language.

2.2. Towards an evolutionary explanation

The degree to which language is learned through a process of inductive generalisation has a p
effect on the framework we use to explain why language has the structure that it does[14]. If induction
plays a role in determining knowledge of language, then environmental considerations must b
seriously; any linguistic competence acquired through learning will be determined to a significant
by the structure, or information, present in the environment in the form of linguistic data. The en
ment must be supplying information in order for induction to occur. We must therefore explain w
linguistic environment is the way it is: how did this information, or linguistic structure, come to e
To address this issue we will argue for an evolutionary perspective, and seek to explainhow, from a
non-linguistic environment, linguistic structure can develop through linguistic evolution. In shor
view casts doubt on the view that the hallmarks of language are, as Chomsky claims, “comin
inside, not from outside.” Necessarily, if inductive generalisations made from data contained in
vironment determine the kind of linguistic structure embodied in language, then a wholly psycho
theory of linguistic structure must be inadequate—the environment, in the form of linguistic data
a crucial role. How languages themselves can come to carry this information is the issue we
next.
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3. Linguistic evolution: From theory to models

Linguistic evolution is the process by which languages themselves evolve as a result of their tra
sion (e.g.,[14,24,25,34,49]). Unlike the innate communication systems of, for example, vervet mon
[20] and bees[96], human language is, as discussed above, learned, and therefore potentially un
change as a consequence of its cultural transmission from one generation to another. The mos
example of this is language change, as witnessed on a historical time scale (e.g.,[1,45,58])—for example,
the change from Old to modern English.

Linguistic evolution is an instance of the more general phenomenon of cultural evolution whic
ures in explanations of a number of human cognitive domains (e.g.,[7,16,33,36,92]). It is not clear to
what extent linguistic evolution mirrors the processes of cultural evolution in the wider sense. I
it is possible that language-specific constraints govern the processing and transmission of la
For this reason, we will begin by assuming that linguistic evolution may differ from other insta
of cultural evolution. Our starting position is therefore conservative: we do not set out to exp
general theory of cultural evolution but rather seek to develop a theory which is specifically li
tic.

The process of linguistic evolution has been repeatedly proposed as a source of linguistic com
(e.g.,[24,34,49]). Deacon, for example, states:

Grammatical universals exist, but I want to suggest that their existence does not imply that t
prefigured in the brain like frozen evolutionary accidents [. . .] they have emerged spontaneously a
independently in each evolving language, in response to universal biases in the selection p
affecting language transmission[34, pp. 115–116].

Deacon’s position could be taken as an extreme—it may not be the case that all universals
described in this way. The key point in the present discussion is that linguistic evolution occ
a result of language being transmitted from one generation to another, and that this linguist
lution may offer an explanation for linguistic universals. In order to provide a firmer footing fo
discussion that follows, we now turn to a more formal characterisation of the process of linguistic
tion.

3.1. Iterated learning: A model of language transmission

Language is transmitted culturally through, firstly, the production of utterances by one generati
secondly, the induction of a grammar by the next generation, based on these utterances. This
repeated production and induction, is crucial to understanding the diachronic process of language
(as argued by, e.g.,[1,45]). Several models have demonstrated how phenomena of language chan
be understood in terms of this characterisation of linguistic transmission[27,42,68]. Such models are de
signed to inform our understanding of how full-blown human languages undergo structural chan
time—for example, these models could inform an enquiry into the morphological change that c
terised the history of, say, English (as in[42]).

Of more importance here are studies that focus specifically on the cultural evolution of ling
complexity from non-linguistic communication systems[4,9,51,52,87]. In principle, the same gener
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mechanisms which explain the change in languages in recent times should also offer an account o
in the linguistic system at a greater time-depth—in other words, uniform processes acting on lan
should be capable of explaining both languageevolution(a qualitative shift from a non-linguistic to
linguistic system), as well as languagechange(subsequent quantitative shifts).3

Much of the work focusing on the emergence of linguistic systems through linguistic evolutio
been consolidated under a single computational modelling framework termed theIterated Learning
Model [9,51,87,89]. In this article we will use particular examples of the Iterated Learning Mod
test aspects of the theory of linguistic evolution.

An iterated learning model consists of a model of a population composed of a number of
(simulated individuals), typically organised into generations. Language is transmitted from gen
to generation within this population. For a language to be transmitted from one agent to ano
must be externalized by one agent (through language production), and then learned by another
language acquisition). An agent therefore must have the ability to learn from examples of langua
Learning results in the induction of a hypothesis on the basis of data. This hypothesis repres
agent’s knowledge of language. Using the hypothesis, an agent also has the ability to produce e
of language use itself. Agents, therefore, have the ability to interrogate an induced hypothesis
examples of language use. Within this general setting, we can explore how the process of lin
evolution is related to the mechanisms of hypothesis induction (language acquisition), and hyp
interrogation (language production).

In the introduction to this article we described how human language signified a major transi
evolution as it represents a novel medium for information transmission, both in the sense inten
Maynard Smith and Szathmáry[63]—language transmits information about non-linguistic culture—
in the sense that language encodes information about its own structure. The mechanisms that un
influence the transmission of this latter type of information are the mechanisms of language acq
and language production that we describe here.

Within the framework of the Iterated Learning Model, various treatments of population size,
lation turnover, and social network structure are possible.4 Throughout this article we will consider th
simplest case, where each generation contains a single agent. The first agent in the simulation, A
initialised with knowledge of languageh1, the precise nature of which will depend on the learning mo
used. This hypothesis will represent knowledge of some languageLh1. Agent 1 then produces some s
of utterancesL′

h1
by interrogating the hypothesish1. This newly constructed set of utterances will b

subset of the languageLh1. These utterances are then passed to the next agent to learn from, t
agent playing no further part in the simulation. This process is illustrated inFig. 1. The important point is
that, under certain circumstances, the language will change from one generation to another; it wil
and undergo adaptation.

3 See Newmeyer[67] for discussion of theuniformitarian dogmain linguistics. The approach to linguistic evolution w
describe here rejects uniformity of state, but accepts uniformity of process. In other words, we assume that the form of l
has qualitatively changed although the mechanisms of cultural evolution driving this change have remained constant.
4 Indeed, data from language genesis, change and death suggest that such population factors have significant im

linguistic system—see Smith and Hurford[88] for a pilot study applying iterated learning to an investigation of such issue
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Fig. 1. The iterated learning model. The first agent has knowledge of language represented by a hypothesish1. This hypothesis
itself represents a languageLh1. Some subset of this mapping,L′

h1
, is externalized as linguistic performance for the next ag

to learn from. The process of learning results in a hypothesish2. The process is then repeated, generation after generation

3.2. The language model

Before proceeding to a fully-specified Iterated Learning Model we must introduce our language
The particular model we introduce will figure in both models featured later in the paper. The d
sion surrounding the language model will also allow us to define the feature of language we
investigating throughout this article. This is a property of language—a linguistic universal—termedcom-
positionality.

A model of language needs to capture the fact that a language is a particular relationship b
sounds and meaning. The level of abstraction we will aim for captures the property that language
ping from a “characteristic kind of semantic or pragmatic function onto a characteristic kind of s
sequence”[73, p. 713]. When we refer to a model of language, we will be referring to a set of
sible relationships between, on the one hand, entities representingmeanings, and on the other, entitie
representingsignals. Throughout this article we will consider meanings as multi-dimensional fea
structures, and signals as sequences of symbols.

Meanings are defined as feature vectors representing points in ameaning space. Meaning spaces wil
be defined by two parameters,F andV . The parameterF defines the dimensionality of the meani
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space—the number of features each meaning has. The parameterV defines how many values each
these features can accommodate.5 For example, a meaning spaceM specified byF = 2 andV = 2
would represent the set:

M= {
(1,1), (1,2), (2,1), (2,2)

}
.

Notice that meanings represent structured objects of a fixed length, where the values associa
each feature are drawn from a set. We will further assume, in the interest of simplicity, that no
notion of similarity applies within feature values—feature values are unordered, and the only no
similarity is one of identity.

Signals are defined as strings of symbols drawn from some alphabetΣ . Signals can be of variabl
length, from length 1 up to some maximumlmax. For example a signal spaceS , defined bylmax = 2 and
Σ = {a,b}, would be:

S = {a,b,aa,ab,ba,bb}.
Again, we assume that no notion of similarity other than identity applies to members ofΣ—for ex-

ample,a is no more similar tob than it is toz.
We now have a precise formulation of the meanings and signals. Of great importance to fol

discussion will be the kinds of structural relationships which can exist between meanings and sig
is the nature of the relationship between meanings and signals that makes human language so d
Accordingly, it is crucial to be aware that the model of meanings and signals we have introduc
restrict the set of mappings that are possible. By building an abstract model of language we are n
ily simplifying the range of linguistic phenomenon we seek to explain. For example, recursive stru
found in language cannot occur within this model of language (see Kirby[52] for a model which consid
ers this aspect of language. However, as it stands, the model of language presented above can
key feature of language we will be focusing on: compositionality.

Compositionality is a property of the mapping between meanings and signals.6 A compositional map-
ping is one where the meaning of a signal is some function of the meaning of its parts and th
in which they are combined (e.g.,[53,100]). Such a mapping is possible given the model of langu
developed so far. Consider the languageLcompositional:

Lcompositional=
{〈{1,1},ac

〉
,
〈{1,2},ad

〉
,
〈{2,1},bc

〉
,
〈{2,2},bd

〉}
.

This language has compositional structure due to the fact that each meaning is mapped to
such that parts of the signal (some sub-string) correspond to parts of the meaning (a feature val
string-initial symbola, for example, represents feature value 1 for the first feature.

An instance of a language with no compositional structure whatsoever is also of interest. W
term such relationshipsholistic languages:7 signals map to meanings in such a way that no system

5 Specifying a meaning space using just two parameters is of no intrinsic importance; it serves only to simplify nota
could just as well define a meaning space using the parameterF , along with an extraF V parameters detailing the number
values each individual feature can take.
6 Contra a frequently-stated view, it is not a property of meanings alone, nor indeed a property of signals alone.
7 Strictly speaking, we should use the termholistic communication systemsince one of the defining features of language

compositionality. Nevertheless, we will continue to abuse the termlanguagein this way in the interest of convenience.
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relationship exists between parts of the signal and parts of the meaning, as inLholistic:

Lholistic = {〈{1,1},ppld
〉
,
〈{1,2},esox

〉〈{2,1},q
〉
,
〈{2,2},dr

〉}
.

A holistic language is usually constructed by pairing each meaning with a random signal, and
quently holistic languages may also be referred to as random languages in the discussion that fo

The morphosyntax of language exhibits a high degree of compositionality. For example, the re
ship between the stringJohn walkedand its meaning is not completely arbitrary. It is made up of
components: a noun (John) and a verb (walked). The verb is also made up of two components: a s
and a past-tense ending. The meaning ofJohn walkedis thus a function of the meaning of its parts a
the way in which they are combined. The compositional structure of language makes the interp
of previously-unencountered utterances possible—knowing the meaning of the basic elements
effects associated with combining them enables a user of a compositional system to deduce the
of an infinite set of complex utterances.

3.3. How iterated learning models inform theory and explanation

Given the model of language described above we can begin to describe in more depth how
learning models can be used to explore theories of linguistic evolution.

A model of language defines a space which contains all the possible languages (relationships
meanings and signals) that the model can accommodate. We will refer to this space as thelanguage
space. Each simulation run of an Iterated Learning Model represents a trajectory through the lan
space. As the language is transmitted and evolves the system may enter different regions of the
space. Iterated learning models are informative when, irrespective of the initial language, certain
of the state space representattractors—regions of the space that the system will always settle in. I
iterated learning model consistently results in trajectories which focus on an attractor, the mod
have shown how the process of linguistic evolution mediates between a set of initial conditions
final region of the state space, and therefore by implication, some structural property of language
interested in.

For example,Fig. 2depicts two sets of experiments under different conditions—say, different ass
tions regarding the linguistic capacities of the simulated individuals. In both conditions we see a

Fig. 2. Trajectories through a language space, given two different sets of experimental conditions.
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trajectories with an initial starting position of a random (holistic) language. The language spac
resented schematically, has two regions of interest: a large region representing random langua
a smaller region of languages which have the property of compositionality, a key feature of lin
structure. Under experimental condition 1 (the left-hand diagram inFig. 2) the compositional region o
the language space is not visited. In contrast, under condition 2 we see consistent evolution from
initial languages to compositional languages.

Given such a series of outcomes of the model, we can begin to identify which properties of th
ulated agents (in our example), in combination with the process of linguistic evolution, leads
evolution of compositionality: linguistic structure develops as a result of how the language is trans
By systematically investigating different experimental conditions pertaining to the capacities of sim
agents, the environment of cultural transmission and so on, we can begin to refine our understa
the characteristics of this evolutionary process.

Iterated learning models will not necessarily result in perfectly stable states. When we refer
stability of a state of the model, with respect to a linguistic property of interest, we typically re
Liapounov stability, also known as “start near, stay near stability” (e.g.,[40, p. 27]). Our characterisatio
of stability allows the possibility that the model may enter a specific region of the language spa
remain within it, even though no particular language can be said to be stable. For example, t
space representing compositional languages may be a stable region for a certain model. Similarly
languages we observe are stable in the sense that they always conform to linguistic universals,
they undoubtedly undergo change over time.

3.4. Contrasting perspectives on the mechanisms driving linguistic evolution

We have discussed how an iterated learning model can be employed to shed light on an explan
linguistic evolution, introduced the key components of the iterated learning model, and focused
the language model can accommodate the linguistic phenomenon of compositionality. The next s
focus on the agents within the iterated learning model, as properties of the agents, in interaction
mediating cultural dynamic, determine how languages themselves evolve.

Agents are composed of a learning algorithm and a production algorithm. We will present two m
which focus on two sources of insight into the process of linguistic evolution, and which take
inspiration from two complementary conceptual frameworks. First of all, we present an associative
of learning. This model is useful because it allows parallels to be drawn with known psychol
processes of language acquisition, therefore providing insights into how such processes drive li
evolution. The second model we present views the process of learning from a perspective of
considerations of data compression and Bayesian inference. In addition to providing a theoretica
grounded approach to induction, the second model facilitates an investigation into the role of in
and innovation in linguistic evolution.

These two contrasting approaches are not mutually exclusive. Indeed, part of the motivation
suing these lines of enquiry is to build a solid picture of information transmission through lan
transmission, based on formal notions of learning as compression while at the same time mai
clear parallels with what we know about language processing in humans. This pluralistic appr
motivated by the fact that “some of the most important formal properties of a theory are found b
trast, and not by analysis”[39, p. 30]. In this sense, we aim to investigate linguistic evolution thro
iterated learning in the light of models which approach the problem from complementary perspec
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4. The cultural evolution of linguistic structure: The role of the transmission bottleneck

In Section4.1 we develop a simple associative model of language acquisition, which will be us
investigate two factors. Firstly, in Section4.2, we will use the model to demonstrate a basic result link
the cultural transmission of language with an aspect of linguistic structure, namely compositionalit
constitutes one of the core findings of research on linguistic evolution. Secondly, in Section5, we will
use this model to investigate the role of learner biases in the evolution of compositional structure

4.1. An associative matrix model of learning and production

As discussed in Section3.2, languages can be viewed as a system mapping between a space o
ings and a space of signals. One of the simplest ways to model a linguistic agent capable of mani
a system of meaning-signal mappings is to use an association matrix—a matrix specifying ass
strengths between meanings and signals, where entryaij in the matrix gives the strength of associat
between meaningi and signalj . An agent’s production and reception behaviour is determined by as
ation strengths in that agent’s matrix, and learning involves adjusting association strengths acco
some learning procedure. This approach is frequently used to study the evolution of signalling s
where meanings and signals are unstructured, atomic entities (see, e.g.,[44,71,84,86,90]).

A minimal elaboration to this basic scheme permits such a model to be used to model the l
of associations between structured meanings and structured signals[87]. A linguistic agent is defined b
an association matrixA. Entries inA give the strength of association between both partial and com
meanings and signals (as defined below). As in the simpler model, production and reception be
are determined by the association matrix, and learning involves adjusting association strengths.

4.1.1. Representation
As summarised in Section3.2, meanings are vectors in anF -dimensional space where each dimens

hasV values.Componentsof meanings are vectors such that each feature of a component has eit
same value as the meaning in question, or a wildcard. More formally, ifcm is a component of meanin
m, then the value of thej th feature ofcm is:

(1)cm[j ] =
{

m[j ] for specified features,
∗ for unspecified features

where∗ represents a wildcard. Similarly, components of signals of lengthl are (possibly partially spec
fied) strings of lengthl. We impose the additional constraint that a component must have a minim
one specified position—cm

[
j
] �= ∗ for all j .

Each row of anA matrix corresponds to a component of a meaning, and there is a single rowA

for each component of every possible meaning. Similarly, each column inA corresponds to a compone
of a signal. The entryaij in matrix A therefore gives the strength of association between a mea
componenti and a signal componentj .
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4.1.2. Learning
Prior to learning, all entries inA have a value of 0. During a learning event, a learner observ

meaning-signal pair〈m,s〉.8 The meaningm will specifies a set of meaning componentsCm and the
signals specifies a set of signal componentsCs . The learner then updates itsA matrix according to the
learning procedure:

(2)�aij =




α if i ∈ Cm andj ∈ Cs,

β if i ∈ Cm andj /∈ Cs,

γ if i /∈ Cm andj ∈ Cs,

δ if i /∈ Cm andj /∈ Cs .

This is exactly equivalent to the learning procedure from Smith[86], but with respect to components
meanings and signals, rather than unanalysed meanings and signals. The key point is that assig
values toα, β, γ andδ specifies a particular way of learning, or updating association strengths. Dif
assignments yielding a range of possible ways of learning, an issue we will turn to in Section5.

4.1.3. Production and reception
An analysisof a meaning or signal is an ordered set of components which fully specifies that me

or signal. More formally, an analysis of a meaningm is a set ofN components{c1
m, c2

m, . . . , cN
m } that

satisfies two conditions:

(1) If ci
m[j ] = ∗, ck

m[j ] �= ∗ for some choice ofk �= i,
(2) If ci

m[j ] �= ∗, ck
m[j ] = ∗ for any choice ofk �= i.

The first condition states that an analysis may not consist of a set of components which all
particular feature unspecified—an analysis fully specifies a meaning. The second states that an
may not consist of a set of components where more than one component specifies the value of a p
feature—analyses do not contain redundant components. Valid analyses of signals are similarly

During the process of producing utterances, agents are prompted with a meaning and req
produce a meaning-signal pair. In order to retrieve a signals based on an input meaningm every possible
signal sj ∈ S is evaluated with respect tom. For each of these possible meaning-signal pairs〈m,sj 〉,
every possible analysis ofm is evaluated with respect to every possible analysis ofsj . The evaluation
of a meaning analysis-signal analysis pair yields a scoreg, as defined by Eq.(3). The meaning-signa
pair which yields the analysis pair with the highestg is returned as the agent’s production for the giv
meaning. The score for a meaning analysis (which consists of a set of meaning components) pa
a signal analysis (a set of signal components) is given by:

(3)g
({

c1
m, c2

m, . . . , cN
m

}
,
{
c1
s , c

2
s , . . . , c

N
s

}) =
N∑

i=1

ω
(
ci
m

) · aci
m,ci

s
,

whereN is the number of components in the analysis of meaning and signal,aci
m,ci

s
gives the strength o

the association between theith component of the meaning analysis and theith component of the signa
analysis andω(x) is a weighting function which gives the non-wildcard proportion ofx.

8 We therefore assume that learners have the capacity to identify the intended meaning of an utterance, as well as
produced for that meaning. This is sometimes called the assumption ofexplicit meaning transfer[83].
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4.2. Transmission bottlenecks and the pressure to generalise

Using the extendedA matrix model outlined above, we will consider the impact of atransmission
bottleneckon a population’s communication system.

The transmission bottleneck reflects the fact that in nature languages cannot be transmitted in
from one individual to another. Languages are capable of expressing an infinite range of conce
any member of this infinite array of expressions is interpretable in turn. Acquiring a language the
entails the acquisition of a system for producing and understanding such an infinite set of mea
utterances. However, the system for generating this infinite set of utterances must be acquired
finite set of data—it is necessarily true that language learners do not see all the sentences of a
during the language learning process, because this would take an infinite amount of time. This tr
sion bottleneck is one aspect of the poverty of the stimulus problem, which is typically advance
argument suggesting that linguistic structure must be largely prespecified in language learners.

We will test the consequences of the transmission bottleneck using an implementation of the
Learning Model with the processes of language learning and production modelled using the ass
matrix model outlined above. Recall that in an Iterated Learning Model, language is transmitted b
generations via production and learning. Learners observee meaning-signal pairs produced by the in
vidual at the previous generation. If thesee observations are selected so that the learner observes
meaning from the space of possible meanings at least once, paired with its associated signal,
learner observes the complete language of the previous generation. We will call this theno bottleneck
case—note that this no bottleneck condition cannot apply in the case of natural language. In c
if the meanings expressed in thesee observations are selected purely at random, then the learne
not observe the complete language of the previous generation—they may only observe a subse
language, and when called upon to produce they may be required to produce a signal for a m
which they themselves never observed expressed. We will call this (more realistic case) thebottleneck
condition.

We will begin by considering a single learning rule, and investigating the effect of a transmissio
tleneck, before returning to the issue of learning strategies in Section5. We will begin by considering th
associative learning rule defined byα = 1,β = −1,γ = −1,δ = 0—connection strengths between me
ing and signal components which occur together are strengthened, and connection strengths
meaning and signal components which differ in their occurrence are decreased (β = −1, γ = −1).9 The
measures of interest is the compositionality of the emergent languages. Our measure of compos
is given inAppendix A—this ranges from≈ 0 for a holistic system, to≈ 1 for a compositional languag

Fig. 3 shows compositionality over time, in the two experimental conditions. The graphs pl
mean and standard deviation of compositionality, averaged over 100 runs in each condition, aga
in generations, with runs allowed to proceed until a stable system emerges.10

As can be seen fromFig. 3, the presence or absence of a transmission bottleneck has a sign
impact on the population’s language. In the initial generation in both experimental conditions, co
tionality is at baseline levels, reflecting the random nature of the initial languages—the initial gen
of each population produces a random set of utterances, due to initial association strengths of

9 Other simulation parameters:F = 3, V = 4, lmax = 3, |Σ | = 8, e = 100 in the no bottleneck condition,e = 32 in the
bottleneck condition.
10 Mean and standard deviation of 100 runs are plotted for all results in Sections4 and 5.
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Fig. 3. The impact of a transmission bottleneck on the structure of language.

no bottleneck condition compositionality remains at base-line levels over multiple generations
tural transmission. In contrast, in the bottleneck condition a highly compositional language evolv
simulation runs converge on languages with compositionality of approximately 1.

The results for the no bottleneck condition reflect the persistence of the initial, holistic syst
meaning-signal mappings—compositional mappings do not emerge when there is no bottleneck o
mission. In the bottleneck condition, this is not the case—a system of meaning-signal mappings
in which the structure of a meaning is transparently reflected in the structure of the signal associa
that meaning.Table 1shows fragments of languages evolving during a particular simulation run—a
tial holistic language, and a final compositional language. In short, compositionally-structured lan
evolve through cultural processes, but only when there is a bottleneck on transmission. Why is th

When there is no bottleneck on transmission, learners observe the complete language of the
generation. This can simply be memorised. The system embodied in the random meaning-sign
produced by the initial generation will be a holistic one, and this system will be preserved over tim

However, holistic mappings cannot persist in the presence of a bottleneck. The meaning-sign
of a holistic language are arbitrary with respect to structure—the structure of a meaning is in n
reflected in the structure its associated signal. As such, the meaning-signal pairs of a holistic la
must be observed if they are to be reproduced. When a learner only observes a subset of a
language then certain meaning-signal pairs will not be observed and therefore will not be preserv
learner, when called upon to produce, may produce some other signal for that meaning, result
change in the language—holistic languages are not stable when there is a bottleneck on transmi
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Table 1
Fragments of initial and final languages from one simulation run

Meaning Signal in initial language Signal in final language

(3, 3, 3) db def
(3, 3, 2) cfc ded
(3, 2, 3) cfh daf
(3, 2, 2) deg dad
(2, 3, 3) fbg fef
(2, 3, 2) gae fed
(2, 2, 3) chg faf
(2, 2, 2) cbc fad
(1, 3, 3) cgg gef

Compositionality of initial language:−0.025. Compositionality of final lan-
guage: 0.991.

In contrast, compositional languages aregeneralisable, due to their structure. In a compositional la
guage there is a regular relationship between feature values and parts of signal—for example, a
seenTable 1above, in one compositional language from one simulation run, value 1 for feature 1
to string-initialg, value 2 for feature 2 maps to string-mediala, and value 2 for feature 3 maps to strin
final d. This structure in the mapping allows learners to generalise from observed meaning-signal
order to produce the appropriate signal for meanings which they were not exposed to during learn
example, the regularities sketched out above allow us to (correctly) predict that the signal for m
(1,2,2) should begad, even though meaning(1,2,2) is not included in our sample of this language.

The potential of compositional languages to be generalised allows such languages to remain r
stable over repeated episodes of cultural transmission, even when the learner only observes a
the language of the previous generation. Holistic languages cannot be stable under such conditi
transmission bottleneck therefore introduces a pressure for languages to be generalisable. O
languages adapts to this pressure, eventually becoming highly compositional, highly generalisa
consequently highly stable.

This, then, constitutes a basic result for investigations into the cultural evolution of language—a
neck on cultural transmission introduces pressure for language to be generalisable, and langua
to this pressure over time. This result has been demonstrated using a fairly wide range of model
guage, language learning and iterated learning—see, e.g.,[4,10,50,52,87]. Compositionality represen
an adaptation, by language, to the circumstances of its transmission. This explanation linking a
of linguistic transmission (the transmission bottleneck) with a particular aspect of linguistic str
(compositionality) therefore constitutes an example of how certain linguistic universals can aris
consequence of linguistic evolution, rather than being prespecified in the genes.

5. The cultural evolution of linguistic structure: The role of the language learner

The results outlined in the previous section were for a particular learning rule—a particular sys
altering association strengths in a matrix based on observed meaning-signal pairs, given by a p
assignment of values to the parametersα, β, γ and δ. There are obviously alternative assignme
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leading to alternative learning strategies. To what extent is the result linking the transmission bot
with the compositionality of the evolved language dependent on thisparticular learning strategy?

A brief survey of the literature suggests that this result has generality beyond the particular
ing model used here. Various other, often significantly different, learning models yield the same
result—to name but a few, heuristic driven induction of context-free grammars[52], exemplar-base
learning[4], and MDL-based induction of finite state transducers ([10] and see Section6). However,
the learning strategies implemented in this apparently disparate selection of models may in fa
some fundamental properties in common, and these shared properties may be crucial to the evo
compositional structure.

The associative matrix model of learning allows us to make a systematic investigation of al
learning strategies, and their consequences for the evolution of linguistic systems.

5.1. Learning strategies supporting generalisation

The main result from the previous section was that the transmission bottleneck introduces a p
to generalise, and that the evolving linguistic system adapts to this pressure. A necessary precon
this is that the language learners arecapableof generalising—capable of identifying, extracting and
ploiting the regularities in a compositional language. Given that this proves to be the case, the ass
matrix learning according to the rule given above must be capable of generalisation, and this cap
generalisation must correspond to the particular values used forα, β, γ andδ. By pinpointing the locus
of this capacity to generalise, we can switch it on or off, and verify that it is in fact a prerequisite f
evolution of compositional structure.

Details of the process of working out learning bias with respect to generalisation are necessaril
what involved, and we would refer the interested reader to Smith[85] for details. Briefly: the ability of
an associative matrix learner to generalise depends on the relationship between the values as
learning rule parametersα andδ. This relationship determines the learner’s preference for usingcom-
ponentialanalyses—for producing meaning-signal pairs by associating parts of meaning (feature
or collections of feature values) with parts of signal, rather than atomistically associating unan
meanings with an unanalysed signals. The capacity to extract and use componential analyses is
of the capacity to generalise.

To illustrate this, let us return to the example compositional language given inTable 1. As discussed
above, this language exhibits regularities: value 1 for feature 1 maps to string-initialg, value 2 for feature
2 maps to string-mediala, and value 2 for feature 3 maps to string-finald. Identifying these regularitie
corresponds to making a componential analysis of the system of the meaning-signal mappings, an
us to generalise to the unseen meaning(1,2,2), and others.

In contrast to making such a componential analysis, we could simply memorise the associati
tween complete meanings and complete signals embodied in the fragment of compositional la
given inTable 1—meaning(3,3,3) maps to signaldef, meaning(3,3,2) maps toded, and so on. This is
the atomistic approach. In this case, due to our failure to make a componential analysis, we canno
alise to the signal associated with unseen meanings such as(1,2,2)—although the data we have observ
has structure, failure to analyse this data componentially means that generalisation is impossible

Whether or not a learner takes the atomistic approach, the componential approach, or altern
tween the two, depends on the relationship betweenα andδ in the learning rule used by that learn
Briefly:
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α > δ: Preference for the componential analysis. This gives the capacity to generalise.
α = δ: Neutral between the componential and atomistic approaches. This leads to inability to gen

reliably—while the componential approach may be used on one occasion to allow a ge
sation to be made, on another occasion the atomistic method may be used, leading to fa
generalise.

α < δ: Preference for the atomistic analysis. This leads to the inability to generalise.

α > δ is therefore a requirement which must be in place if a learner is capable of generalising,
should expect that this learner capacity is required if compositional languages are to evolve as s
the previous section. Note, however, that this capacity for generalisation does notguaranteethe emer-
gence of compositional structure—as shown in the previous section, even given a learner ca
generalising, compositionality will not emerge if there is no bottleneck on transmission. Further no
the preference for the componential analysis resulting fromα > δ does not mean that this approach w
be used if the data does not contain regularities.

What happens over time in an Iterated Learning scenario, where learners do not have the ca
generalise?Fig. 4shows the results of simulations for two learning rules:

• The standard rule, which supports generalisation:α = 1, β = −1, γ = −1, δ = 0. This was the rule
used in the previous section.

• A modified variant of this rule, incapable of reliably generalising:α = 1, β = −1, γ = −1, δ = 1.

Fig. 4. The importance of the capacity to generalise.



196 H. Brighton et al. / Physics of Life Reviews 2 (2005) 177–226

olution
ts learn
ttleneck.

cted, a

ted
sense,

ows
ottleneck.
guage

anguage
is is the
al
extent

th cer-
and the
earch in

l case,
ction

idual
ently

icher-
might
ak

n the
l
n, and

in
nguage
be the
xample,
mission
n could
d that
otion of
es in
For both sets of results inFig. 4 there is a bottleneck acting on transmission.
As shown inFig. 4, when learners do not have the capacity to generalise we no longer see the ev

of compositional languages—compositionality remains at random levels over time when agen
according to such rules, in spite of the pressure to generalise introduced by the transmission bo
This is in contrast to the behaviour when learners have the capacity to generalise arising fromα > δ,
also shown inFig. 4 for comparison. In other words, a learner capacity to generalise is, as expe
prerequisite for the evolution of compositional structure through cultural processes.

5.2. Learning strategies supporting communicative function

Up to this point we have only considered thestructureof the evolving languages, and demonstra
a link between the transmission bottleneck and the evolution of compositional structure. In a
compositionality isfunctionalfrom the point of view of languages themselves—compositionality all
a language or a subregion of a language to survive repeated passage through the transmission b
We have said nothing about an alternative notion of functionality—the functionality that a lan
provides to users of that language.

There are several ways in which language could be useful to language users. It could be that l
is useful in as much as it allows language users to communicate with other language users—th
type of functionality which, for example, Pinker and Bloom[73] suggest is responsible for the biologic
evolution of the human capacity for language. An alternative function of language could be the
to which it allows language users to signal their social identity, so as to affiliate themselves wi
tain social groups and dissociate themselves from others. This proposed function of language,
associated notions of prestige, covert prestige, and acts of identity, forms the basis of much res
sociolinguistics (e.g.,[54,94]).

Could functionality of this sort could also drive the evolution of linguistic systems? In the genera
Boyd and Richerson[7] argue that any culturally transmitted system can evolve under “natural sele
of cultural variants”, such that variants of cultural traits which maximise the probability of an indiv
surviving long enough to transmit their trait culturally and/or reproducing disproportionately frequ
and transmitting their variant to their offspring, will come to dominate in a population. Boyd and R
son provide a number of domains in which empirical evidence suggests that this kind of evolution
be observed, as do Mesoudi et al.[66]. Dealing specifically with language, the models of Martin Now
and colleagues (see[69] for review) reflect the assumption that reproductive fecundity impacts o
likelihood of individual’s linguistic system being culturally transmitted. Kirby[49] examines in detai
how linguistic function can affect linguistic structure through cultural processes, natural selectio
the interaction between culture and biological evolution.

In the results outlined in Section4, a consideration of communicative function played no role
the evolution of compositional languages—compositionality represents an adaptation by the la
itself to the pressure for generalizability introduced by the transmission bottleneck. It might also
case that compositionality proves to be functional from the perspective of language users. For e
the relative stability across generations of a compositional language, even in the face of a trans
bottleneck, may be useful for language users. As such, considerations of communicative functio
play a role in driving the evolution of compositionality, assuming that a bottleneck is present an
the capacity to generalise is in place and so on. However, there is no need to appeal to this n
functionality to explain the cultural evolution of compositional structure—compositionality evolv
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sible, as
response to the pressure introduced by the transmission bottleneck, and it is therefore unnec
invoke an explanation which appeals to the combination of a transmission bottleneck plus a pres
communication.

However, we have not yet addressed the functionality of the compositional systems which
under the pressure arising from the transmission bottleneck. It could be that these languages are
sitional in structure but useless in terms of communication, in which case there may indeed be a
communicative function to play in our explanation.

Our measure of communicative accuracy is given inAppendix A. Informally, communicative accu
racy between two individuals is the probability, averaged over all meanings, of one of those indiv
producing a signal for a given meaning, and the other individual interpreting the received signal
veying the same meaning that the speaker intended it to. This evaluates to 1 for communicatively
systems, and 1/|V F | for a random system. For the results presented here, communicative accu
measured across generations—it is an evaluation of the probability with which the individual from
erationsn andn + 1 will successfully communicate.11 A similar measure to the one used here is of
applied to an evaluation of communicative accuracy within generations, where each generation
of multiple individuals (see, e.g.,[44,71,86]). A within-generation measure of communicative accura
where an individual’s ability to communicate with itself using their signalling system, yields qualita
similar results to those given here using the across-generation measure.

Fig. 5 shows communicative accuracy over time, given the standard learning rule used in Se4
(α = 1, β = −1, γ = −1, δ = 0), in the bottleneck and no bottleneck conditions. In both cases, sys
which are optimal for communication emerge and remain stable. This reflects the convergence o
ventionalised meaning-signal mapping which is passed down intact from generation to generatio
in the presence of a transmission bottleneck. Note that the systems in the two experimental condi
structurally rather different—as demonstrated earlier, they differ in their degree of compositionalit
they both perform optimally in terms of communicative function. This is despite the fact that there
pressure for agents to communicate—individuals are not rewarded for more successful commun
and individuals do not take communicative function into account during learning.

What, then, drives the evolution of these optimal communication systems? The explanation m
side in the process of language learning—by a similar method to that used in the previous sec
can identify and experimentally vary the learning bias which leads to the evolution of optimal com
cation.12

It is worth considering the space of possible systems of meaning-signal mappings with a view
communicative function. Meaning-signal mappings can embody many-to-one mappings (a) (Table 2),
one-to-one mappings (b), or one-to-many mappings (c), regardless of whether we consider the s
the level of mappings between complete complex meanings and complete signals, or between p
feature values and signal substrings.

Many-to-one mappings, where several distinct meanings (or subparts of meaning) map to a
signal are suboptimal in terms of communication, because the intended meaning of the ambigu
nal cannot be reliably retrieved. The optimal communication systems which evolve in the simu
illustrated inFig. 5, as we might expect, do not contain many-to-one mappings.

11 Note, therefore, that an evaluation of communicative accuracy at the initial generation of the population is impos
there is no preceding generation to communicate with.
12 We would refer the reader to[84] for a similar analysis for the case of unstructured signalling systems
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Table 2
Various types of meaning-signal mapping

many-to-one one-to-one one-to-many

w
hole–w

hole

(3,2,1)

(3,3,3) def

(1,1,1)

(3,3,3) def

esox

(3,3,3) def

ef

part–part

(∗,2,∗)

(3,∗,∗) d∗∗

(∗,1,1)

(3,∗,∗) d∗∗

∗∗ox

(3,∗,∗) d∗∗

ef

The holistic languages which evolve in the absence of a transmission bottleneck, the system
many-to-one mappings at the level of whole meanings and whole signals—in no case is there a c
meaning which maps to the same complete signal as another complete meaning. For example, if
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(1,2,3) maps to signalcbb then no other meanings map to the signalcbb. There is no prohibition on
distinct feature values appearing to co-occur with particular signal substrings, as such part-part m
are not exploited by learners learning a holistic system.

In contrast, the compositional systems which evolve in the presence of a transmission bottlen
systems avoid many-to-one mappings at the level of individual features values and signal substrin
two values for a given feature map to the same signal substring. For example, in the compositio
guage inTable 1, feature 1 value 3 maps to string-initiald, and no other value for any other feature ma
to string initiald. A consequence of the absence of many-to-one mappings at this level, in comb
with the compositionality of the mapping, is the absence of many-to-one mappings at the level o
meanings and whole signals.

One-to-one and one-to-many mappings are unproblematic from the point of view of communica
in both cases the intended meaning can be retrieved from the observed signal. We might therefor
the evolved systems to contain examples of both one-to-one and one-to-many mappings. Howe
are in fact exclusively one-to-one—one-to-many mappings are not observed in the final systems.
return to this point in Section5.3.

What drives the elimination of many-to-one mappings from the evolving linguistic systems? Th
consequence of the learning bias of learners using the standard learning ruleα = 1,β = γ = −1, δ = 0—
learning according to this weight update rule biases learners against acquiring many-to-one ma
such that many-to-one mappings (either between complete meanings and signals or parts thereo
likely to be successfully learned than mappings which are not many-to-one.

As demonstrated in Smith[85], a learner’s bias with respect to many-to-one mappings depends o
relationship betweenγ andδ. Briefly:

δ > γ : Bias against many-to-one mappings—many-to-one mappings are less likely to be succ
learned.

δ = γ : Neutrality — many-to-one mappings are learnable.
δ < γ : Bias in favour of many-to-one mappings—systems involving many-to-one mappings are

likely to be successfully learned.

These learner biases introduce a further pressure acting on the language system during its
transmission, and language changes over repeated learning episodes in response to these lear
with mappings of the disfavoured types being eliminated. In the simulation results shown inFig. 5, the
learner bias against many-to-one mappings leads to the elimination of such mappings, with conv
on a stable, unambiguous linguistic system. Such a system allows optimal communication acros
ations.

The bias with respect to many-to-one mappings is independent from the capacity of a learni
to generalise. Recall from Section5.1 above that individuals learning using the ruleα = 1, β = −1,
γ = −1, δ = 1 are incapable of generalising (asα = δ), and consequently compositional systems do
emerge in such populations (recallFig. 4). However, this learning strategy results in learners disfavou
many-to-one mappings (asδ > γ ). Fig. 6shows the compositionality and communicative accuracy o
evolving systems in populations learning according to this rule, in both the bottleneck and no bot
conditions.

As expected, in both cases compositional systems do not evolve—the populations converge on
systems. However, those holistic systems offer some degree of communicative functionality. In t
a
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ttleneck
Fig. 6. Evolution of languages without the capacity for generalisation, but with a bias against ambiguity, in the no bo
(a) and bottleneck (b) conditions.
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Fig. 7. Evolution of languages with the capacity for generalisation, but without a bias against ambiguity.

where there is no bottleneck on transmission, optimal communication systems rapidly evolve. In t
where there is a bottleneck on transmission, communication systems evolve which give commu
accuracy of slightly less than 0.2—the functionality of these systems across generations is subop
due to their instability, but is still greater than chance, reflecting the one-to-one nature of that pro
of mapping which is stable across generations. In other words, in both conditions populations
learners evolve systems which are non-compositional (as they are incapable of generalising), bu
tend to embody a system of one-to-one mappings.

The converse dissociation, where learners are capable of generalising but not biased again
to-one mappings, is also possible. Learners using the ruleα = 1, β = −1, γ = 0, δ = 0 have such a
combination of biases.Fig. 7 shows the compositionality and communicative accuracy of the evo
systems in populations learning according to this rule, in both the bottleneck and no bottleneck
tions.

Given such a combination of biases, we might expect the emergence of a system which is co
tional (due to the learner capacity to generalise and the transmission bottleneck), but which onl
intermediate levels of communicative function (due to the lack of any learner bias against many
mappings). As can be seen fromFig. 7, such populations in fact converge on a linguistic system whic
useless for communication (in fact, maximally ambiguous, where every meaning maps to a single
and, in spite of their capacity for generalisation, non-compositional. This behaviour is a consequ
the interaction between the capacity to generalise and the neutrality with respect to ambiguity.

To see how this is so, consider a scenario where a population of learners learning according
a strategy is presented with a perfectly compositional, perfectly unambiguous language—this is
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scenario in the model, but is a useful example. In such a population, a many-to-one mapping b
parts of meaning and parts of signal will occur by chance (either due to the randomness in produ
a consequence of the transmission bottleneck, or due to noise). For example, suppose the target
is the perfectly compositional, unambiguousLc.

Lc = {〈{1,1},ac
〉
,
〈{1,2},ad

〉
,
〈{2,1},bc

〉
,
〈{2,2},bd

〉}
.

A learner exposed to the subsetL′
c will be capable of reconstructingLc via generalisation.

L′
c = {〈{1,1},ac

〉
,
〈{1,2},ad

〉
,
〈{2,1},bc

〉}
.

However, consider a learner exposed to the noisy subsetLnoise.

Lnoise=
{〈{1,1},ac

〉
,
〈{1,2},ad

〉
,
〈{2,1},ac

〉}
.

The learner has to decide what values 1 and 2 for feature 1 should map to. Should they bo
to a? Or should they map to distinct characters? Learners with the bias against many-to-one m
will select the latter option, and will generalise to produce a perfectly compositional (although p
changed) language, such asLnew.

Lnew = {〈{1,1},ac
〉
,
〈{1,2},ad

〉
,
〈{2,1}, fc

〉
,
〈{2,2}, fd

〉}
.

In contrast, a learners with no bias against many-to-one mappings will take the first option and
alise to produceLambiguous:

Lnoise=
{〈{1,1},ac

〉
,
〈{1,2},ad

〉
,
〈{2,1},ac

〉
,
〈{2,2},ad

〉}
.

This language is clearly ambiguous, and in particular the ambiguity has spread form the signal
ated with meaning(2,1) to the signal associated with(2,2). In this way, randomly-occurring ambiguitie
rapidly spread in populations of learners who are not biased against ambiguity but are capable
eralising. Note that the ambiguous system above isnot compositional, according to our measure—
ambiguity destroys the structure-preserving nature of the meaning-signal mapping, as different m
now map to similar signals.

The biases of language learners with respect to ambiguity (many-to-oneness) therefore inter
their capacity to generalise, or lack thereof, and impact on the structure and functionality of a popu
linguistic system. The results presented in this section show that a learner bias against ambigu
to a linguistic system which is communicatively functional. However, and perhaps more surpri
such a bias is also a prerequisite for the cultural evolution of compositional structure—without a
bias against many-to-one mappings, languages in which the structure of signals reflect the stru
meanings do not arise. As such, our explanation for linguistic structure also offers an explana
linguistic function—the model results presented here suggest that the prerequisites for composi
also deliver communicative function as a side-effect, without the necessity for any explicit press
communication.

5.3. Learning strategies supporting language learning

As discussed above, many-to-one mappings are inherently bad for communication, as the
duce ambiguity. In contrast, one-to-many meaning-signal mappings do not endanger communica
producer’s intended meaning can always be retrieved by a receiver who knows the system. W
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therefore expect learner biases with respect to one-to-many mappings to be irrelevant for the s
and function of a population’s linguistic system.

This proves not to be the case. As demonstrated in Smith[84], and in Smith[86] for the case of simple
signalling systems, a learner’s bias with respect to one-to-many mappings depends on the rela
betweenα andβ. Importantly, rules whereα > β have a bias against one-to-many mappings—th
the case with all learning rules used so far. The biases of rules whereα � β biases tend to be rath
idiosyncratic and depend on the values ofγ and δ, but generally speaking such rules are not bia
against one-to-many mappings and may indeed be biased in favour of such mappings.

Having a bias against one-to-many mappings turns out to be crucial if a system of meaning
mappings is to be learnableat all. To see that this is the case, consider the case where a learn
tempts to acquire a mapping between a single meaning and several signals. During learning the
observes the meaning paired with one of the possible signals. During production the learner m
decide which signal to produce for the meaning, given their observations. The sensible behavio
reproduce the observed signal—this is what learners using rules whereα > β tend to do. However, thi
behaviour implies a bias against one-to-many mappings—learning according to such a procedur
(defeasibly) discounting the possibility that the meaning maps to some other signal or signals. A
tive learning strategies, where all possible signals are produced with equal probability for the pa
meaning, or where some other signal or signals are produced for the meaning, result in failure t
duce the meaning-signal pair observed by the learner. As such, a bias against one-to-many ma
required if a linguistic system is to be learned. The consequence of this bias over cultural time
one-to-many mappings will be eliminated over time—in combination with a learner bias against
to-one mappings, this leads to emergent systems which map elements of meaning to elements
in a perfectly transparent, one-to-one fashion.

5.4. Learning bias in humans

The simulation results presented above highlights three elements of learning as being importa
evolution of linguistic structure:

(1) Learners must have the capacity to generalise.
(2) Learners must be biased against acquiring one-to-many meaning-signal mappings.
(3) Learners must be biased against acquiring many-to-one meaning-signal mappings.

Without (1) compositional structure cannot evolve. Without (2), a system of meaning-signal ma
cannot be acquired. Without (3), neither compositional nor communicatively functional linguisti
tems can evolve.13 However, given all three components, linguistic systems evolve which are func
both from the perspective of the linguistic system (the linguistic system is stable from generation
eration, even in the presence of a transmission bottleneck), and from the point of view of languag
(the linguistic system allows perfect communication between individuals).

13 At least without some further pressure for function, such as natural selection acting on cultural transmission. It
however, that linguistic evolution resulting from learner biases tends to drown out linguistic evolution driven by natural s
[86]. In other words, having the wrong learning bias makes it difficult to evolve functional communication systems t
cultural processes, even with explicit selection for communication.
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What biases do human language learners bring to the language acquisition task?
There is a body of evidence from the developmental linguistics literature which suggests tha

language learners do indeed possess the biases outlined above in (1)–(3)—this evidence is
briefly below. Children’s capacity to generalise is uncontroversial (Section5.4.1). The claim that human
language learners are biased against acquiring one-to-many meaning-signal mappings is suppo
good deal of evidence, and is more or less widely accepted (Section5.4.2). Research supporting the clai
that children are also biased against acquiring many-to-one mappings is at an earlier stage of
ment, but some recent experimental work suggests that such a bias may indeed be present (Sect5.4.3).

5.4.1. Capacity to generalise
Human language learners have the capacity to generalise. Indeed, it would be extraordinary w

not the case. Firstly, the capacity to exploit similarity structure in the environment in order to gen
to novel situations is a basic property of learning, certainly in connectionist architectures such
brain[37,79]. In other words, this is not necessarily a language-specific or indeed species-specific
ity. Secondly, the infinite expressivity of human language tells us that human language learnersmustbe
making generalisations over the data they observe—were language learning merely to proceed
orisation, with no generalisation, no human with a finite lifespan could come to command an infi
expressive language.

Thirdly, in addition to these general arguments, specific experimental evidence demonstrates
pacity of children to generalise in a linguistic context. In English, the plural form of nouns (excl
irregulars) is formed by the addition of a suffix-s to the noun stem, yielding, for example,dogsfrom dog.
Furthermore, the realization of the-s morpheme depends on the preceding consonant. The unmark
lomorph (variant) of-s is realized as /z/, as indogs. If the -s morpheme suffixes to a stem ending in
voiceless stop, it is realized as /s/, as incats. Finally, if the plural morpheme appears after a sibilant t
it is realized as /Iz/, as inhorses.

Berko[5] experimentally tested the ability of children to produce the plural forms of nonsense n
For example, the child was presented with a toy, told “This is a wug”, where “wug” is a nonsense
and then shown two such creatures and prompted “Here are two. . .”. As wugis a nonsense noun, invent
by the experimenter, we can be sure that the child will never have come across the plural form
noun. None the less, Berko found that children aged 4 to 5 can reliably produce the appropriat
form for such novel words—they are capable of generalising from observed plural forms to novel p
Furthermore, children produced the plural using the appropriate allomorph (/z/ in the case ofwugs), and
are therefore capable of making the relatively subtle generalisations involving the three allomo
the plural morpheme, although they were most successful with the more common /z/ allomorph a
successful with the /Iz/ allomorph.

5.4.2. Bias against one-to-many mappings
One-to-many mappings exist at several possible levels in natural language:

• At the level of the inflectional affix. For example, the three allomorphs of the English-s constitute a
one-to-many mapping from meaning (plural number) to form (/z/, /s/, or /Iz/).

• At the level of the free morpheme or word. For example, the English wordsdog, hound, andmuttare
(arguably) three forms which express the same meaning. One-to-many mappings at the lev
word usually termedsynonyms.
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• At the level of the sentence. For example “Charles gave the cake to Bethany”, “Charles gave B
the cake” and “Bethany was given the cake by Charles” express the same proposition, and a
phrases of one another.

Based on such instances of one-to-many mappings, we might conclude that human language
do not possess a bias against one-to-many mappings. However, the end-state of the language a
process does not necessarily give us a perfect insight into the biases at play during the process
sition. It is possible that child language learnersdo bring some bias against one-to-many mapping
the acquisition of language, but that competing pressures result in an adult competence which
one-to-many mappings. This in fact seems to be the case—while a full review of the historical a
velopmental linguistics literature is beyond the scope of this paper, we will present two types of ev
which show the existence of such a bias.

Firstly, there is a historical tendency for languages to loose one-to-many mappings over time
we would expect if language learners bring a bias against such mappings to the language ac
task. To give a specific example, whereas only-s suffixation for the plural is productive in modern En
lish, Old English had several productive possibilities, including-ensuffixation (as fossilised in moder
ox-oxen) and the umlaut marking (as in the moderngoose-geese). The transition from Old English t
modern-day English has involved a reduction in the number of different strategies for express
plural—a reduction in one-to-many mappings. More generally, Mańczak[59], based on a survey of his
torical grammars and etymological dictionaries, presents a number of “laws of analogical evoluti
morphological change, the first of which is that “[t]he number of morphemes having the same m
more often diminishes than increases”[59, p. 284]—languages tend to lose one-to-many mappings in
morphological system.There is historical evidence suggesting that language learners are biase
one-to-many mappings.

If this is rather circumstantial, more solid examples of a bias against one-to-many mappin
available. Markman and Wachtel[62], following Kagan[47], tested children’s behaviour on potentia
synonymous nonsense words. In Markman and Wachtel’s study, children were shown a single
object (for example, a plate) and an unfamiliar object (e.g., a radish rosette maker) and asked by
frog to “Show me the fendle” where “fendle” (or similar) is a nonsense word. Children reliably res
by giving or showing the unfamiliar object. Results from a control group study, where children
asked simply to “Show me one”, indicated that this preference was not due to a preference on th
children to respond with the unfamiliar object—children only exhibit such a preference when pro
with a novel word.

Markman[60–62]proposes that this behaviour is due to a Mutual Exclusivity (ME) bias in childre
“children should be biased to assume, especially at first, that terms [words] are mutually exc
and “each object will have only one label”[60, p. 188]. Note that this is not an inviolable principl
but a tendency or bias that can be overridden given sufficient evidence. The child in the task
reasons, via Mutual Exclusivity, that the novel wordfendlecannot refer to the familiar object, as th
would result in a one-to-many mapping (the plate object / concept would maps to two words,plateand
fendle). The child therefore infers that the new word must refer to the unfamiliar object, and res
appropriately. Mutual Exclusivity is a bias against one-to-many mappings between meanings a
nals.
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5.4.3. Bias against many-to-one mappings
As with one-to-many mappings, many-to-one mappings potentially exist at several levels in

language:

• Affixes. For example, the suffix-s in English expresses both plurality when suffixed to nouns,
present tense (among other things) when affixed to verbs—this is an instance of a many-to-o
ping between meaning (plural number or present tense) and form.

• Words. For example, the English wordbankexpresses several meanings, including: a financia
stitution (when used as a noun); the ground adjacent to a waterway (noun); and the action o
while turning (verb). Such ambiguous words are termedhomonyms.

• Sentences. A single sequence of words may be used to express several distinct proposition
consequence of containing homonymous lexical items, or as a consequence of being par
several ways. A classic example of the latter, structural, ambiguity is given by the sentence “T
saw the man with the telescope”, which can be used to express two distinct propositions: the
affairs where the boy uses the telescope to see the man, and the state of affairs where the ma
telescope.

As was the case with one-to-many mappings, the fact that examples of many-to-one mapp
easy to find in natural languages might make us pessimistic about finding a bias against such m
in language learners. However, once again the point stands that many-to-one mappings could
prevalent in the end-state of language learning, and indeed language evolution, in spite of a lear
against such mappings, as a consequence of competing pressures. One obvious competing pres
case of many-to-one mappings is the pressure for reuse of affixes and words. Given the necessa
capacity of human memory, and the additional pressures imposed by articulatory and acoustic
any learner bias against many-to-one mappings is unlikely to have reduced influence.

As was the case for one-to-many mappings, there is evidence that human language learners a
against acquiring many-to-one mappings from meanings to signals, although this evidence is rath
scarce. At the general level, Slobin claims, under the guise of the maxim “be clear”, (e.g.,[80–82]) that
children “strive to maintain a one-to-one mapping between underlying semantic structures and
forms” [81, p. 186]. Slobin explicitly links the prevalence of many-to-one mappings with difficulty
acquisition. To repeat Slobin’s example: the Serbo-Croat inflectional system is “a classic Indo-Eu
synthetic muddle. . . there are many irregularities, a great deal of homonymy, and scattered zero m
phemes”[81, p. 191]. Slobin suggests that such many-to-one mappings explain why the Serbo
system is mastered relatively late by child language learners.

More recently, and perhaps more promisingly, the types of experiments used to demonstrate
tual Exclusivity bias have been adapted and applied to the study of homonymous lexical items
experimental studies provide the strongest evidence, to date, that children are biased against a
many-to-one mappings from meaning to signal, at least on the level of lexical items. The origina
is detailed in Mazzocco[65], with a subsequent study by Doherty[35].

In Doherty’s study, children are presented with a story in which key word is used several time
context which is intended to give strong clues as to the meaning of that word. For example, on
relates to Hamish accompanying his mother to the zoo, the crucial passage running “At the zoo t
a strangeblas/cakefrom Brazil. Hamish thought theblas’s/cake’s long nose looked funny”[35, p. 213].
The key word is eitherblasor cake, with the form of the key word alternating between subjects.
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After exposure to the story, the children were shown a selection of photographs and asked
one is the [key word] in the story?”. In the case of the example above, the set of illustrations in
pictures of a cake and a tapir (a long-nosed South American mammal). Doherty found that child
highly successful at identifying the referent of the novel nonsense wordblas—the context of the stor
enables them to correctly identify this as referring to the tapir. However, children have low succes
in identifying the referent of the wordcakein this story. This word is used in a homonymous way
whereas the context of the story strongly suggests thatcakerefers to the long-nosed South Americ
mammal, children already know thatcakemeans a kind of food. As such, identifying the tapir as
referent ofcakein the story would mean accepting a many-to-one mapping from meanings to s
(the cake and tapir concepts would both map to the ambiguous wordcake). Children fail to identify
the referent of the homonymouscakebecause they are biased against many-to-one mappings
lexicon.

5.4.4. The origins of learning biases
The review above suggests that human language learners possess all the capacities/biases

computational model highlights as being key to the cultural evolution of compositional structure. In
words, our explanation linking compositional structure with linguistic evolution holds up when we
in more detail at the issue of the learning strategies which must be involved.

Why do humans have such learning biases? An intriguing possibility is that these biases have
because of the type of linguistic structure they underpin—in other words, the particular learning s
applied by humans to the language acquisition task has evolved because it yields a languag
is stable over time (despite of the transmission bottleneck), and communicatively functional.
hypothesis has been tested for the case of biases for the acquisition of simple signalling systems[44,86].

When considering the evolution of these capacities and biases in our own species, we might al
der to what extent these are present in other species—can the uniqueness of human language be
in terms of the uniqueness of these learning capacities to our species? The capacity to genera
most certainly not unique to humans, being (as discussed above) a general principle of systems th
Comparative evidence on the biases of non-human species with respect to one-to-many and man
mappings is rather scarce. However, such biases in human language learners are often descr
consequence of a sophisticated theory of mind (see[6] for review), probably unique to humans.

6. Compression, innovation, and linguistic evolution

The model of learning used in the previous section was geared toward exploring how learning
which have fairly obvious parallels in human language acquisition, impact on linguistic evolution.
section a model of learning based on a normative theory of induction (the minimum description
principle) is explored—rather than focusing on the learning task in terms of psychological prin
rooted in child language acquisition, the agents will instead induce the most likely hypothesis
hypothesis space, given some body of data. This allows us to test our theory of linguistic ev
using a theoretically well-grounded model of induction, and, additionally, refine our understand
the role of innovation in the evolution of linguistic structure. Innovation—production of novel lingu
structures—plays a role in the associative model outlined in the previous sections, but the proce
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induction and invention are intimately connected. In the model presented in this section, a more r
separation of induction and invention is possible.

The issue we now turn to concerns the following question: When are inductive generalisatio
tifiable? A feature of the models discussed so far is that so long as structure is present in the d
consider the learner justified in harnessing this structure, and making generalisations from it. Bu
policy always justifiable? If no readily interpretable constraints guide the inductive process, then
ally have no way of answering this question. To gain firmer theoretical support for the phenome
cumulative linguistic evolution, we need to understand the learning process in terms of a theory o
tion. Otherwise, we may be faced with the conclusion that linguistic evolution is only possible wh
consider learning algorithms with an inductive bias which is at odds with normative theories of indu

6.1. Learning based on a simplicity principle

Induction is the task of choosing a hypothesis from a setH = {H1,H2, . . .} in the light of some data
D. A central problem in achieving this task stems from the realization that, in the general case
will be infinitely many candidate hypotheses consistent with the data. To specify which hypoth
appropriate always requires some criterion on which to judge competing hypotheses. The minim
scription length (MDL) principle is one such criterion[55,77]. The MDL principle provides a means
judging, given a hypothesis spaceH and some dataD, which member ofH represents the most likel
hypothesis given thatD was observed. This judgement represents a point in a trade-off between
plexity and simplicity. An overly complex hypothesis which fits the data perfectly typically suffers
the problem of over-fitting: incidental or noisy characteristics are captured by the hypothesis a
taken to be features of the underlying distribution. An overly simple hypothesis, on the other han
suffer from under-fitting: the hypothesis may be too general and fail to capture the characteristic
data. The MDL principle provides a means of judging which hypothesis represents the best poin
simplicity/complexity trade-off. Importantly, this “best” position picks out the hypothesis which is
the most probable hypothesis and the hypothesis which leads to the shortest redescription of the

The crucial observation is that regularity in the data can be used to compress the data. Th
approach represents a general principle, in that it provides a means by which to judge competing
esis in contexts such as learning (e.g.,[78]) and model selection in the wider sense (e.g.,[41,74]). Of
great relevance to this discussion is the fact that MDL also features prominently as a principle in
standing hypothesis selection performed by the cognitive system on many levels[17,18] including that
of language acquisition[19,99]. In short, the minimum description length principle offers a theoretic
well-founded basis on which to perform hypothesis selection.

Formally, the MDL principle states that the most likely hypothesis is the one which minimises th
of two quantities. The first quantity is the length, in bits, of encoding the hypothesis. The second q
is the length, in bits, of the encoding the data, when represented using this hypothesis. To fo
this statement, we require an optimal encoding scheme for the hypotheses,C1, and an encoding schem
for data represented in terms of the hypothesis,C2. Furthermore, the only relevant issue for hypothe
selection is thelengthof these encodings:LC1 andLC2. Given the set of hypothesesH, and the observe
data,D, the MDL principle selects a member ofH, HMDL , as follows:

(4)HMDL = min
H∈H

{
LC1(H) + LC2(D|H)

}
.
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This expression states that the best pattern to explain the data is the one which, when chosen
the shortest coding of the data. The coding is achieved using a combination of the chosen hypothe
description of the data using this hypothesis. This is to say that, given the hypothesis and the des
of the data represented in terms of this hypothesis, the observed data can be described exac
that, in line with the discussion above, picking the smallest hypothesis—the hypothesis with the s
encoding length—will not necessarily achieve this goal. Small hypotheses may be too general a
to an inefficient recoding of the data. Similarly, a very specific hypothesis will describe the data ve
and fail to reveal the structural characteristics of the data, in the same way that atomistic ana
the associative model of learning failed to exploit structure in the data. The best solution repre
trade-off between these two poles, and the MDL principle tells us how to judge competing hypo
with respect to this trade-off.

To transfer this discussion into a model and test the impact of learning based on the MDL pr
requires us to construct a hypothesis spaceH, and coding schemes over these hypotheses. Recall th
data we refer to in this discussion are collections of utterances whose form is determined by the la
model introduced in Section3.2. One example is the following set of utterances,Lcomp:

Lcomp= {〈{1,2,2},adf
〉
,
〈{1,1,1},ace

〉
,
〈{2,2,2},bdf

〉
,〈{2,1,1},bce

〉
,
〈{1,2,1},ade

〉
,
〈{1,1,2},acf

〉}
.

In order to apply the MDL principle to the selection of hypotheses given some arbitrary series
terances, we consider a hypothesis space composed of finite state unification transducers, or14

[9]. These transducers relate meanings to signals by representing a network of states and tra
A number of paths exist through the transducer. Each path begins at thestart state. These paths alway
end at another privileged state termed theaccepting state. A path through the transducer is specified
a series of transitions between states; each of these transitions relates part of a signal to part of
ing. For example, consider the transducer shown inFig. 8(a). It depicts a transducer which represe
the languageLcomp. This transducer—termed theprefix tree transducer—corresponds to the maximal
specific hypothesis: it describes the data verbatim, and therefore does not capture any structur
in the language. It is the largest consistent hypothesis inH that can be used to describe the dataLcomp,
and onlyLcomp. Given a transducer and a signal, the associated meaning can be derived by follo
path consistent with that signal, and collecting the meanings associated with each transition take
ilarly, given a meaning, the signal can be derived by following a path consistent with the meanin
concatenating each symbol encountered along the path.

Given some observed utterances, the space of candidate hypotheses will consist of all FSUT
tent with the observed utterances. By consistent, we mean that the candidate hypotheses are alw
to generate, at a minimum, all the observed utterances. We are interested in situations within
transducer is capable of generating utterances for meanings it has never observed; in such a situ
transducer can be said to have generalised.

If structural regularity exists in the observed language the prefix tree transducer can be used t
further, more general, transducers that are also consistent with the observed data. Such deriva
achieved by applying compression operations on the transducer. Compression operators, when

14 A FSUT is a variation on the basic notion of a finite state transducer (e.g.,[43]). Our use of such transducers was inspi
by and extends the work of Teal and Taylor[91].
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s

Fig. 8. Given the compositional languageLcomp, the Prefix Tree Transducer shown in (a) is constructed. By performing edg
state merge operations, outlined in (b) and (c), the transducer can be compressed. The transducer shown in (d) is comp
does not lead to any generalisations. The transducer in (e) is fully compressed, and generalises toL+

comp. Note that ? indicate
a wildcard feature value.
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chosen
ble, can introduce generalisations by merging states and edges. Given a prefix tree transducer—
simply a literal representation of the observed data—only two operators,state mergeandedge merge, are
required to derive all possible consistent transducers. For the details of how states and edges are
as well as the details of the encoding schemesC1 andC2, we refer the reader to Brighton[9,10].

The important feature of the FSUT model, in combination with the MDL principle, is that compre
can lead to generalisation. For example,Fig. 8(b) and (c) illustrate some possible state and edge m
operations applied to the prefix tree transducer representingLcomp. The transducer resulting from the
merge operations is show inFig. 8(d). Fig. 8(e) depicts the fully compressed transducer, which is fo
by performing additional state and edge merge operations. Note that further compression opera
possible, but would result in the transducer becoming inconsistent with the observed language.

By applying the compression operators, all consistent transducers can be generated. Some
transducers will be more compressed that others, and as a result, they are more likely to genera
others. Note that ifLcomp was an instance of a random (holistic) language, then few, if any, compre
operations would be applicable; regularity is required for compression to be possible.

Generalisation can lead to the ability to express meanings which were not included in the ob
linguistic data. For example, a close inspection of the compressed transducer shown inFig. 8(e) reveals
that meanings which are not present inLcomp can be expressed. Theexpressivityof a transducer is sim
ply the number of meaning that can be expressed. The languageL+

comp, shown below, contains all th
meaning-signal pairs which can be expressed by the fully compressed transducer in the above e

L+
comp= {〈{1,2,2},adf

〉
,
〈{1,1,1},ace

〉
,
〈{2,2,2},bdf

〉
,
〈{2,1,1},bce

〉
,〈{1,2,1},ade

〉
,
〈{1,1,2},acf

〉
,
〈{2,1,2},bcf

〉
,
〈{2,2,1},bde

〉}
.

In this case, compression led to generalisation, and the expressivity of the transducer increas
6 meanings to 8 meanings. By compressing the prefix tree transducer, the structure in the comp
language is made explicit, and as result, generalisation occurs. Compression is not possible wh
ture is lacking in the observed data, and the result will be that meanings not included in the observ
cannot be expressed.

At this point it is worth highlighting how the FSUT model relates to the discussion of the on
one bias discussed in Section5.2. First consider that, in this model, a one-to-many mapping ca
occur as production is deterministic: even if multiple signals are consistent with a single meanin
one of these signals will ever be produced. Hence, a one-to-many relationship between mean
signals is not possible due to a bias imposed by the deterministic production mechanism. Sec
need to consider many-to-one mappings. Because the set of observed meanings is always a sa
maximally general coding of meanings (i.e., maximal use of wildcards) required to represent a m
one mapping will eventually be deviated from. Why is this? At some point the set of meanings sup
the many-to-one relationship will be under-represented such that the production of one or more m
of this set will be performed via invention. As a result, the language will deviate from the many-t
relationship. The bias in this model against many-to-one mappings is therefore a combination
sampling process imposed by the bottleneck, and the inductive bias. Here, we see how both the
induction and the model of production can influence the structural characteristics of evolved lang

We now have a hypothesis space over which we can apply the MDL principle. The hypothesis
by a learner in our model in light of dataD is the one with the smallest description length,HMDL . This
search for this hypothesis is performed using a hill-climbing search described in Brighton[10,11].



212 H. Brighton et al. / Physics of Life Reviews 2 (2005) 177–226

ased on
the

ts of the

ciative
ndom,

e initial
cording

eralise to
h through
we seek

hrough

are
6.2. The evolutionary consequences of the simplicity principle and random invention

With these model components in place, we are now in a position to assess whether induction b
the MDL principle within the Iterated Learning Model leads to linguistic evolution. We will focus on
case where there is a bottleneck on transmission, with only minimal changes to other componen
Iterated Learning Model.15

In the new model, each simulation run must be initialised with a random language. In the asso
matrix model detailed above, this was achieved by simply allowing the initial agent to produce at ra
according to their matrix of associations of strength 0. In the new model this is not possible, as th
agent has no FSUT to produce with. Consequently, a random initial language is generated ac
to the parameter values, and the initial agent learns based on this language.Fig. 9 shows the resulting
transducer. Note that negligible compression occurs, and as a result the transducer does not gen
novel meanings: 32 utterances were given as input, and each of these is encoded by a single pat
the transducer.. The language represented by the transducer is holistic and the linguistic structure
to explain is therefore lacking. Can a structured mapping which leads to generalisation evolve t
cultural adaptation?

Fig. 9. A transducerHMDL induced from a random initial language. Negligible compression occurs.

15 Parameter values:F = 3, V = 4, |Σ | = 20, lmax = 15, e = 32. Longer signals and a larger maximal signal length
possible in comparison to those used with the associative matrix representation.
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We must now consider a crucial aspect of the model which was largely side-stepped in the ass
network model presented in Sections4, 5: the issue of invention. Invention occurs when an agen
prompted to produce a signal for a meaning which it has no signal for—that is, the meaning w
observed in conjunction with a signal during learning, and also cannot be expressed as a resu
generalisation occurring due to compression. According to this definition, true invention never oc
the associative network model. In the associative model, the learner simultaneously maintains
weighted relationships between all possible meanings and all possible signals, including meani
signals not observed. As such, generalisation based on regularities in the data, and innovation
signal for a particular meaning are indistinguishable—both proceed via the same winner-take-all p
as a consequence of the weights in the system of associations. These innovations (generalisation
inventions) are therefore a consequence of the agent’s learning behaviour, with, for example
learning with a bias against many-to-one mappings tending to innovate in ways which avoid pro
such mappings.

The separation between inductive generalisation and true invention in the current model is
cleaner. For example, the transducer inFig. 9 can only express the meanings which were presen
the observed data. However, within the Iterated Learning Model, individuals will be required to e
meanings which were not in the set of utterances which they observed during learning, and w
therefore define an invention procedure. A number of invention strategies are possible—initially w
adopt a policy of random invention, where a random signal is generated for novel meanings.

Fig. 10(a), (b) depicts the process of a 200 generation run of the new model.Fig. 10(a) depicts com-
pression rate,α, as a function of iterations. The compression rate measures the relative size of the
tree transducer,Hprefix, and the chosen hypothesisHmdl, and is defined as:

α = 1− |Hmdl|
|Hprefix| .

Fig. 10. Linguistic evolution resulting from partially random invention.
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A high compression rate means that the language is compressible. As can be seen from th
the compressibility of the language changes very little over time—the initial random language und
no significant adaptation and remains unstructured and therefore uncompressible(α ≈ 0.06). Fig. 10(b)
highlights this fact, by showing the transitions through a state space depicting the expressivity
language as a function of the encoding length of the language. Here, we see that from the initi
labelledA and corresponding to the transducer depicted inFig. 9, the systems follows an unorder
trajectory through the sub-space of small inexpressive transducers. Because the language rem
structured, generalisation is not possible and expressivity remains low. Similarly, unstructured lan
cannot be compressed, and therefore the encoding length remains relatively high.

The key point here is that a cumulative evolution of structure does not occur as it did in Section4: the
model as it stands fails to match the predictions of our theory, or indeed our findings from the ass
learning model. The reason for this failure is that the mechanisms supporting linguistic evolu
language learning and language production—are somehow failing to lead to the cumulative evol
structure. In fact, the source of the problem is the way in which linguistic innovation via invent
modelled.

6.3. Invention based on simplicity principle

The MDL principle can tell nothing about the process of production—unlike the associative
of learning, the model of learning used here can tell us only which hypotheses should be induc
process of interrogating the hypothesis with novel meanings to yield signals is not fully defined, an
to be developed. Our first attempt at an invention mechanism—invention of random strings—pro
be in some way deficient.

To address this problem, a more principled invention mechanism is proposed, where the inven
nal is a derived using the induced hypothesis itself, rather than being constructed at random—in t
way that invention is achieved in the associative matrix model, the invented signal will be constrai
structure present in the hypothesis, which is in turn determined by the data observed during learn

The new invention method exploits the structure already present in the hypothesis by using tho
of the transducer consistent with the novel meaning to construct part of the signal. This appr
detailed in Brighton[10,11], but the essentials of the process can be summarised as follows. An inv
signal is selected such that the invented signal, if it were seen in conjunction with the novel m
during the learning phase, would not lead to an increase in the MDL of the induced hypothesi
invention procedure therefore proposes a signal which in some sense matches the structure of hy
If such a signal cannot be found, then no signal is produced. In short, the invention procedure, rat
being random, now takes into account the structure present in the hypothesis.

Fig. 11illustrates the process of a second Iterated Learning simulation, incorporating the new inv
procedure. this evolutionary trajectory is typical of such simulation runs. Strikingly,Fig. 11reveals a very
different evolutionary trajectory to that shown inFig. 10, as a consequence of the alternative inven
procedure.Fig. 11(a) shows a transition from low to high rates of compressibility.Fig. 11(b) illustrates an
entirely different trajectory through state space, one where a series of transitions lead to small, sta
expressive hypotheses. Starting at an expected expressivity of approximately 22 meanings (poinA), the
system follows an L-shaped trajectory. There are two distinct jumps to a stable state where we fin
hypotheses capable of expressing all 64 meanings. The induction and invention processes con
direct linguistic evolution toward compositional systems.
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Fig. 11. Linguistic evolution arising from the application of the intelligent invention scheme.

The first significant transition through the state space takes the system from the bottom-right en
L-shape (pointA) to the bend in the L-shape (pointsB andC), where expressivity increases slightly, b
the minimum description length of the language decreases by a factor of 3. From requiring approx
6000 bits to encode the evolving language, linguistic evolution results in transducers being induc
an MDL of approximately 2000 bits. The lack of increase in expressivity is a reflection of the trans
organising themselves in such a way that significant compression results, but an increase in exp
is not achieved. The second transition, leading to the top of the L-shape (through pointD to pointE), is
very different in nature. Here, for a small decrease in the MDL of the developing language, a sign
increase in expressivity occurs. This is an important transition, as it results in the system entering
region of the state space. Although a few deviations away from this stable region occur early
system settles into a steady state characterised by high expressivity.

Fig. 9(a) depicts the transducer corresponding to pointA in Fig. 11(b), while Fig. 12(a)–(d) depicts
the transducers at pointsB, C, D, andE. Fig. 12(a) represents the transducer corresponding to p
B. In this transducer, we see the beginnings of significant structure emerging. The first symbol
signal appears to discriminate between feature values in the second feature. This structural rela
acts as a seed for further discrimination, which will ultimately result in generalisation. Between
B and pointC, the evolution of the language becomes increasingly more evident. PointD, shown in
Fig. 12(c), corresponds to a transducer where further discrimination occurs, and certain meani
be expressed even though they were not observed—significant generalisation is occurring.Fig. 12(d)
illustrate the occurrence of further discrimination and generalisation, as the state of the system cl
to and moves around a stable region of the state space.

This second model again demonstrates how the mechanisms of induction and production can
the evolution of generalisable, compositional structure. This is made possible by linguistic evid
utterances—coding information that determines the induction of a hypothesis capable of genera
where the linguistic evidence comes to have this structure as a consequence of those same mech
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Fig. 12. Languages arising during linguistic evolution driven by MDL induction and intelligent invention. In (a), struc
evident as certain paths merge. In (b), an intermediate stage is shown where significant compression is evident but gen
is not possible. In (c), (d) further compression is possible, and novel meanings can be expressed.
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induction and production. The new model highlights the fact that learning is just one of the mech
driving linguistic evolution: the issue of production and, in particular, invention, plays a key role.

6.4. Historical accidents and the evolution of structural complexity

Before moving on to discuss the nature of language as an evolutionary system in more genera
it is worth considering the nature of stable states in this model, as they provide examples of the lin
complexity not seen in the associative model.Fig. 13shows two stable states.Fig. 13(a) depicts a trans
ducer for a meaning space defined byF = 3 andV = 2 along with the grammar,G1, which describes
how signals are constructed for each of the 8 meanings. Similarly,Fig. 13(b) depicts the transducer an
the corresponding grammar,G2, for a meaning space defined byF = 3 andV = 3 which comprises 27
meanings.

Optimal transducers, those with the lowest description length given the parameter values, a
where a single symbol is associated with each feature value of the meaning space. Even though
mum description length principle would prefer these transducers, they do not occur in the model.
inspection of the transducers shown inFig. 13demonstrates that features are coded inefficiently: vari
length strings of symbols are used, rather a single symbol, and some feature values are associ
redundant transitions which carry no meaning. InFig. 13, for example,all meanings are expressed w
signals containing a redundant symbol (the second symbold). These imperfections are frozen acciden
the residue of production decisions made before stability occurred. The imperfections do not have
mental impact on the stability of the language, and they therefore survive repeated transmissio
being part of the compositional relationship coded in the language. This phenomenon is an exa
how the process of linguistic evolution leads to complexity which is not a direct reflection of the
ing bias: transducers with lower description length exist. The evolved transducers serve the fun
stability despite this deviation from the “optimal” transducer, and this is why such languages pers

7. Conclusion: Language as an evolutionary system

An essential distinction underlying the picture developed so far contrasts thecapacity for language
with languages themselves. Without doubt the capacity for language is a biologically determined c
petence, and this competence is specific to humans. Languages themselves, on the other han
biologically determined in the same sense: they result from an interaction between the capacity
guage and the linguistic environment. When we talk about languages themselves we refer to a p
relationship between meanings and signals. When we talk about the capacity for language we
a computational system that processes languages. Maynard Smith and Szathmáry argue tha
netically determined capacity for language was the foundation on which the eighth major trans
evolution was based. This transition allowed information transmission to occurthrough language: lan-
guages provide a substrate for the transmission of information. How can this be? Like DNA, lan
provides a system for composing an indefinite number of messages from finite means:

Both the genetic and linguistic systems are able to transmit an indefinitely large number of me
by the linear sequence of a small number of distinct units. In genetics, the sequence of fou
enable the specification of a large number of proteins, and these, by their interactions, can
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Fig. 13. Two evolved languages: (a) shows a transducer, and the corresponding grammar, containing redundant t
variable length signals, and several syntactic categories; (b) shows a language with variable length substrings.

an indefinitely large number of morphologies. In language, the sequence of some 20 or 30
unit sounds, or phonemes, specify many words, and the arrangement of these words in gram
sentences can convey an indefinitely large number of meanings[64, p. 139].

This system of information transmission was novel in the sense that it introduced a entirely di
physical medium over which information could be transmitted (see[63, p. 12]). The information trans
mitted by language, according to this view, is not information relating to the essential characteri
language itself, but rather informational structures that are expressedusing language. Maynard Smit
and Szathmáry envisage language as transmitting a message which carries information abou
artifacts such as traditions, religions, and so on:
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It is impossible to imagine our society without language. The society we live in, day and night, de
on it [. . . ] on detailed social contracts, which could not exist without language[64, p. 149].

This is the complexity which they seek to explain, which it turn depends on the complexity of lan
and its provision of a system in which indefinitely many meanings can be expressed. Put simply, la
is the mode of information transmission which allowed the evolution of complexity in human cultu

In contrast, in this paper we have focused on the information that language carriesabout its own
construction. Any behaviour that is transmitted through iterated learning must, whatever else it
provide information to learners sufficient for that behaviour’s survival over time. It is this fact that i
to understanding linguistic transmission in an evolutionary sense. Ultimately, iterated learning le
adaptation.

Recall that the transmission of language is subject to constraints; the channel through which lin
information is transmitted is restricted. Constraints such as the transmission bottleneck determ
kind of information that can be transmitted successfully. As a result, the transmission bottleneck
an evolutionary dynamic—certain kinds of information (linguistic structure) can survive the transm
bottleneck whereas others cannot.16

To illustrate this point, consider the experiments discussed in Sections4 and 6. Here, data drawn
from a compositional mapping between meanings and signals codes linguistic information that
transmitted successfully. But why is this? In general, data conforming to some regular pattern, su
compositional relationship, can justify a general statement about the data. The statement can be
in the sense that it identifies a relationship which extends beyond observed instances to includ
unseen data. Contrast this situation with one where the data does not conform to any regular
Here, the induction of a general statement or pattern would not, by and large, be justifiable.

The crucial issue here is that general statements or patterns are consistent with many bodie
dence, while specific patterns are not. Consequently, these general patterns are re-codeable usin
data: the same pattern can justifiably be induced despite support for this pattern coming from a d
body of data.

Why is this important? As long as there is a limit on the data available to the learner—as lo
there is a transmission bottleneck—the more general a pattern is, the more likely it is to be tran
successfully. Given variation in the degree to which information can successfully be transmitted,
rightly talk of certain information coded in a language as being adaptive to the problem of ling
transmission. This observation forms the basis for the claim that languages adapt to be transmiss
have seen this in the models presented in this paper. Over the course of many generations, the
changes as it is transmitted, and we see an evolution from unstable languages to stable ones.

One way to understand this process of adaptive evolution is from the perspective ofcompetition. We
can think of the data available to the learner as a finite resource—a window within which a ling
generalisation or regularity must be expressed if it is to survive. Crucially, there are likely to be
different regularities that must compete for this resource.

It is clear from the simulation models discussed in Sections4 and 6that, even given these restrict
models of language, the information coded in linguistic data and interpreted by the language

16 It should be stressed, however, that the iterated learning models presented here demonstrate that linguistic structuis notan
inevitable outcome of iterated learning. The presence of transmission bottleneck, and particular kinds of bias in both
and production, are examples of constraints that must be in place.
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potentially encodes more than one system of regularity. There are several ways in which this ca
case.

Firstly, the data in interaction with the learning device may encode a system of regularity whic
ers some subpart of the overall system of meaning-signal mappings. As such, a language can
of several systems of regularity. Such a situation is common-place in natural language. As me
earlier, the system for forming the plural in Old English consists of several systems of regulari
-s, -en and umlaut systems), each responsible for some subpart of the mapping between mean
signal. To take another example, Latin has five nouns declensions: every noun belongs to one
noun declensions, and each declension has an associated system of case endings. These syste
endings are regular but, importantly, differ across declensions. Thus we seecompeting systems of reg
larity in natural language, and we see similar competition between generalisations during the ev
of linguistic structure in the models presented in this paper.

The examples above occur when two or more systems of regularity compete for essentially th
role. However, language also embodies multiple systems of regularity which are coexistent, rath
competing, but which are intimately and reciprocally connected. For example, the rich case stru
Latin, through phonological change, became ambiguous during the history of French. As a resul
ambiguity, development from Old to New French saw the abandonment of the case system in fa
word order[93]. Changes in a language’s phonological system often have a cascade of conse
for other parts of the linguistic system—a change in one system of regularity results in a chan
system of regularity operating at another level. Such examples, where small changes lead to su
restructuring, is a characteristic feature of the process of language change. Such interactions
observed in the types of models presented here, where linguistic structure is essentially mode
single level, but models could be designed specifically to address such questions.

Finally, one system of regularity may be subsumed within another. For example, the structura
larity in English that Verb precedes Object inside the verb phrase is subsumed within the genera
that the word order of English is Subject-Verb-Object. A clear analogue of this type of multiple regu
is witnessed in the evolutionary trajectories of languages in our models. For example, a system
meaning fragment(3,3,∗) maps to string-initialde, meaning fragment(3,2,∗) maps to string-initialda
and so is subsumed in a system where(3,∗,∗) maps to string-initiald, (∗,2,∗) maps to string-seconde
and so on. In this case, the level of regularity which wins out—which is actually utilised by the ling
agents—is determined by factors such as the transmission bottleneck. Less general regularities
to be replaced by wider-ranging regularities.

In addition to these multiple systems of regularity evolving, competing and interacting, differen
tems may evolve at different speeds. We see this occurring in, for example,Fig. 11(b), where the secon
feature of the meaning space (dealt with by the first two transitions of the transducer) is at an ad
stage of regularity in comparison to the other two features. This observation demonstrates that,
very simple models of language, we must consider the message being transmitted as a composite
relating to more than one system of regularity. Given a model of language capable of capturing
range of linguistic phenomenon, and without doubt in the case of natural language, the mess
be a significantly more complex: multiple systems of regularity will vie for transmission, and indir
influence the transmission success of still other systems of regularity.17

17 See Brighton and Kirby[13] for a model that makes this kind of competition overt.
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Fig. 14. How the mechanisms driving biological evolution and linguistic evolution differ in the manner in of transm
Biological evolution proceeds through the direct, but selective, replication of DNA. Linguistic evolution transmits inform
through the twin processes of speaking (translation) and learning (reverse translation).

The process of linguistic evolution, in the light of this argument, might be understood in ter
the differential replication of multiple systems of regularity. Those adopting the memetic approac
precisely this route, seeking to identify the units of cultural evolution (“memes”), and viewing cu
evolution as an instance of a more general Darwinian process (see, e.g.,[2,33]).

Are we then close to finding a strong, and potentially fruitful, analogy between linguistic and g
evolution, as suggested by memeticists? Or do there remain theoretically-significant differences b
these two evolutionary processes, which justify a separate treatment?

One of the problems with a direct analogy is that there are fundamental differences in the mec
of replication in each case.Fig. 14 illustrates this point. DNA persists by a process of direct copy
governed by a selective mechanism that prunes lines of inheritance. Linguistic knowledge, on th
hand, must persist through a repeated cycle of production and induction. We can think of the tas
learner as akin to that of the reverse engineer, trying to figure out what the blueprints are for a
while only being able to look at its behaviour. In the system of biological evolution there is no
reverse engineer—the blueprints are passed on directly every generation.

The consequences of this difference are profound. Whereas the engine driving biological ad
is the survival and reproductive success of the organism in the environment, linguistic evolution
from the mechanisms of replication themselves. A linguistic regularity survives because it has pro
that make its faithful replication easy. The survival of a set of genes has little to do with its replica
and everything to do with features of the organism those genes code for.

It is interesting to note that these fundamental differences are not immediately obvious when w
at the behaviour of the two kinds of evolutionary system. In particular, much of the time it seems e
reasonable to treat linguistic evolution as a process driven byselectionjust as genetic evolution is.
two linguistic rules are competing to be expressed in the limited data available to the learner, a
one is successfully induced, perhaps because it was relevant to a larger range of meaning, is t
perfect example of selective evolution? The problem with this approach is that there may be time
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competition leads to the induction of totally new rules in one step. Linguistic paradigms can c
through a process of “reanalysis”, the output of a number of different rules can lead to the origi
new rule that subsumes them all—indeed, this process is fundamental to the evolution of incre
general regularity in the iterated learning models we have described.

Recognising that linguistic transmission leads to adaptive linguistic evolutionand that this evolution
has important differences from other evolutionary systems is, we believe, the first step to a tr
planatory account of why language is the way it is. Computational and mathematical models of i
learning offer a principled way of exploring the properties of this adaptive system, helping us unde
how our biologically-provided learning biases shape linguistic evolutionary dynamics, and how
dynamics ultimately give rise to the complex structure that is the hallmark of human language.

Appendix A. Measuring compositionality and communicative accuracy

A.1. Measuring compositionality

As discussed in the text, a compositional language is one in which the meaning of a signal is a f
of the meaning of its parts and the way in which they are combined. One consequence of this
compositional languages aretopographicmappings between meanings and signals[51]. Neighbouring
meanings will share structure, and that shared structure in meaning space will map to shared str
the signal space. Consequently, meaning which are near one another in the meaning space (acc
some measure of semantic distance) will tend to map to signals which are near to one another
space.

For example, the sentencesJohn walkedandMary walkedhave parts of an underlying semantic re
resentation in common (the notion of someone having carried out the act of walking at some poin
past) and will be near one another in semantic representational space. This shared semantic struc
to shared signal structure (the inflected verbwalked)—the relationship between the two sentences in
mantic and signal space is preserved by the compositional mapping from meanings to signals. A
language is one which does not preserve such relationships—as the structure of signals does n
the structure of the underlying meaning, shared structure in meaning space will not necessarily
shared signal structure, and consequently holistic mappings will not preserve topography.

The compositionality measure used in this paper captures this notion, and is based on the
developed in Brighton[8] for Euclidean meaning and signal spaces. The measure of compositio
is simply the degree of correlation between the distance between pairs of meanings and the
between the corresponding pairs of signals. In topographic mappings there will be a positive cor
between the distance between pairs of meanings and the distance between the corresponding
signals. If shared structure does not necessarily lead to shared signal structure then there w
correlation.

In order to evaluate the compositionality of an agent’s communication system, the production p
is applied to everym ∈ E to produce the setO, the observable meaning-signal pairs produced by
agent. In order to measure the degree of compositionality we measure the degree to which the d
between all the possible pairs of meanings correlates with the distances between their associa
of signals. More formally, we first take all possible pairs of meanings〈mi,mj �=i〉, wheremi ∈ M and
mj ∈ M. We then find the signals these meanings map to in the set of observable meaning-sign
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O, 〈si, sj 〉. This will give us a set ofn meaning-meaning pairs and a set ofn signal-signal pairs. Le
�mn = HD(mi,mj ) be the Hamming distance18 between the two meanings in thenth pair of meanings
and �sn = LD(si, sj ) be the Levenstein distance19 between thenth pair of signals. Furthermore, le

�m =
∑n

i=1 �mn

n
be the average inter-meaning Hamming distance and�s =

∑n
i=1 �sn

n
be the average inte

signal Levenstein distance. We can then compute the Pearson correlation coefficient for the dista
〈mn, sn〉, which gives the compositionality of a set of observable behaviour,C(O):

C(O) =
∑n

i=1(�mi − �m)(�si − �s)√
(
∑n

i=1(�mi − �m)2
∑n

i=1(�si − �s)2)

,

C(O) ≈ 1 for a compositional system andC(O) ≈ 0 for a holistic system.

A.2. Measuring communicative accuracy

An individual’s A matrix therefore defines that individual’s production behaviourp and reception
behaviourr . If p is interpreted as a probabilistic functionp(sj |mi), which gives the probability of pro
ducing signalsj given meaningmi , andr is similarly interpreted as a probabilistic functionr(mi |sj )

then the communicative accuracy between a speakerP using production functionp(s|m) and a hearerR
using reception functionr(m|s) is given by:

(A.1)ca′(P,R) =
∑|M|

i=1

∑|S|
j=1 p(sj |mi) · r(mi |sj )

|M|
assuming all meanings are equally frequent and equally important. In other words, the commu
accuracy between speakerP and receiverR is the average probability of the speaker producing a si
for a given meaningms , and the hearer interpreting the received signal as meaningmh = ms . The two-
way communicative accuracy between two individualsA andB acting in turn as speaker and heare
then:

ca(A,B) = ca(A,B) + ca′(B,A)

2
.

This is the measure of communicative accuracy employed throughout the paper.
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