
Compositionality, Linguistic Evolution, and Induction by
Minimum Description Length

Henry Brighton

1 Introduction

The following question is crucial to both linguistics and cognitive science in
general: How can we go about explaining why language has certain structural
properties and not others? The dominant explanation proposes that constraints
on linguistic variation – universal patterns found in language – are a direct re-
flection of properties of a genetically determined language faculty (eg., Chom-
sky, 1965, 2002). Compositionality is one such universal characteristic of lan-
guage. The dominant explanation suffices if we regard the process of language
acquisition to be in no way a process involving inductive generalizations. This
is to say that the essential characteristics of language are not learned in any
meaningful sense, as they are not the product of inductive generalizations made
from linguistic data. This conjecture depends in large part on what is known
as the argument from the poverty of the stimulus (APS) which states that the
data required to make the appropriate inductive generalizations is simply not
available to a child during language acquisition (eg., Wexler, 1991).

Despite the dominance of this theory, the assumption that linguistic univer-
sals are in no sense acquired as a result of inductive generalizations is contro-
versial: the APS is only conjecture, and is in opposition to several alternative
theoretical standpoints and empirical studies (eg., Cowie, 1999; Pullum and
Scholz, 2002). In the discussion that follows, I consider how deviation from
the extreme position suggested by the APS poses a problem when explaining
linguistic universals such as compositionality. To address this deficiency, the
following discussion considers an alternative explanation for the occurrence of
compositionality in language. The validity of this alternative is tested using a
computational model. In particular, I will argue that compositionality in lan-
guage is not a direct reflection of our genetic endowment, but is instead funda-
mentally related to the way language is learned and culturally transmitted (see
also Deacon, 1997; Christiansen and Kirby, 2003; Brighton et al., 2005). Cen-
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tral to this explanation is the role of inductive inference. For this reason, the
computational model discussed below employs a model of induction based on
the minimum description length principle (Rissanen, 1978, 1989).

2 Issues in Explaining Linguistic Universals

Language is a particular system of relating sound and meaning. Individual lan-
guages achieve this relationship in different, but tightly constrained ways. That
is to say that variation exists across languages, but the object of study for many
linguists are the common structural hallmarks we see across the worlds lan-
guages. Why do all languages share these properties? Among those interested
in language, a widespread hypothesis is that these intrinsic properties of lan-
guage are, like the visual system, an expression of the genes (eg., Chomsky,
2002). To support this view, we can note that children master complex features
of language on the basis of surprisingly little evidence. In fact, as we have seen,
the APS is a conjecture stipulating that the knowledge of language children
attain is surprising precisely because it cannot be derived solely from informa-
tion made available by the linguistic environment (eg., Chomsky, 1965; Wexler,
1991; Cowie, 1999; Pullum and Scholz, 2002).

The modern debate on the innateness of language is dominated by the notion
that the framework for linguistic development is innate, with the linguistic envi-
ronment serving to supply information that steers an internally directed course
of development. In this sense, languages themselves (eg., Spanish, Mandarin
Chinese) are not encoded entirely in the genes, but the fundamental, abstract
properties of language are. How can we gain an understanding of these innately
specified hallmarks of language? Linguistics, by conducting a thorough analysis
of the world’s languages, proposes a set of descriptive statements which capture
these hallmarks of language. For example, the linguist may identify proper-
ties common to all languages they encounter, properties that occur according to
a certain statistical distribution, or implicational hierarchies of properties that
fit with known languages. Collectively, such descriptive statements constitute
a theory of language universals (eg., Comrie, 1989; Croft, 1990; O’Grady et
al., 1997). Linguistic universals define the dimensions of variation in language.
Modern linguistic theory rests on the assertion that it is these dimensions of
variation that are genetically determined.

As an explanatory framework this approach to explaining why language ex-
hibits specific structural characteristics is very powerful. One aspect of its
strength is that by coupling universal properties of language tightly to a the-
ory of innate constraints our analysis of the structural hallmarks of language
must center on a wholly psychological (ie., cognitive, mentalistic, or internal-
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ist) explanation. As a consequence, by understanding those parts of the human
cognitive system relevant to language we can understand why languages have
certain structural characteristics and not others. With respect to understanding
language, our object of study has been circumscribed to encompass a physical
organ: the brain. Hence, the relationship between descriptive statements of uni-
versal properties of language and an explanatory statements of why language is
this way are therefore largely transparent.

As we have seen, this position is largely substantiated by the argument from
the poverty of the stimulus. One outcome of this hypothesis is that children do
not learn language in the usual sense, but rather they acquire it as a result of
the internally directed processes of maturation. For example, Chomsky states
that “it must be that the basic structure of language is essentially uniform and
is coming from inside, not from outside” (Chomsky, 2002). The claim that lan-
guage is not learned causes a great deal of controversy and will impact heavily
on the discussion to come. Nevertheless, to characterize the traditional position,
we should note that language is often considered part of our biological endow-
ment, just like the visual system. The intuition is that one would not want to
claim that we learn to see, and the same way, we should not claim that we learn
speak.

Language Learning Under Innate Constraints

Linguistic nativism is far from accepted in the extreme form presented above
(for insightful discussion, see Cowie, 1999; Jackendoff, 2002; Culicover, 1999).
A less extreme alternative to this hypothesis is that the structure of language, to
some extent, is learned by children: humans can arrive at complex knowledge
of language without the need to have hard-wired (genetically determined) ex-
pectations of all dimensions of linguistic variation. This is the view I we will
adopt throughout this article. I assume that to some degree language is learned
through inductive generalizations from linguistic data, but to what degree it is
learned is unclear. My position is therefore at odds with Chomsky’s positional
that knowledge of language goes “far beyond the presented primary linguistic
data and is in no sense an ‘inductive generalization’ from these data.” (Chom-
sky, 1965). What evidence can we draw on to resolve this debate? Frustrat-
ingly, there is little concrete evidence either way; linguistics lacks a rigorous
account of which (if any) aspects of language are acquired on the basis of in-
nate constraints (Pullum and Scholz, 2002; Culicover, 1999). This debate is
often reduced to statements such as “linguistic structure is much more complex
than the average empiricist supposes” (Wagner, 2001), and claims that “the at-
tained grammar goes orders of magnitude beyond the information provided by
the input data” (Wexler, 1991). These claims are backed up with specific exam-
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ples designed to show how children’s knowledge of language extends beyond
what the data suggests (eg., Kimball, 1973; Baker, 1978; Crain, 1991; Lidz et
al., 2003; Lidz and Waxman, 2004). Nevertheless, many still argue that the re-
quired information is in fact present in the linguistic data (Pullum, 1996; Pullum
and Scholz, 2002), and to claim that it is not is “unfounded hyperbole” (Samp-
son, 1989). These rebuttles of the argument from the poverty of the stimulus
are often based on the notion that “[l]earning is much more powerful than pre-
viously believed” (Bates and Elman, 1996). It should be noted that this stance
in no way denies that fact language has an innate biological basis. Only humans
can acquire language, so any theory of language must consider an innateness
hypothesis of some form. The real issue is the degree to which language acqui-
sition is a process of induction from data within constraints (Elman, 2003). In
the light of this debate, I will make an assumption that will be carried through
the remainder of the article: If we deviate from the position that language ac-
quisition in no sense involves inductive generalizations (ie., question the APS),
then we must acknowledge that the linguistic environment must supply infor-
mation. This information impacts on how universal properties of languages, like
compositionality, are represented and processed within the cognitive system.

Towards an Evolutionary Explanation

The thrust of this discussion rests on the realization that the degree to which
language is learned through a process of inductive generalization has a pro-
found affect on the character of the explanatory framework we use to under-
standing why language has the structure that it does (Brighton et al., 2005).
Why is this? If induction plays a role in determining knowledge of language,
then environmental considerations must be taken seriously; any linguistic com-
petence acquired through learning will be determined to a significant degree by
the structure, or information, present in the environment. The environment must
be supplying structural information in order for induction to occur. To achieve
explanatory adequacy we must now explain why the environment is the way it
is: How did this information come to exist? To address this issue I will argue
for an evolutionary perspective, and seek to explain how, from a non-linguistic
environment, compositional structure can develop through linguistic evolution.
In short, this view casts doubt on the view that the hallmarks of language are,
as Chomsky states, “coming from inside, not from outside.” Necessarily, if in-
ductive generalizations made from data contained in the environment determine
the kind of linguistic structure we observe, then a wholly psychological theory
of linguistic structure must be inadequate.
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3 Linguistic Evolution Through Iterated Learning

Languages are transmitted culturally through, firstly, the production of utter-
ances by one generation and, secondly, the induction of a grammar by the next
generation, based on these utterances. This cycle, of repeated production and in-
duction, is crucial to understanding the diachronic process of language change
(eg., Andersen, 1973; Hurford, 1990). Focusing on this process of linguistic
transmission, several computational models have demonstrated how phenom-
ena of language change can be understood in these terms (Clark and Roberts,
1993; Hare and Elman, 1995; Niyogi and Berwick, 1997). The study of lan-
guage change seeks to understand how full-blown human languages undergo
structural change over time. For example, these models could an inform an
enquiry into the morphological change that characterized the transition from,
say, Latin to French. Of more importance to this discussion are studies that
focus specifically on the linguistic evolution of linguistic complexity from non-
linguistic communication systems (Batali, 2002; Kirby 2002, 2001; Brighton,
2002; Smith et al., 2003b). It should be noted, therefore, that linguistic evolu-
tion is a process that drives both evolution and change in language. Studies of
language evolution are concerned with the origin of linguistic structure found
in human languages while studies of language change are concerned with how
such languages alter over time. Much of the work focusing on the evolution
of language through linguistic evolution has been consolidated under a single
computational modeling framework termed the iterated learning model (Kirby,
2001; Brighton, 2002; Smith et al., 2003a,b). In this article I will use an iterated
learning model to demonstrate the evolution of compositionality. This model
will be based on a contemporary theory of induction known as the minimum
description length principle.

An iterated learning model is composed of a series of agents organized into
generations. Language is transmitted through these agents: the agents act as
a conduit for language. For a language to be transmitted from one agent to
another, it must externalized by one agent (through language production), and
then learned by another (through language acquisition). An agent therefore must
have the ability to learn from examples of language use. Learning results in the
induction of a hypothesis on the basis of the examples. This hypothesis repre-
sents the agent’s knowledge of language. Using the hypothesis, an agent also
has the ability to produce examples of language use itself. Agents, therefore,
have the ability to interrogate an induced hypothesis to yield examples of lan-
guage use. Within this general setting, we can explore how the process of lin-
guistic evolution is related to the mechanisms of hypothesis induction (language
acquisition), and hypothesis interrogation (language production).

A language is a particular mapping between a meaning space and a signal
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space. Meanings are often modeled as compound structures such as feature
vectors or logical expressions. Signals are usually serial structures, such as a
string of symbols. Knowledge of language (a hypothesis) is a representation of
this mapping. This representation could be modeled by any one of a number of
computational models of inductive inference. The basic iterated learning model
considers each individual agent in turn. Throughout this article I will consider
the case when each generation contains only one agent. The first agent in the
simulation, Agent 1, is initialized with knowledge of language, h1, the precise
nature of which will depend on the learning model used. This hypothesis will
represent knowledge of some language Lh1 . Agent 1 then produces some set of
utterances L′

h1
by interrogating the hypothesis h1. This newly constructed set

of utterances will be a subset of the mapping (language) Lh1 . These utterances
are then passed to the next agent to learn from. Once the language has been
transmitted from the first to the second agent, the first agent plays no further
part in the simulation. The simulation proceeds by iteratively introducing a
new agent to transmit the language. Each agent represent one generation, and
the experiment is run for some number of generations. The important point is
that, under certain conditions, the language will change from one generation
to another; it will evolve and undergo adaptation. This process is illustrated in
Figure 1.

One crucial driving force behind linguistic evolution is the transmission bot-
tleneck, which imposes a constraint on how languages are transmitted. The
transmission bottleneck reflects, as a constraint within the model, the fact that
natural languages cannot be transmitted in totality from one individual to an-
other. Linguistic data is never exhaustive; it is always sparse. For example,
in the case of natural language, it is impossible for an infinitely large mapping
between between meanings and signals to be externalized. In the iterated learn-
ing model this situation occurs too: Within each body of linguistic data only
a subset of the set of possible meanings will be associated with a signal. This
constraint will hit hard when we consider the process of language production.
Production is the process by which agents find signals for meanings they are
prompted to produce. The meanings the agent must produce signals for are, in
the model that follows, always drawn at random from the meaning space. Pro-
duction has to occur in the model, as an agent needs to create a set of utterances
from which the next agent in the simulation is to learn from. If a meaning was
not seen by an agent in conjunction with a signal during acquisition, then how
is the agent to produce an appropriate signal? There are two courses of action.
First, the agent can use the generative capacity of the induced hypothesis to
yield an appropriate signal; in this case the agent will have generalized. Sec-
ond, if generalization is not possible, then the agent will have to invent some
signal for the meaning using some other means.
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Agent 1

Hypothesis
h1

Lh1

Language represented by h1

L’h1
Externalised
utterances

2

Hypothesis
h

Agent 2

Lh2

L’h2

Agent 3

Hypothesis
h3

Lh3

L’h3

Figure 1: The iterated learning model. Agent 1 has knowledge of language
represented by hypothesis h1. This hypothesis represents a language Lh1 . Some
subset of this mapping, L′

h1
, is externalized as linguistic performance by Agent

1 for the next agent, Agent 2, to learn from. On the basis of this performance,
Agent 2 induces hypothesis h2. The process is then repeated, generation after
generation.

The impact of the transmission bottleneck has two interpretations within an
iterated learning model. On the one hand, it represents a constraint on transmis-
sion. On the other, it represents a constraint on how much evidence is available
to the learning algorithm used by each agent. By imposing sparsity in the avail-
able learning data a situation analogous to the poverty of stimulus, discussed
above, is introduced. In order for an agent to acquire a generative capacity,
the agent must generalize from the data it has have been given. In this sense,
linguistic competence represents the ability to express meanings. To achieve a
generative capacity requires that structure is present in the data. This is a crucial
observation I will return to later.
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Modeling Compositionality

A model of language needs to capture the fact that language is a particular re-
lationship between sound and meaning. The level of abstraction used here will
capture the fact that language is mapping from a “characteristic kind of seman-
tic or pragmatic function onto a characteristic kind of symbol sequence” (Pinker
and Bloom, 1990). When I refer to a model of language, I will be referring to set
of possible relationships between, on the one hand, entities representing mean-
ings and on the other, entities representing signals. Throughout this article I
will consider meanings as multi-dimensional feature structures, and signals as
sequences of symbols. Meanings are defined as feature vectors representing
points in a meaning space. Meaning spaces will be defined by two parameters,
F and V . The parameter F defines the number of features each meaning will
have. The parameter V defines how many values each of these features can
accommodate. A meaning space M specified by F = 2 and V = 2 would repre-
sent the set: M = {(1,1),(1,2),(2,1),(2,2)}. Notice that meanings represent
structured objects of a fixed length. Signals, in contrast, are represented as a
variable length string of symbols drawn from some alphabet Σ. The length of
signals within the model is bounded by the maximum length denoted by lmax.
For example a signal space S , defined by Σ = {a,b,c,d} and lmax = 4, might
be the set S = {ba,ccad,acda,c, . . .}.

We now have a precise formulation of the meanings and signals, but of greater
importance to following discussion will be the kinds of structural relationships
that exist between meanings and signals. It is the kind relationship between
meanings and signals that makes human language so distinctive. As it stands,
the model of language presented above can capture a key feature of language I
will be focusing on: It can represent both compositional mappings and non-
compositional mappings (for more exotic language models see Kirby 2002;
Batali, 2002). Compositionality is a property of the mapping between mean-
ings and signals. It is not a property of a set of meanings, nor a property of a
set of signals. A compositional mapping is one where the meaning of a signal is
some function of the meaning of its parts (eg., Krifka, 2001). Such a mapping is
possible given the model of language developed so far. Consider the language
Lcomp:

Lcomp = {〈{1,2,2},adf〉,〈{1,1,1},ace〉,〈{2,2,2},bdf〉,
〈{2,1,1},bce〉,〈{1,2,1},ade〉,〈{1,1,2},acf〉}

This language has compositional structure due to the fact that each meaning
is mapped to a signal such that parts of the signal (some sub-string) correspond
to parts of the meaning (a feature value). The symbol a, for example, represents
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feature value 1 for the first feature. The precise relationship between mean-
ings and signals can vary substantially. For example, one feature value can map
to two separate parts of the signal, these parts of the signal can be of variable
length, and some parts of the signal can correspond to no part of the meaning.
But importantly, the property of compositionality is independent of such charac-
teristics of the mapping. Compositionality is an abstract property capturing the
fact that some function determines how parts of the signal correspond to parts of
the meaning. The exact definition of a compositional relationship is subject to
heated debate, and one I will sidestep in the interests of brevity (eg., Zadrozny,
1994). All human languages exhibit compositionality.

Instances of the model of language with no compositional structure whatso-
ever are also of interest. I will term such relationships holistic languages1: the
whole signal maps to a whole meaning, such that no obvious relationship exists
between parts of the signal and parts of the meaning. Here is an example of a
holistic language Lholistic:

Lholistic = {〈{1,2,2},sghs〉,〈{1,1,1},ppold〉,〈{2,2,2},monkey〉,
〈{2,1,1},q〉,〈{1,2,1}, rcd〉,〈{1,1,2},esox〉}

A holistic language is usually constructed by associating a random signal to
each meaning. For this reason, holistic languages may also be referred to as
random languages in the discussion that follows. Given the model of language
described above we can now consider in more depth how iterated learning mod-
els can be used to explore the linguistic evolution of compositionality.

4 Linguistic Evolution and Induction

A crucial component of any iterated learning model is the process of induction,
as agents are required to induce hypotheses explaining the linguistic data they
observe. Making an inductive inference involves choosing a hypothesis from a
set of candidate hypotheses H = {H1,H2, . . .} in the light of some data D. Such
an inference, depending on the chosen hypothesis, can result in a general state-
ment not only concerning the observed data, but also data yet been observed.
The problem of induction is the problem of identifying the most appropriate hy-
pothesis, and hence the most appropriate statement, that explains the given data
D. Contemporary theories of induction regard this problem as one fundamen-
tally resting on the issue of complexity (Rissanen, 1978; Li and Vitányi, 1997;

1Strictly speaking, we should use the term holistic communication system since one
of the defining features of language is compositionality. Nevertheless, we will continue
to abuse the term language in this way in the interest of clarity.
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Pitt et al., 2002). Complexity is the flexibility inherent in a class of hypotheses
that allow them to fit diverse patterns of data. For example, choosing a hypothe-
sis that is consistent with the observed data may describe the observed data but,
due to the high degree of complexity of the hypothesis, may be woefully inad-
equate as an explanation of the data. The hypothesis, by virtue of its inherent
complexity, may also describe an extremely diverse range of data. This makes
the hypothesis less likely to be an appropriate model of the underlying data gen-
erating machinery. Similarly, a hypothesis with insufficient complexity will not
possess the complexity required to explain the data. Accordingly, the inductive
process is fundamentally an issue of identifying a trade-off in the complexity of
hypotheses.

One approach to tackling this issue is the minimum description length (MDL)
principle (Rissanen, 1978; Li and Vitányi, 1997). The MDL principle provides a
means of judging, given a hypothesis space H and some data D, which member
of H represents the most likely hypothesis given that D was observed. The key
idea behind MDL is that the more we are able to compress the observed data,
the more we have learned about it: any kind of pattern of regularity present in
the data can potentially allow us to compress the data. Once we have identi-
fied such a pattern, we can re-describe the observed data using fewer symbols
than a literal description of the data. This is philosophy behind the principle.
MDL can be deployed in a practical sense by drawing on a theoretically solid
and formally well understood body of techniques. Basing a model of induction
on the MDL principle has the advantage that hypothesis selection is determined
by the complexity of the hypotheses under consideration. In recent years, the
MDL principle has become increasingly influential in the analysis of learning
(Rissanen, 1997), model selection (Grünwald, 2002; Pitt et al., 2002), and many
aspects of the cognitive system (Chater, 1999; Chater and Vitányi, 2003) includ-
ing language acquisition (Wolff, 1982; Chater and Vitányi, 2004).

More formally, the MDL principle states that the most likely hypothesis is the
one which minimizes the sum of two quantities. The first quantity is the length,
in bits, of encoding the hypothesis. The second quantity is the length, in bits,
of the encoding the data, when represented using this hypothesis. To formalize
this statement, we require an optimal encoding scheme for the hypotheses, C1,
and an encoding scheme for data represented in terms of the hypothesis, C2.
Furthermore, the only relevant issue for hypothesis selection is the length of
these encodings: LC1 and LC2 . Given the set of hypotheses H , and the observed
data, D, the MDL principle selects a member of H , HMDL, as follows:

HMDL = min
H∈H

{LC1(H)+LC2(D|H)} (1)

This expression states that the best hypothesis to explain the data is the one
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which, when chosen, leads to the shortest coding of the data. The coding is
achieved using a combination of the chosen hypothesis and a description of the
data using this hypothesis. Here we see how the selected hypothesis represents
a point in a trade-off between high and low complexity explanations. The MDL
principle tells us how to judge competing hypotheses with respect to this trade-
off by exploiting the relationship between coding and probability (Cover and
Thomas, 1991).

Learning Based on Minimum Description Length

To transfer this discussion into a model and test the impact of learning based on
the MDL principle requires us to construct a hypothesis space H , and coding
schemes over these hypotheses. Recall that data in this discission are collec-
tions of utterances whose form is determined by the language model introduced
earlier. One example is the following set of utterances, Lcomp:

Lcomp = {〈{1,2,2},adf〉,〈{1,1,1},ace〉,〈{2,2,2},bdf〉,
〈{2,1,1},bce〉,〈{1,2,1},ade〉,〈{1,1,2},acf〉}

In order to apply the MDL principle to the selection of hypotheses given some
arbitrary series of utterances, I will consider a hypothesis space composed of fi-
nite state unification transducers2 (FSUTs) (Brighton, 2002). These transducers
relate meanings to signals using a network of states and transitions. A number
of paths exist through the transducer. Each path begins at the start state. These
paths always end at another privileged state termed the accepting state. A path
through the transducer is specified by a series of transitions between states; each
of these transitions relates part of a signal to part of a meaning. For example,
consider the transducer shown in Figure 2(a). It depicts a transducer which rep-
resents the language Lcomp. This transducer – termed the prefix tree transducer
– corresponds to the maximally specific hypothesis: it describes the data ver-
batim, and therefore does not capture any structure present in the language. It
is the largest consistent hypothesis in H that can be used to describe the data
Lcomp, and only Lcomp. Given a transducer and a signal, the associated meaning
can be derived by following a path consistent with that signal, and collecting
the meanings associated with each transition taken. Similarly, given a meaning,
the signal can be derived by following a path consistent with the meaning, and
concatenating each symbol encountered along the path.

Given some observed utterances L, the space of candidate hypotheses will
consist of all FSUTs consistent with the observed utterances. By consistent,

2A FSUT is a variation on the basic notion of a finite state transducer (Hopcroft and
Ullman, 1979). The use of such transducers was inspired by and extends the work of
Teal and Taylor (2000).
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I mean that observed examples of meaning/signal associations are never dis-
carded, the candidate hypotheses are constrained to always be able to generate,
at a minimum, all the observed utterances. We are interested in situations in
which a transducer is capable of generating utterances for meanings it has never
observed; in such a situation, the transducer will have generalized.

If structural regularity exists in the observed language the prefix tree trans-
ducer can be used to derive further, more general, transducers that are also con-
sistent with the observed data. Such derivations are achieved by applying com-
pression operations on the transducer. Compression operators, when applicable,
can introduce generalizations by by merging states and edges. Given the prefix
tree transducer – which is simply a literal representation of the observed data –
only two operators, state merge and edge merge, are required to derive all pos-
sible consistent transducers. For the details of how states and edges are merged,
as well as the details of the encoding schemes C1 and C2, the reader should refer
to the work presented in Brighton (2002, 2003). The important feature of the
FSUT model, in combination with the MDL principle, is that compression can
lead to generalisation. For example, Figure 2(b) and (c) illustrate some possible
state and edge merge operations applied to the prefix tree transducer represent-
ing Lcomp. The transducer resulting from these merge operations is shown in
in Figure 2(d). Figure 2(e) depicts the fully compressed transducer, which is
found by performing additional state and edge merge operations. Note that fur-
ther compression operations are possible, but they lead the transducer to express
meanings which are inconsistent with the observed language. Nevertheless, by
applying the compression operators, all consistent transducers can be generated.
Some of these transducers will be more compressed that others, and as a result,
they are more likely to generalise than others. Note that if Lcomp was an instance
of a random (holistic) language, then few, if any, compression operations would
be applicable; regularity is required for compression to be possible.

Generalisation can lead to the ability to express meanings that where not
mentioned in the linguistic data. To express a novel meaning, a search through
the transducer is sought such that an appropriate series of edge transitions are
found. Some of the meanings on these edge transitions, as a result of the appli-
cation of the compression operators, may contain wildcard feature values that
represent unbound feature values. These free variables are introduced when two
transitions are merged which contain conflicting values for a particular feature.
To express a novel meaning, the unification of the set of meanings occurring on
the transitions must yield the meaning to be expressed. The resulting signal is
formed by concatenating the symbols mentioned on each edge; the ordering of
the symbols in the signal therefore reflects the ordering of the edge traversals
when passing through the transducer. For example, a close inspection of the
compressed transducer shown in Figure 2(e) reveals that meanings which are
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Lcomp = {〈{1,2,2},adf〉,〈{1,1,1},ace〉,〈{2,2,2},bdf〉,
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(e) b/{2 ? ?}

a/{1 ? ?} c/{? 1 ?}

d/{? 2 ?}

e/{? ? 1}

f/{? ? 2}

L+
comp = {〈{1,2,2},adf〉,〈{1,1,1},ace〉,〈{2,2,2},bdf〉,

〈{2,1,1},bce〉,〈{1,2,1},ade〉,〈{1,1,2},acf〉,
〈{2,1,2},bcf〉,〈{2,2,1},bde〉}

Figure 2: Given the compositional language Lcomp, the prefix tree transducer
shown in (a) is constructed. By performing edge and state merge operations, the
result of which are shown in (b), (c), and (d), the transducer can be compressed.
The transducer shown in (e) represents a fully compressed transducer. It can
generalize to the language L+

comp.
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not present in Lcomp can be expressed. The expressivity of a transducer is sim-
ply the number of meaning that can be expressed. The language L+

comp, shown
in Figure 2, contains all the meaning/signal pairs which can be expressed by the
fully compressed transducer in the above example. In this case, compression led
to generalisation, and the expressivity of the transducer increased from 6 mean-
ings to 8 meanings. By compressing the prefix tree transducer, the structure in
the compositional language has been made explicit, and as result, generalisation
occurred. Generalisation will not be possible when structure is lacking in the
observed data, and the result will be that some meanings cannot be expressed.

We now have a hypothesis space over which we can apply the MDL principle.
The hypothesis chosen in light of data D is the one with the smallest description
length, HMDL. This search for this hypothesis is performed using a hill-climbing
search described in Brighton (2003). With these model components in place,
we are now in a position to assess the impact of induction based on the MDL
principle within the iterated learning model.

5 The Evolutionary Consequences of the Simplicity Principle

The previous section summarised a model of learning based on compression
constrained by the MDL principle. In this section I will describe how this model
of learning leads to the cultural adaptation of the language as it is transmitted
from one generation to the next within the iterated learning model. In order to
specify this process in sufficient detail for simulation, several parameters need
to defined. The meaning space is defined by F , the number of feature in each
meaning, V , the number of values each feature can accommodate. The signal
space is defined by Σ, the alphabet of symbols, and lmax, the maximum string
length for randomly generated signals. A transmission bottleneck is imposed by
restricting the number random utterances observed, R, to 32. These parameters
are used to define the initial state of the system, including the initial language.

Figure 3 details these parameter values and depicts an example MDL FSUT
induced from an initial random language constructed with the given parameter
values. Negligible compression occurs. The language represented by the trans-
ducer is holistic; the compositional structure we seek to explain is lacking, and
this is the situation we are interested in: how can a compositional mapping with
maximum expressivity evolve through cultural adaptation?

Next, I will consider a crucial aspect of the model side-stepped so far: the
issue of invention. Invention occurs when an agent is presented with a meaning
it cannot express. That is, the meaning was not observed in conjunction with a
signal during learning, and cannot be expressed as a result of generalisation. For
example, the transducer in Figure 3 can only express the meanings which were
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F = 3, V = 2, |Σ| = 20, lmax = 15, R = 32

S

?2?/g

413/c

4??/f

2??/s

??4/i

???/b

21?/r

?4?/t

344/h

232/e

111/d

41?/n

???/p

??1/m

???/j

E

324/k

422/m

413/d

431/g

413/o

442/n

223/t
211/j

444/t
234/r

113/k

434/p

314/m

214/c

211/k

442/a

341/j

??4/h

232/r

111/n

414/c

412/g

314/c

223/d
1??/m

341/k

111/r

131/h

223/k

112/h

442/n

324/p

422/b

324/d

???/b

422/e 422/t 422/k 422/a 422/g

341/b 341/b 341/k 341/m

341/o 341/l

341/p 341/d 341/g

???/i

431/a 431/f 431/g 431/h 431/o 431/o
431/s

???/p

131/m 131/g 131/b 131/j

131/k
131/p

131/h 131/r 131/a 131/o 131/s

?3?/q

413/m 413/t 413/h

442/b 442/g 442/d 442/e

442/c

413/r

442/f

413/o 413/i 413/o 413/o 413/e 413/j 413/q 413/b 413/d 413/h

41?/t

223/c
223/d

223/h 223/p 223/f 223/s 223/b 223/a 223/n 223/p 223/r

???/k
211/g 211/f 211/j 211/i 211/h 211/l 211/t 211/l 211/c 211/d 211/c

211/g

143/s 143/b
143/a

113/b

113/l
113/g 113/p

???/r

434/r

442/p 442/p 442/o 442/b 442/r 442/l 442/r 442/t 442/m

234/h 234/l 234/m 234/f 234/k 234/q

314/a 314/s

223/j 223/l 223/s 223/a 223/e
???/l

214/k

211/f

214/d ?14/s

341/p 341/e 341/a 341/f

112/j 112/h
112/h

232/d 232/q
232/b

314/l 314/c 314/j 314/s 314/m 314/i 314/b 314/c

314/g

111/f 111/r

111/k

414/c 414/o

223/b

223/i

223/f 223/g

211/t
211/e 211/e

412/c 412/o 412/g

143/j
121/p 121/e 121/k 121/t 121/k

121/b

442/e 442/m 442/k

Figure 3: Given an initial random language defined by the above parameter
values, HMDL is an example of an induced FSUT. Negligible compression has
occurred, and as a result the transducer does not generalise to novel meanings:
32 utterances were given as input, and each of these utterances is encoded by a
unique path through the transducer.

present in the observed language. Within the iterated learning model, transduc-
ers will be required to express meanings which were not in the observed set
of utterances. To solve this problem, a policy of random invention can be de-
ployed, where a random signal is generated for novel meanings. This policy will
be investigated first. Initialized with a random language the simulation is run
for 200 iterations. Figure 4(a-b) illustrates how the system develops from one
generation to the next. First of all, Figure 4(a) depicts compression rate, α , as
a function of iterations. The compression rate measures the relative size of the
prefix tree transducer, Hpre f ix, and the chosen hypothesis Hmdl: α = 1− |Hmdl |

|Hpre f ix|
.

A high compression rate means that the language is compressible. Figure 4(a)
illustrates that the compressibility of the language, from one generation to the
next, changes very little. The initial random language undergoes no significant
adaptation and remains unstructured and therefore uncompressible (α ≈ 0.06).
Figure 4(b) highlights this fact, by showing the transitions through a state space
depicting the expressivity of the language as a function of the encoding length of
the language. Here, we see that from the initial state, labeled A, the systems fol-



16 Henry Brighton

(a)

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

C
om

pr
es

si
on

 r
at

e,
 α

Iterations

α as a function of iterations

(b)

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000

E
xp

re
ss

iv
ity

Encoding length (bits)

Large inexpressive hypotheses

A

Figure 4: Linguistic evolution resulting from partially random invention.

lows an unordered trajectory through the sub-space of small inexpressive trans-
ducers. Because the language remains unstructured, generalisation is not possi-
ble and expressivity remains low. Similarly, unstructured languages cannot be
compressed, and therefore the encoding length remains relatively high.

The key point here is that a cumulative evolution of structure does not occur.
Why is this? The mechanisms supporting linguistic evolution – language learn-
ing and language production – are somehow inhibiting the cumulative evolution
of structure. The source of this inhibition is the random invention procedure.

Invention Based on a Simplicity Principle

The MDL principle can tell nothing about the process of production. As a result,
the process of interrogating the hypothesis with novel meanings to yield signals
is not fully defined, and needs to be developed. To address this problem, a
more principled invention mechanism is investigated where the invented signal
is a derived using hypothesis itself rather than being constructed at random.
The invented signal will be constrained by structure present in the hypothesis.
The invention method I employ here exploits the structure already present in
the hypothesis by using those parts of the transducer consistent with the novel
meaning to construct part of the signal. This approach is detailed in Brighton
(2003), but the essentials of the process can be summarised as follows. The
invented signal, if it where seen in conjunction with the novel meaning during
the learning phase, would not lead to an increase in the MDL of the induced
hypothesis. This invention procedure therefore proposes a signal which in some
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Figure 5: Linguistic evolution arising from simplicity based invention.

sense matches the structure of hypothesis. If such a signal cannot be found,
then no signal is invented. In short, the invention procedure, rather than being
random, now takes into account the structure present in the hypothesis.

Running the experiment with this invention procedure, Figure 5 illustrates
exactly the same measurements as those shown in Figure 4. Strikingly, Figure 5
reveals that very different evolved states result as a consequence of the alterna-
tive invention procedure. Figure 5(a) illustrates an entirely different trajectory,
one where a series of transitions lead to small, stable, and expressive hypothe-
ses. Starting at an expected expressivity of approximately 22 meanings (point
A), the system follows an L-shaped trajectory. There are two distinct jumps
to a stable state where we see small hypotheses capable of expressing all 64
meanings. The compressor scheme consistently directs linguistic evolution to-
ward compositional systems. The first major transition through the state space
takes the system from the bottom-right end of the L-shape (point A) to the bend
in the L-shape (points B and C), where expressivity increases slightly, but the
minimum description length of the language decreases by a factor of 3. From
requiring approximately 6000 bits to encode the evolving language, linguistic
evolution results in transducers being induced with an MDL of approximately
2000 bits. The lack of increase in expressivity is a reflection of the transducers
organizing themselves in such a way that significant compression results, but
an increase in expressivity is not achieved. The second transition, leading to
the top of the L-shape (through point D to point E), is very different in nature.
Here, for a small decrease in the MDL of the developing language, a signifi-
cant increase in expressivity occurs. This is an important transition, as it results
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in the system entering a stable region of the state space. Although a few de-
viations away from this stable region occur early on, the system settles into a
steady state characterized by high expressivity. Figure 5(b) reflects these tran-
sitions. The compression rate rises in two stages corresponding to the points in
the L-shaped trajectory.

Figure 6(a-d) depicts the transducers corresponding to the points B, C, D, and
E in Figure 5(b). Figure 6(a) represents the transducer corresponding to point
B. In this transducer, we see the beginnings of significant structure emerging.
The first symbol in each signal appears to discriminate between feature values
in the second feature. This structural relationship acts as a seed for further dis-
crimination, which will ultimately result in generalisation. Between point B and
point C, the evolution of the language becomes increasingly more evident. Point
D shown in Figure 6(c), corresponds to a transducer where further discrimina-
tion occurs, and certain meanings can be expressed even though they were not
observed – significant generalisation is occurring. Figure 6(d) illustrate the oc-
currence of further discrimination and generalisation, as the state of the system
climbs up to and moves around a stable region of the state space. Although
this transducer exhibits a large amount of redundancy, this redundancy does not
effect its ability to be induced generation after generation. Initially, as the state
approaches point E , some variation occurs across iterations before the steady
state is arrived at. This suggests the stable regions of the state space are Lia-
pounov stable: if the system were to start in this region, it would stay within
this region (see, for example, Glendinning, 1994).

6 Linguistic Evolution of Compositionality

The previous section demonstrated how linguistic evolution can lead, from an
initially holistic communication system, to the development of a compositional
mapping between meanings and signals. It also indicated that certain condi-
tions must be met if compositional structure is to develop at all: the invention
mechanism, for example, cannot be random. This is one condition of many
required in order for cumulative evolution to occur. It is not the case com-
positional structure is the inevitable outcome of an iterated learning model. In
fact, the conditions required for cumulative evolution are strict. Brighton (2002)
showed that the evolution of compositional structure requires that: (1) a trans-
mission bottleneck imposing a sufficient degree of data sparsity is in place, and
(2), that a sufficient degree of complexity is present in the meaning space. The
parameters used in the previous section were chosen to maximize the likeli-
hood of compositional systems according to the mathematical model reported
by Brighton (2002). Although the example we have just considered represents
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(a)

S

?4?/k

?3?/i

?1?/j

?2?/g

E

?4?/k

134/h

?3?/b

433/k

?1?/h

211/h

?2?/k

?2?/k

134/l 134/k 1??/g
???/k

???/r

24?/l

?4?/l

342/j

?4?/h

?4?/g

?4?/k

242/k

14?/k

442/k

142/r

344/e

242/r

?4?/q

123/h

123/g

???/k

41?/j

214/j

?1?/h

214/h

412/h

?11/g ??1/k

123/j
224/l ?2?/h ?2?/h

???/p

423/l

?2?/l

321/l

122/h

?2?/h

???/h ??1/h

244/g

?4?/k

??1/r

??1/b

?3?/l

331/b

333/j

433/j

?3?/h

331/k

333/h

131/h

434/h
233/g

434/p

?4?/h

342/h

144/r

143/e

331/g 331/a

433/h
433/g

442/r

?2?/g

?4?/e

333/h

211/j

214/h

2??/p 2??/e

424/p

223/k

342/g

(b)

S ?4?/k

?3?/i

?1?/j

?2?/g

E
?4?/h

???/j

?1?/b

?2?/k

4??/p

4??/h

???/p

???/k

441/g

??2/p
??3/r

??1/r

334/p

?3?/p

??1/b
4??/h

114/l

???/l

2?2/j

4??/h

434/l

???/l

422/j ??4/g

??4/k

??4/h

441/r

??2/e

2?2/g

334/h

3??/g

???/h

???/p

2??/h

1??/p

232/p

2?2/g

422/h

(c)

S

12?/g

?4?/k

?3?/i

?1?/j

E

12?/k

???/j

??1/h

?1?/b

??1/r ??1/b

???/l

31?/l

4??/h

2??/g ???/p

??4/g

??1/g

??3/k

??2/p

??4/k

431/g
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??1/r
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1??/h
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?1?/j

?2?/g

?4?/k

?3?/i
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?2?/k

???/j

???/l

33?/l

4??/h
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??3/r

1??/h
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??1/b

???/g
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Figure 6: The transducers corresponding to positions B, C, D, and E highlighted
in Figure 5.
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the result of one simulation, this evolutionary trajectory is typical for the given
parameter values. In short, it should be stressed that without a transmission bot-
tleneck present languages will not change and compositional systems will not
be observed. Similarly, without a sufficient degree of complexity in the mean-
ing space, compositionality will not confer a stability advantage and therefore
compositional languages are unlikely to be observed.

The sensitivity of the environmental conditions required for the evolution of
compositional systems suggests that an explanation for why language exhibits
compositionality cannot be framed exclusively in terms of the properties of the
cognitive system. To fully appreciate this point, it is worth considering the
nature of stable states in the model, as they provide an example of how the lin-
guistic complexity observed is not trivially related to the properties of linguistic
agents. Figure 7 shows two stable states result from the model. Figure 7(a) de-
picts a transducer for a meaning space defined by F = 3 and V = 2 along with
the grammar, G1, which describes how signals are constructed for each of the 8
meanings. Similarly, Figure 7(b) depicts the transducer and the corresponding
grammar, G2, for a meaning space defined by F = 3 and V = 3 which comprises
27 meanings.

(a)
S

*2*/b

*1*/t E

*2*/t

*1*/o

*2*/s
**2/w

**1/q

*2*/p 1**/w

2**/m 2**/f
*1*/m *1*/t 2**/m 2**/s

G1: S/x,y,z → A/x B/y C/z
A/1 → w
A/2 → mmsf
B/1 → tomt

B/2 → btps
C/1 → w
C/2 → q

(b)

S

1**/r

2**/n

3**/m

E***/d

*3*/c

***/b

*3*/s

***/b

*3*/g

*1*/q

*2*/b

**3/j

**1/j

**2/b

**3/s

***/s

G2: S/x,y,z → A/x d B/y C/z
A/1 → r
A/2 → n
A/3 → m

B/y → D/y sb
B/3 → js
D/1 → j
D/2 → b

C/3 → sgc
C/z → b E/z
E/1 → q
E/2 → b

Figure 7: Two evolved languages. (a) Shows a transducer, and the correspond-
ing grammar, containing redundant transitions, variable length signals, and sev-
eral syntactic categories. (b) shows a language with variable length substrings.

Optimal transducers, those with the lowest description length given the pa-
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rameter values, are those where a single symbol is associated with each feature
value of the meaning space. Even though the minimum description length prin-
ciple would prefer these transducers, they do not occur in the model. A close
inspection of the transducers shown in Figure 7 demonstrates that features are
coded inefficiently: variable length strings of symbols are used, rather a sin-
gle symbol, and some feature values are associated with redundant transitions
which carry no meaning. In Figure 7, for example, all meanings are expressed
with signals containing a redundant symbol (the second symbol d). These im-
perfections are frozen accidents: the residue of production decisions made be-
fore stability occurred. The imperfections do not have a detrimental impact on
the stability of the language, and they therefore survive repeated transmission
due to being part of the compositional relationship coded in the language.

This phenomenon is an example of how the process of linguistic evolution
leads to complexity which is not a direct reflection of the learning bias: trans-
ducers with lower description length exist. The evolved transducers are func-
tional in the sense that they are stable, despite deviating from the “optimal”
transducer, and this is why we observe them. The key point here is that given
an understanding of the learning and production mechanisms of the linguistic
agents, it is far from clear that such an understanding would by itself allow us
to predict the outcome of the model. The process of linguistic evolution rep-
resents a complex adaptive system. This conclusion can be related to task of
explaining why human languages have certain structural relationships and not
others. If linguistic evolution plays a role in determining the structure of hu-
man language, then we must conclude that: (1) linguistic universals are not
necessarily direct reflections of properties of the cognitive system, and (2), that
an internalist or mentalistic explanation of linguistic universals is likely to be
fundamentally lacking.

7 Conclusion

This discussion began with the following observation: If the universal features
of language are in no sense acquired through a process of inductive general-
izations, then we can rightfully circumscribe the cognitive system alone as the
focus of an explanation for why language exhibits certain structural character-
istics and not others. This must be the case, as the only remaining source of
explanation has to appeal to characteristics of the cognitive system: character-
istics of the environment are rendered irrelevant. The assumption that universal
features of language are not acquired through inductive generalizations is con-
troversial. The assumption has many critics. Importantly, deviating from this
assumption necessarily creates a problem in explaining why language exhibits
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these universal characteristics. If the acquisition of linguistic universals rely to
some extent on properties of the linguistic data, then to retain explanatory ad-
equacy requires us to explain why the environment contains certain structural
characteristics and not others.

This discussion has focused on the process of linguistic evolution as a source
explanation for why the linguistic data exhibits certain characteristics and not
others. In particular, I have focused on the property of compositionality and
explored the possibility that the process of linguistic evolution can explain how
the linguistic environment came to contain compositional structure. To test this
theory, I have used a computational model of linguistic evolution. The model
predicts the cumulative evolution of compositional structure given certain envi-
ronmental conditions. Importantly, the model also suggests that an understand-
ing of the properties of linguistic agents cannot by itself satisfactorily explain
why the evolved languages exhibit compositionality. This alternative stand-
point places an explanation for why language exhibits certain hallmarks and not
others fundamentally in the terms of an interaction between how language is
acquired, how language is transmitted, and how the innate constraints on ac-
quisition came to exist. In short, this work cast doubt on the utility of wholly
psychological, cognitivistic, or internalist explanations for linguistic universals
such as compositionality.
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