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Abstract

A growing body of work demonstrates that syntactic structure
can evolve in populations of genetically identical agents. Traditional
explanations for the emergence of syntactic structure employ an ar-
gument based on genetic evolution: syntactic structure is specified
by an innate Language Acquisition Device (LAD). Knowledge of lan-
guage is complex, yet the data available to the language learner is
sparse. This incongruous situation, termed the “poverty of the stimu-
lus”, is accounted for by placing much of the specification of language
in the LAD. The assumption is that the characteristic structure of
language is somehow coded genetically. The effect of language evo-
lution on the cultural substrate, in the absence of genetic change, is
not addressed by this explanation. We show that the poverty of the
stimulus introduces a pressure for compositional language structure
when we consider language evolution resulting from iterated obser-
vational learning. We use a mathematical model to map the space
of parameters that result in compositional syntax. Our hypothesis is
that compositional syntax cannot be explained by understanding the
LAD alone: compositionality is an emergent property of the dynamics
resulting from sparse language exposure.
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1 Introduction

Children master complex features of language on the basis of surprisingly
little evidence. This phenomenon, termed the poverty of the stimulus, has
been taken as evidence for innate linguistic knowledge (Chomsky, 1980). How
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can such a rich body of linguistic knowledge be induced from an impover-
ished body of linguistic evidence? The traditional explanation appeals to
an innate Language Acquisition Device (LAD) (Chomsky, 1976). The LAD
is a language-specific module encapsulating the knowledge of language that
cannot be induced from primary linguistic data. This explanation attributes
the bulk of the specification of language to the human biological endowment,
rather than the linguistic stimulus. In short, when considering the origins of
language, humans, and possibly other hominids, developed language directly
as a result of the biological evolution of the LAD (Pinker & Bloom, 1990;
Nowak et al., 2000). If the syntactic structure of language can be explained
in terms of the LAD alone, the fundamentals of the story of how language
emerged, and why language has the structure it does, are in place.

An important linguistic dynamic is missing from this explanation: lan-
guage itself can evolve, on a cultural substrate, among genetically homoge-
neous language users. By investigating the degree to which this dynamic can
result in language evolution, recent agent-based simulations have questioned
the primacy of innatist accounts of linguistic structure. For example, Kirby
(2000) and Batali (2001) demonstrate that recursive and compositional syn-
tax can emerge in the absence of genetic change. These experiments raise
important questions. Can we explain why language has its characteristic
structure by analyzing the LAD alone? How much of the structure of lan-
guage is determined by the dynamics resulting from evolution on a cultural
substrate? The situation characterized by the poverty of the stimulus poses
a design problem. One solution is an innate, structure specifying, LAD. Us-
ing a mathematical model, we propose an alternative to this solution. The
poverty of the stimulus introduces a strong pressure for compositional struc-
ture when we take into account cultural evolution: our hypothesis is that
much of the characteristic structure of language, of which compositionality
is one distinctive feature, emerges as a result of pressures on transmission.
It is important to stress that to some degree, an innate LAD is required
for language, but the syntactic structure of language need not be explicitly
specified by this LAD.

Previous work can be characterized as establishing that compositional and
recursive syntax, two of the hallmarks of language, can emerge relative to a
population of genetically homogeneous language users (Kirby, 2000, 2001a;
Batali, 2001). We build on this work, first by mapping the space of model pa-
rameters that lead to linguistic structure, and second, by introducing a model
that accounts for statistical effects during the language acquisition process.
Instead of aiming to demonstrate that linguistic structure can emerge in the
absence of genetic change, our methodology focuses on establishing the range
of conditions for emergence. Our results show that instead of characterizing



the poverty of the stimulus as a constraint on transmission, overcome by the
LAD, it is best conceived of as a determinant in the evolution of composi-
tional syntax. We argue that compositional structure is best explained in
terms of the dynamics of language evolution, rather than the internals of the
LAD.

To model language evolution we use the [lterated Learning Model, an
agent-based model of cultural evolution where language change results from
repeated observational learning (Kirby, 2001b; Brighton & Kirby, 2001). In
Section 2 the details of the iterated learning model are presented. In this
model, each agent has the ability to generalize from observed examples of
language. The generalization bias of each agent determines how language
changes from generation to generation. In Section 3 we introduce a general-
ization procedure based on the Minimum Description Length principle. An
abstracted form of this generalization procedure is developed in Section 4
and is used to form part of a mathematical model. This model, covered in
Section 5, is used to map the parameter space. The results are discussed in
Section 6.

2 The iterated learning model

The Iterated Learning Model (ILM) provides a framework for modeling the
cultural evolution of language (Kirby, 2001b; Brighton & Kirby, 2001). Lan-
guage is transmitted from one generation to the next by one agent forming
utterances, and the next agent observing these utterances. This process is
repeated generation after generation, and in linguistic terms characterizes
the translation from language performance (language use) to language com-
petence (language knowledge) via observational learning: agents induce their
knowledge of language through observation. The ILM captures an important
characteristic of language. Language is learned by language users, and the
input to the learning process is based is the output of learning itself. This
is an important phenomenon. The space of possible languages is restricted
to contain only those languages that can be produced by an agent. The
effects of any bias in either learning or production will be amplified at each
generation.

The ILM is an agent-based model where each agent represents a language
user. Given the most basic population model, where each generation com-
prises one agent, the ILM proceeds as follows. The first generation agent, Ay,
forms utterances. The second generation agent A, observes these utterances
and forms a hypothesis to account for them. The next generation proceeds
by A, producing utterances which the next agent A3 observes. This process



is repeated, often for thousands of generations. How, for example, does the
language of Asgs differ to that of Ajp4;? Does the system reach a steady
state? What kind of languages emerge and characterize steady states? The
ILM allows us to answer questions like these. By exploring the properties
of an agent, along with certain pressures on information transmission, we
can try and attack the issue of how certain language structures evolve. The
key idea is that language itself evolves; each agent in the model is initially
identical. Agents arrive at different hypotheses only when they are exposed
to different bodies of linguistic evidence.

2.1 Simplifying assumptions

Before examining the ILM in more detail, it is worth making explicit the
simplifying assumptions we have made in the construction of the model.

1. Agents have the ability to “mind read”. When an agent observes a
signal, the intended meaning of that signal is also given. This simplifi-
cation avoids the problem of modeling the ascription of a meaning to a
signal. An agent must associate a signal with a meaning somehow, but
we regard this as a separate, non-trivial problem (Steels, 1997, 1998;
Smith, 2001). In short, we assume meaning transmission occurs over a
noiseless channel.

2. Issues of communication are not considered. For example, communica-
tive accuracy, the agents intentions, or any model of success or failure in
language use is not considered. How much of the structure of language
is due to pressures on learning? To begin to answer this question, we
must strip the model of any assumptions about the functional aspects
of communication. Part of our hypothesis is that issues relating to com-
munication are not the principle determinants of language structure.

3. Population effects are not considered. Each agent learns from the out-
put of only one other agent. Similarly, utterances produced by an agent
are only observed by a single infant agent.

From a modeling perspective, these simplifications are crucial. Ultimately
we seek the minimal set of assumptions and hypotheses with which linguistic
structure can be explained. By employing such a minimal model, the degree
of similarity between the resulting languages and natural language will be
negligible. Properties of natural language, such as parts of speech and tense,
will not occur. However, by introducing additional details to the model,
certain aspects of natural language can emerge. For example, the occurrence
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of regular/irregular forms emerge in the ILM when we introduce a pressure for
small signals in conjunction with a non-uniform distribution over meanings
(Kirby, 2001b).

It is important to note that although elements of language structure can
evolve through iterated learning, biological evolution must form the back-
bone of any story of language evolution (see for example, Dunbar (1993)).
The structure of the agents, how they learn, and how they conceptualize
communicatively relevant situations, is taken to be biologically determined.

2.2 TIterated learning in detail

Each agent senses an external environment which contains n objects {wj,
wa, ... ,wy }. Each object w; represents some communicatively relevant sit-
uation. We do not attempt to specify the details of these situations. The
important point is that objects are conceptualized in terms of a meaning
space internal to the agent. To an agent, an object corresponds to a point
in its meaning space. The distinction between an object and a meaning is
important. In previous work, every meaning in a meaning space is an object;
during a simulation, all meanings represent communicatively relevant situa-
tions (Kirby, 2000, 2001b). We introduce the object/meaning distinction as
it allows different meaning space structures to be used for a given environ-
ment. For example, given an environment containing 100 objects, we can use
one from any number of meaning spaces to conceptualize (label) the objects.

: o F,
Environment ___---"Meaning Space

S - - -

Agent

Figure 1: The relationship between the environment and an agent. The en-
vironment contains a set of n objects {wi, ws,...,w,} which represent com-
municatively relevant situations. These objects are perceived by the agent in
terms of a semantic space. In this example, a 3-dimensional meaning space
is used to represent the objects internally.

Figure 1 illustrates the relationship between the external environment



and the internal meaning space. More formally, a meaning is a vector drawn
from a space defined by two parameters: F', the number of features, and V,
the cardinality of the set from which feature values are drawn. A simplifying
assumption is made that each feature has the same number of possible values,
V. We make this assumption as it simplifies the mathematics of the model.
In short, meanings are points in an F-dimensional space, with each dimension
having V' discrete values. The environment remains constant over time, and
we assume that different agents sense the same object in the same way: the
correspondence between object and meaning is identical for different agents.
The mapping from objects to meanings is random. From the point of view of
the agent some objects will be indistinguishable if the same meaning is used
to label more than one object.

2.2.1 Language as a mapping between meanings and signals

Agents, on the basis of their linguistic competence, utter signals which stand
for meanings. A language defines the relationship between meanings and
signals. More formally, a language is a mapping between meanings and
signals. We define it as follows. First, signals are defined as strings of symbols
drawn from some alphabet 3. The maximum length of a signal is l,,,,. Given
a meaning m and signal s, a meaning/signal pair is denoted by (m, s) such
that m is drawn from the meaning space M:

M={(f1,f2,,fF)1§fZ§V,and1§2§F}
and the signal s is drawn from the signal space S:
Sz{wlwg...wl:wiEZ,andlSlglmaz}

A language L is defined as a set of meaning/signal, (m, s), pairs. From the
space of all languages, two classes of language structure will be considered:
holistic languages and compositional languages. Central to this distinction is
the relationship between meaning structure and signal structure. A holistic
language exhibits no structural relationship between meanings and signals:
the whole signal stands for the whole meaning, rather than parts of the
signal referring to parts of the meaning. A compositional language is one
where a relationship does exist between meaning and signal: the meaning of
a signal is a function of the meaning of its parts, and how they are assem-
bled (Montague, 1974). Holistic languages and compositional languages are
constructed as follows:

e To construct an holistic language Lpo;siic given a set of meanings M,
a random signal is assigned to each meaning. Each signal is of some
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random length | (1 < | < l;42), and is composed of symbols drawn
randomly from 3.

e To construct a compositional language L., given a set of meanings M,
we use a dictionary of sub-signals. Each sub-signal is used to represent a
feature value. For simplicity, the assumption is made that each feature
value, for each feature, has a unique entry in the dictionary, i.e., a sub-
signal refers to one and only one feature value, for one feature. For each
meaning in M a signal is constructed on the basis of the dictionary: a
signal is formed by concatenating the corresponding sub-signal for each
feature value in the meaning. For simplicity, the order of sub-signals
occurring in the complete signal reflects the order of feature values in
the meaning. This simplification is made for language construction
only, and does not restrict the class of compositional languages we
account for in the model.

In a compositional language similar meanings will map to similar signals.
Similar meanings, by definition, must have elements in common and so their
corresponding signals will also have elements in common. The mapping from
meanings to signals will be neighborhood preserving: groups of similar mean-
ings always map to groups of similar signals. This kind of regularity does
not occur, unless by chance, when constructing holistic languages.

2.2.2 Learning, production, and language change

After observing some language L an agent selects a hypothesis H that best
describes L. When called upon to express objects, which appear as mean-
ings, the agent then uses the hypothesis H to find appropriate signal for
each of these meanings. The linguistic competence of the agent is defined as
the ability to express signals for meanings. The set of possible hypotheses,
the process by which the hypothesis is selected, and the manner in which
appropriate signals are chosen for meanings, are collectively termed the gen-
eralization process. Consider the case when the observed language L is a
subset of some larger language L. We say the agent observes L subject to
a transmission bottleneck. This situation resembles what Chomsky (1980)
termed the poverty of the stimulus. The language L is an impoverished ver-
sion of L. Depending on the effectiveness of the generalization process, and
the structure in L, it is possible for an agent to reproduce all the mean-
ing/signal pairs in L after only observing L. Learners of natural language
are placed in exactly this situation: nobody learns English by observing all
English sentences.
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Figure 2: The first three generations of the iterated learning model. The first
agent in the chain, A, is presented with example utterances (meaning/signal
pairs) from some holistic language. A hypothesis H; is then chosen to ac-
count for this linguistic evidence. A; is given a set of meanings M;, which
correspond to objects, drawn randomly from the set of objects. For each
of these meanings, an appropriate signal is deduced and uttered by A;. A,
observes these utterances, and forms an hypothesis Hy to explain the set of
meaning/signal pairs. The process is repeated: A, utters a signal for each of
those meanings in M5 for agent A3 to observe. An hypothesis corresponds to
an agents linguistic knowledge. Utterances (meaning/signal pairs) represent
the agents’ linguistic performance.

The behavior of an agent can be thought of as a function which maps the
language of generation ¢, L;, to the language of generation L; :

J L= L

Under certain conditions L; = L;q, in which case L, is a stable language.
The iterated learning process rests on the fact that the input to an agent is
the output of another agent. In linguistic terms, an infant learns language
by observing the linguistic behavior of an adult. In this model, we show that
language evolution will only occur when agents suffer from the poverty of the
stimulus. In the iterated learning model the poverty of the stimulus occurs
as a result of the transmission bottleneck: language learners never learn from
a complete exposure to the language of the previous generation.

Figure 2 depicts this process in more detail. The first agent A; observes
a language best described by the hypothesis H;. Objects in the environment
are then presented to A;, at random, some number of times. The agent must
utter a signal for each of these objects. This process is termed production.
The next agent A, then observes these meaning/signal pairs. This process
is repeated, each agent is presented with a random series of object observa-
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tions. Random meanings, along with the induced hypothesis are then used
to produce the language for the next generation to observe. The first agent
in the model observes utterances drawn from a holistic language.

2.3 Language evolution

In this model, language evolves when an agent attempts to reconstruct the
language of the previous generation on the basis of sparse language exposure.
Inconsistencies between the two languages are introduced because either the
structure of language makes generalization impossible, or the generalization
procedure is inadequate. In this article we are principally interested in steady
states, rather than the transitions a language passes through before stability
results. Before focusing on steady states, this section will clarify the factors
that drive language change.

To arrive at and maintain a steady state requires specific conditions. In
the absence of a transmission bottleneck all language structures are stable
because all objects are observed in conjunction with a signal. Providing the
hypothesis is consistent with the data, no uncertainty can arise when an
object needs to be expressed. As soon as a learner forms a hypothesis on
the basis of a subset of the whole language instability can result; some of the
objects may not have been observed during the lifetime of the agent. In this
situation the agent must use knowledge of what it has observed to postulate
solutions to what it has not observed. For this reason, the set of languages
structures that result in stability will depend on the size of the transmission
bottleneck.

2.3.1 Unstable states and language evolution

How exactly does the language of one generation get transformed into the
language of the next generation? Consider the meaning/signal pair (m, s),
which occurs in some language L,. One of three mechanisms will be respon-
sible for the association of m with some signal s’ in the next generation,

Ln—f—l:

1. Memorization. Here, s = s’ as the learner uses the signal that accom-
panied the meaning when it was observed. The mapping between m
to s does not change. Memorization can only occur when (m,s) is
observed.

2. Generalization. In the case that the learner has never observed (m, s),
but enough is known about the relationship between the observed
meanings and their signals, an appropriate signal can be arrived at
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by induction. In this situation, either s = s, and the association re-
mains stable, or via a progressive induction decision, s # s’. The latter
change is progressive in that it will reinforce any structure occurring in
the mapping between meanings and signals.

3. Invention. The learner has not observed (m, s), and the learner cannot
discern any structure in the observed language which will help in finding
a signal for m. In this situation, an inventive production decision is
required. Some random element must be used in the production of m.
Alternatively, the learner can choose not to produce a signal for m at
all. Either way, we assume s # ¢, and any existing association between
m and s is broken. The case when s = s’ will only occur by chance.

These three mechanisms define when an association between meaning
and signal will change from one generation to the next. Only some combi-
nations of these processes can maintain a stable language. The language of
one generation is transformed into the language of the next generation by us-
ing one of four combinations of production mechanisms (Invention/Memory,
Invention/Generalisation/Memory, Generalization/Memory, Memory). Fig-
ure 3 illustrates the relationship between the production mechanisms and
the occurrence of divergence. Divergence is shown in Figure 3(c)-(d), where
invention is required. Stability can only result when invention is not used,
Figure 3(a)-(b) illustrates this fact.

Invention, which only occurs in the presence of a transmission bottleneck,
serves an important purpose. When the language is unstructured, invention
will occur more frequently. By chance, an invented signal could introduce
some structure to the language of the next generation where this structure
was absent in the language of the previous generation. Critically, a struc-
tured relation between meanings and signals is more likely to survive the
transmission bottleneck than an unstructured relation (Kirby, 2001a). Con-
sider some region of the mapping between meanings and signals which is
structured. Not all the parts of this structured region need to be observed
for the structured relation to survive the transmission bottleneck. Contrast
this with an unstructured (random) region. For this region to be represented
in the language of the next generation requires that all the meaning/signal
pairs representing that region be observed. Structure is compressible.

It is these stochastic inventions, which introduce structure where it was
previously absent, that drive the language evolution toward regions of stabil-
ity. The more structure the mapping contains, the less frequently invention
will occur. Rather like simulated annealing (Kirkpatrick et al., 1983), iter-
ated learning can be seen as a search strategy. Providing the language is
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Figure 3: The four ways in which a language L; can evolve. These diagrams
show how the mechanism used to produce a signal can effect a change in the
language from generation to generation. Inward arrows signify the reinforce-
ment of the language structure. Outward arrows indicate divergence from
the current language structure. First, a language can only persist when one
of two combinations of production mechanism are in play: (a) memory, and
(b) memory and generalization. Divergence will occur when either (c¢) mem-
ory, generalization, and invention occur, or (d) when memory and invention
occur. Invention always causes divergence.
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unstructured and a transmission bottleneck is in place, the initial tempera-
ture will be high; invention will occur frequently. In time the temperature
decreases, and invention will occur less frequently. The search follows a tra-
jectory towards language which best fits the combined biases of hypothesis
selection and production.

So, iterated learning can effect a cumulative evolution toward structure.
This process is the linguistic equivalent of what Tomasello (1999) terms the
Ratchet Effect in cultural evolution. However, only when certain conditions
are met, will iterated learning reliably converge to a stable state. We aim to
understand and formalize these conditions.

2.4 The parameter space

Six parameter groups define the behavior of the iterated learning model. In
the context of the model developed here, they are as follows:

1. The meaning space. The space of possible meanings. The meaning
space is defined by the number of features, F', and the cardinality of
the set from which feature values are drawn, V.

2. The signal space. Signals are constructed by drawing symbols from
some alphabet . The maximum length of a signal is /4,

3. The transmission bottleneck. The number of random object observa-
tions, R. The value of R is related to the degree of language exposure.
Some probability distribution over objects specifies how likely an ob-
ject is to be observed. We assume this distribution is uniform, unless
otherwise stated.

4. The perceptual bias. Utterances may not be perceived accurately. For
example the transmission channel might be noisy, or there may be
limits on the working memory of an agent, thereby restricting the set
of perceivable utterances (Kirby, 1999). In the model developed here,
we assume all utterances are transmitted noise free; no restrictions on
perception are modeled.

5. The learning bias. The learning bias defines the space of possible hy-
potheses, and which hypothesis is chosen given some data.

6. The production bias. Given a meaning and a hypothesis, the production
bias defines which signal is chosen to express the meaning.
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Stable language only occurs for certain parameter combinations. Recall
that without a transmission bottleneck, all languages are stable. As soon as
a transmission bottleneck is in place, only certain languages are stable, and
these rely on certain combinations of learning and production bias. Before
mapping this parameter space, we consider the role of learning and produc-
tion.

3 Compression, learning, and generalization

Agents act as a conduit for language. An agent observes a subset of the
language of the previous generation. The process of learning from this sub-
set, and then producing utterances for the next generation, is a complex
one. At one level an agent simply maps one language onto another. At a
more detailed level, the function which defines this mapping is composed of
a learning mechanism and a production mechanism. Learning, in this con-
text, is the process of arriving at a hypothesis which explains the observed
language. Production is the process that, given a hypothesis, completes the
mapping from meanings to signals. The production mechanism defines how
the hypothesis is interrogated to yield signals. Because the chosen hypoth-
esis might reflect some regular structure existing in the observed language,
unobserved regions of the language could be recovered by the production
mechanism exploiting the structure in the hypothesis. The combination of
learning and production is termed generalization. In this section we propose
a candidate computational model of generalization based on the Minimum
Description Length (MDL) principle.

3.1 Minimum description length learning

Ranking potential hypotheses by minimum description length is a principled
and elegant approach to hypothesis selection (Rissanen, 1978; Li & Vitanyi,
1997). The MDL principle can be derived from Bayes’s Rule, and in short
states that the best hypothesis for some observed data is the one that min-
imizes the sum of (a) the encoding length of the hypothesis, and (b) the
encoding length of the data, when represented in terms of the hypothesis.
A tradeoff then exists between small hypotheses with a large data encod-
ing length and large hypotheses with a small data encoding length. When
the observed data contains no regularity, the best hypothesis is one that
represents the data verbatim, as this minimizes the data encoding length.
However, when regularity does exist in the data, a smaller hypothesis is pos-
sible which describes the regularity, making it explicit, and as result the
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hypothesis describes more than just the observed data. For this reason, the
cost of encoding the data increases. MDL tells us the ideal tradeoff between
the length of the hypothesis encoding and the length of the data encoding
described relative to the hypothesis. More formally, given some observed
data D and a hypothesis space H the best hypothesis hy;py, is defined as:

hvpr = min{Le, (h) + Le, (DIh)} (1)

where L¢, (h) is the length in bits of the hypothesis A when using an opti-
mal coding scheme over hypotheses. Similarly, L¢,(D|h) is the length, in
bits, of the encoding of the observed data wusing the hypothesis h. We use
the MDL principle to find the most likely hypothesis for an observed set of
meaning/signal pairs passed to an agent. When regularity exists in the ob-
served language, the hypothesis will capture this regularity, when justified,
and allow for generalization beyond what was observed. By employing MDL
we have a theoretically solid justification for generalization. The next sec-
tion will clarify the MDL principle — we introduce the hypothesis space and
coding schemes.

3.1.1 The hypothesis space

We introduce a novel model for mapping strings of symbols to meanings,
which we term a Finite State Unification Transducer (FSUT). This model
extends the scheme used by Teal and Taylor (2000) to include variable length
signals and, more importantly, meanings. Given some observed data, the hy-
pothesis space consists of all FSUTs which are consistent with the observed
data. Both compositional and non-compositional languages can be repre-
sented using the FSUT model.

A FSUT is specified by a 7-tuple (Q, X, F,V, 6, qo, gr) where @ is the set of
states used by the transducer, and ¥ is the alphabet from which symbols are
drawn. F' and V define the structure of the meaning space. The transition
function § maps state/symbol pairs to a new state, along with the (possibly
under-specified) meaning corresponding to that part of the transducer. Two
states, qo and ¢ need to be specified; they are the initial and final state,
respectively. Consider an agent A, which receives a set of meaning/signal
pairs during language acquisition. For example, an observed language might
be the set:

L= {{{1,2,2},adf), ({1,1,1}, ace), ({2, 2,2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1,2}, act) }

This language is compositional. It was constructed using the following dic-
tionary:
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L= {{{1,2,2},adf), ({1,1,1}, ace), ({2, 2,2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1,2}, acf) }

di{12 2} Fome A1 22}

cA111}

O—Q

di22 2}

O—>
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di12 1}

c{112}

c{112}

cA111}

Figure 4: Given the compositional language L, the Prefix Tree Transducer
shown in (a) is constructed. By performing edge and state merge operations,
outlined in (b) and (c), the transducer can be compressed. The transducer
shown in (d) is compressed, but does not lead to any generalizations.
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value 1 value 2
feature 1 a b
feature 2 ¢ d
feature 3 e f

So for example, the sub-signal corresponding to feature value 2 for the first
feature is “b”. Figure 4(a) depicts a FSUT which models L. We term this
transducer the Prefiz Tree Transducer — the observed language and only
the observed language is represented by the prefix tree transducer. The
power of the FSUT model only becomes apparent when we consider possible
generalizations made by merging states and edges:

1. State Merge. Two states ¢; and go can be merged to form a new state
if the transducer remains consistent. All edges that mention ¢; or ¢,
now mention the new state.

2. Edge merge. Two edges e; and ey can be merged if they share the
same source and target states and accept the same symbol. The re-
sult of merging the two edges is a new edge with a new meaning label.
Meanings are merged by finding the intersection of the two component
meanings. Those features which do not have values in common take
the value “?” — a wild-card that matches all values. As fragments of
the meanings may be lost, a check for transducer consistency is also re-
quired. Without this consistency check, some observed meaning/signal
pairs will not be accounted for by the resulting transducer.

Figure 4(b) and (c) illustrate some possible state and edge merge oper-
ations. The transducer resulting from these merge operations is show in in
Figure 4(d). Figure 5 depicts a fully compressed transducer, which is found
by performing additional state and edge merge operations. The fully com-
pressed transducer can express meanings which are not present in L. The
language L, shown in Figure 5, contains all the meaning/signal pairs which
can be expressed by the fully compressed transducer. By compressing the
Prefix Tree Transducer, the structure in the compositional language has been
made explicit, and as result, generalization can occur.

3.1.2 Encoding Lengths

In order to apply the MDL principle we need an appropriate coding scheme
for: (a) the hypotheses, and (b) the data using the given hypothesis. These
schemes correspond to C; and C5 introduced in Equation 1. The requirement
for the coding scheme (' is that some machine can take the encoding of the
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L= {{{1,2,2},adf), ({1,1, 1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1,2}, acf) }

af1? 7} c{?172} el{? 2 1}
b/{2 2 2 di? 2 2 fi{? ? 2}

Lt = {{{1,2,2},adf), ({1,1,1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1, 2}, acf),
({2,1,2}, bef), ({2,2,1}, bde)}

Figure 5: Given the compositional language L a series of state and edge merge
operations, beginning with those shown in Figure 4, result in the compressed
transducer shown above. As a result of compression, the transducer can
express more meanings than those contained in L. All members of language
LT can be expressed.

hypothesis and decode it in such a way that a unique transducer results. Sim-
ilarly, the coding of the data with respect to the transducer must describe the
data uniquely. To encode a transducer T' = (Q, %, F,V, 6, qo, qr) containing n
states and e edges we must calculate the space required, in bits, of encoding
a state (Ssate = (0g2(n)), a symbol (Ssymsa = loga(|X])), and a feature value
(Stvatue = log2(V')). The number of bits required to encode a meaning relies
not only on Sfyqye, but also the cost of encoding the wildcard specifier. The

number of bits used to encode am arbitrary meaning m = {fi,..., fr} is
given by:
F
Smeaning (m) = Z Z(.fz)
i=1

where f; denotes the value of the ith feature, and

] : when f; =7
Z(f;) = { 1+ Stpame : otherwise

That is, Z(f;) represents the number of bits required to encode either a
feature value or the wildcard specifier. The initial bit is used to differentiate
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between these two possibilities. Denoting the meaning associated with the
1th edge by m;, the encoding length of the transducer is then:

e
ST = Z{2Sstate + Ssymbol + Smeaning (mz)} + Sstate

=1

which corresponds to encoding the transition function ¢ along with the iden-
tity of the accepting state. For the transducer 7" to be uniquely decoded,
we must also specify the lengths of constituent parts of the transducer. We
term this part of the encoding the prefiz block:

Sprefz'z = Sstate +1+ Ssymbol +1+ vaalue +1+ SF +1

Where Sy is the encoding length, in bits, required to define the number of
features in a meaning: Sp = loga(F). To calculate L¢, (h) we then use the
expression:

L, (h) = Spregiz + St (2)

Recall that L¢, (h) defines the length of the encoding of the hypothesis h
using the coding scheme ;. This quantity is termed the Grammar En-
coding Length (GEL) (Teal & Taylor, 2000). Similarly, the length of the
encoding of the data, in terms of the hypothesis h, Lg,(D|h), is termed the
Data Encoding Length (DEL). The DEL is far simpler to calculate than the
GEL. For some string s composed of symbols wiw; ... w, we need to de-
tail the transition we choose after accepting each symbol with respect to the
given transducer. The list of choices made describes a unique path through
the transducer. Additional information is required when the transducer en-
ters an accepting state as the transducer could either accept the string or
continue parsing characters, as the accepting state might contain a loop tran-
sition. Given some data D composed of p meaning/signal pairs, L, (D|h) is
calculated by:

p |sil

Le,(DIR) =3 > {log, i + F(si;)} (3)
i=1j=1
where s; is the signal of the ith meaning/signal pair, and z;; is the number
of outward transitions from the state reached after parsing j symbols of the
signal of the ith meaning/signal pair. The state reached after parsing j
symbols of the signal of the ith meaning/signal pair is denoted by s;;. The
function F' handles the extra information for accepting states:

F(s;;) = 1 : when the transducer is in gg
¥ 1 0 : otherwise
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Prefix tree transducers are compressed by applying the merge operators de-
scribed above. We use a beam search (Mitchell, 1997). The merge operators
are chosen at random, and applied to a random point in the transducer.
The resulting transducer must be consistent with the observed data to enter
the beam. Transducers with the smallest encoding lengths are most likely
to remain in the beam, as new transducers, formed by applying the merge
operations, replace the transducer with the largest encoding length. Smaller
transducers are therefore more likely to be used in further exploration of the
hypothesis space. When no operator can be applied, the search stops, and
the transducer with the smallest encoding length is chosen.

3.2 MDL, hypothesis selection, and generalization

With respect to some observed data, MDL provides a ranking over candidate
hypotheses. Identifying the hypothesis which yields the smallest encoding
length is a practical problem which can be addressed by employing a search
strategy. But the selection of the hypothesis solves only half the problem
of mapping a meaning to a signal. To complete the mapping a production
mechanism is required that interrogates the hypothesis. With respect to our
implementation of MDL, a procedure is required that takes a FSUT and
a meaning, and produces a signal for that meaning. One such mechanism
proceeds by performing a depth-first search for a path through the FSUT
such that no transition is taken that has a meaning label which is inconsistent
with the target meaning. Providing the set of transitions result in the correct
meaning being parsed, and the final transition leads to the accepting state,
the resulting signal is formed by concatenating the symbols found on each
transition. Using this procedure, generalization can occur. This model of
generalization was used in an agent-based simulation reported by Brighton
and Kirby (2001).

Here, we only consider two FSUT structures: prefix tree machines and
compressed machines. These machines correspond to the hypotheses chosen
when the observed language is either holistic or compositional, respectively.
The FSUT model defines a space of hypotheses. The application of the
MDL principle over this space of hypotheses, in conjunction with the iterated
learning model, can account for the evolution of all gradations of language
type: from holistic language to fully compositional language, and mixtures of
both structures. In the model developed here, we simplify the issue and only
consider stability conditions for holistic and fully compositional language.
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4 Optimal generalization

Assume an agent knows, before observing any utterances, that the observed
language will have compositional structure. Recall that a compositional lan-
guage is totally defined by the dictionary used to construct it. Given the
expectation of a compositional language, what degree of exposure to the lan-
guage is required before the dictionary can be derived? The earliest point
at which the dictionary could be constructed is when all feature values have
been observed. Disregarding the details of the procedure for reconstructing
the dictionary, this is the minimum degree of exposure before reconstruction
is possible at all. We term the ability to express all the meanings for which
all the feature values have been observed the Optimal Generalization Bias.

In this Section we aim to formalize the notion of the optimal general-
ization bias. We show that this degree of bias is paralleled in the MDL
model of generalization discussed above. In short, we aim to show that given
a compositional language, in all but a few circumstances, the compressed
transducer outlined in the previous section will have the smallest encoding
length. Relating the optimal generalization bias to the MDL model allows us
to model language stability without the need to perform lengthy agent-based
simulations.

The strongest possible generalization bias is one which results in some
fixed compositional language Lo being expressed, whatever the input. But
any such scheme would be inconsistent with all observed languages other
than L. We consider only hypotheses that are consistent with the observed
data. Compositional languages, for our purposes, are those where the fea-
ture values appearing in the meaning are associated with unique sub-signals.
A dictionary relating every feature value to a sub-signal totally defines the
compositional language. This is a slight simplification of the problem as
the dictionary does not define the order in which sub-signals are assembled.
We assume the ordering of the feature values in the meaning is reflected in
the construction of the signal. To express a meaning, the sub-signal corre-
sponding to each feature value in the meaning is located in the dictionary.
The signal is formed by concatenating these sub-signals. Now, if not enough
evidence to build the whole dictionary is observed, expressivity will be sub-
optimal. Some objects that need to be expressed will be represented by
meanings which contain unobserved feature values: the entry in the dic-
tionary will be missing. The Optimal Generalization Bias is the ability to
express all meanings which are built from observed feature values.

Definition 1 (Optimal Generalization) Given a compositional language
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Le¢, and a learner with the optimal generalization bias, a meaning m € L¢:
m = (vi,Va, ..., V)

can be expressed providing each wvalue v; has been observed at least once.
Given that some v; has been observed, the optimal generalization bias makes
the assumption that the sub-signal corresponding to v; can always be deduced.

The optimal generalization bias serves as an upper bound on the degree
of inductive bias over compositional language.

4.1 MDL and the optimal generalization bias

Imagine that the dictionary used to construct a compositional language can
also act as a hypothesis for that language. Under which circumstances will
the MDL hypothesis selection result in such in hypothesis? The compressed
FSUT illustrated in Figure 5 corresponds to the notion of a dictionary. Each
feature used to construct the meaning space is represented as a separate
region in the transducer. Within these regions, each feature value is also
represented. Meanings constructed from all combinations of the feature val-
ues are expressible given such a transducer structure. Figure 6 depicts the
general structure of a compressed transducer.

Feéture 1 Feéture 2 Feé;[ure F

Figure 6: The general structure of a compressed transducer. Each feature
is represented by a section of the transducer. Within a section, individual
feature values are represented by a unique path.

For a compositional language, under what circumstances will MDL choose
a compressed transducer? We show that given certain assumptions about the
distribution of meanings, compressed machines are always chosen by MDL,
given a compositional language as input. Bear in mind this is a statement
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concerning the ranking of hypotheses with respect to the the FSUT model
and the MDL principle. How one performs the search through the space of
hypotheses to verify this fact is a practical issue. We assume an exhaus-
tive search. Our claim is that applying the MDL principle over the space
of FSUTSs results in a hypothesis equivalent to that characterized by the
Optimal Generalization Bias. To demonstrate this fact, first we present an
analytic argument, then we illustrate the argument using data extracted from
a simulation.

4.1.1 The relationship between DEL and GEL

The compressed machine yields the smallest grammar encoding length pos-
sible. Smaller machines do exist, but they will not be consistent with the
observed data. We therefore rule them out. If hypotheses were selected
solely on the basis of their size, then compressed machines would always be
chosen for compositional language, and our analytic demonstration would be
complete. This policy is known as Occam’s Razor (see, for example, Mitchell
(1997)). However, as we are using the MDL principle, we must also consider
the size of the data represented in terms of the hypothesis. The following
analysis demonstrates that under two assumptions, a uniform distribution
over meanings and the presence of a transmission bottleneck, the impact of
the data encoding length is negligible. As a result MDL hypothesis selection
can be simplified to the policy of Occam’s Razor: always pick the smallest
hypothesis. The hypothesis chosen by MDL will only differ from that picked
using Occam’s Razor when non-uniform statistical effects are present in the
data.

A series of meaning/signal pairs are presented to an agent. This series
can be represented as a set of p distinct meaning/signal pairs. The number
of times some arbitrary meaning/signal pair i is observed is denoted as K (i).
It is useful to specify the size, or severity, of the transmission bottleneck in
terms of the expected number of distinct objects observed, rather than the
number of object observations. The expected object coverage, denoted as c,
after R random observations of N objects is defined as:

_ loga(1 — R)
logs(1 — %)

The value of ¢ represent the proportion of the objects which we expect to
observe.

For a compositional language, we know that p < V¥ as V¥ is the max-
imum number of unique meaning/signal pairs. Consider using a prefix tree
transducer to encode this language: it will require logs(p) bits to encode a

(4)
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single meaning/signal pair, because, in a prefix tree transducer, each mean-
ing/signal pair is represented by a unique non-branching path through the
transducer. In total, for some compositional language L,

P

DELpresio(L) = > {K(i) - logs(p)}

i=1

bits are required to encode all the meaning/signal pairs in L. Now consider
how many bits are required to encode a single meaning/signal pair, given
that a compressed transducer is used. Assuming all the feature values have
been observed, this will be:

logo (V)

We arrive at this expression as follows. Each feature in the meaning is
represented by a different section of the transducer. A path through one of
these sections can take one of V' possible routes. Specifying a single feature
value therefore requires logy (V') bits. As there are F' features, to encode a
whole meaning/signal pair requires

F -logy(V) = logo(VF)

bits. In total a compressed machine, given a compositional language L, will

require:
p

DELeomp(L) = Y {K (i) - loga(V") }
i=1
bits to encode the p meaning/signal pairs. The difference between D E Loy (L)
and DELy,¢fiz(L) is important. Only when this difference is greater than
the size difference between the grammar encoding lengths will prefix tree
machines be chosen. More formally, the encoding length of a prefix tree
transducer, ELp,fiz, is defined as:

ELprefia(L) = GELprefic(L) + DELpreyia(L)
and similarly for a compressed transducer:
ELcomp(L) = GEL¢omp(L) + DE Leomp(L)

Now, only when:
ELprefin(L) < ELcomp(L) (5)

will prefix tree transducers be selected over a compressed transducer, given a
compositional language as input. This situation requires that the difference in
the grammar encoding lengths is less than the difference in the data encoding
lengths. This situation is discussed below.

23



4.1.2 A non-uniform distribution over meanings

The difference between DE Ly, 75 (L) and DE Loy (L) is usually much smaller
than the difference between GE Ly iz(L) and GE L¢ym,(L). This is because
transducer compression results in the removal of many transducer states,
but the degree to which this loss of states increases the cost of encoding the
data is usually small. The upshot of this disparity is that, given a composi-
tional language, for a prefix tree transducer to be preferred over a compressed
transducer, the number of occurrences of each meaning/signal pair, K (7), for
1 <7 < p, must be large.

25000

20000 r -
o K@) =100 ——
3 Uniform,c<1.0 -
TE{15000 B b
_$
LIJ o
I 10000 - _
& 5000 - |

° wv
_5000 | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1

¢, object coverage

Figure 7: When E'Ly ¢ iz —FE Leomp < 0, prefix transducers are chosen by MDL
for compositional language. With a uniform distribution and a transmission
bottleneck, this does not occur. Only when, for example, we fix K (i) = 100
will prefix tree transducers be chosen over compressed machines.

Assuming a uniform distribution over meanings, this situation will not
occur unless each meaning signal /pair is observed many times. For this to
happen ¢ =~ 1.0, i.e., the whole language is observed. This situation is not
modeled here — we assume there is a transmission bottleneck. In terms of
MDL, the justification for this relationship rests on the assumption that
the more evidence we have for a set of observations, the less likely novel
observations are to occur.
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Figure 7 illustrates how, for a compositional language, hypothesis selec-
tion depends on the probability distribution over meanings (and hence ob-
jects). First, given a transmission bottleneck (¢ < 1.0) and a uniform distri-
bution over meanings, compressed machines are always chosen as ELp,.cfi; —
EL¢mp > 0holds irrespective of coverage. Contrast this with situation where
we fix K (i) = 100 for 1 < 7 < p, also shown in Figure 7. For low coverage
values, the inequality E'Lyyefic — ELcomp > 0 no longer holds — prefix tree
transducers are preferred for low coverage values. In practice, given a uniform
distribution over meanings, this situation cannot occur unless ¢ ~ 1.0.

However, if we consider a distribution such as that resulting from Zipf’s
law, then this situation can occur when ¢ < 1.0. A Zipfian distribution, in
this context, would mean that the frequency of meanings decay as a power
function of their rank (Zipf, 1936; Kirby, 2001b). In this case, as ¢ increases
K (i), for some values of i, will become huge. In this situation, the rule that
compressed transducers are always selected for compositional language no
longer holds. By introducing strong statistical effects into the data, hypoth-
esis selection by MDL begins to diverge from that of Occam’s Razor. The
occurrence of communicatively relevant situations are unlikely to conform to
a uniform distribution (Bullock & Todd, 1999). The assumption of a uniform
distribution made in the model analysis therefore restricts the structure of
languages we consider. The introduction of a non-uniform distribution would
be an important extension to the model: we are currently investigating Zip-
fian distributions.

4.2 Summary

Short of knowing the language in advance, the Optimal Generalization Bias
describes the least amount of evidence required before generalization can
occur. We have demonstrated that, assuming a uniform distribution over
meanings, compressed transducers are preferable to prefix tree transducers
for all compositional languages. As compressed transducers are a model of
optimal generalization, we reduce the problem of generalization over com-
positional language to that of optimal generalization. In the next section,
a mathematical model is developed that relates the stability advantage con-
ferred by compositional language to the parameters of the iterated learning
model. The model relies on the notion of the Optimal Generalization Bias.
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5 Modeling the conditions for stability

Understanding the conditions for stability requires an analysis of the in-
teraction between generalization bias, the transmission bottleneck, and the
structure of the meaning space. The following analysis employs a mathemat-
ical model, based on the agent-based simulation reported by Brighton and
Kirby (2001). Modeling by simulation has disadvantages when the parameter
space is large. Parts of the parameter space which were intractable to map
using the Monte Carlo simulations outlined in previous work are no longer
intractable. Mathematical models of cultural evolution have been proposed
before (Boyd & Richerson, 1985), but mathematical models of language evo-
lution typically focus on arguments appealing to natural selection (Nowak
et al., 2000, 2001).

The model developed here estimates the stability advantage offered by
compositional language. By varying the severity of the transmission bottle-
neck and the degree of structure in the meaning space, the conditions for
which compositional language offers the greatest stability advantage can be
established. We conjecture that it is precisely these regions of the param-
eter space from which compositional language is most likely to emerge. In
contrasting one language structure with another, we are pitting one type of
hypothesis, prefix tree transducers in the case of holistic language, against
another, compressed transducers in the case of compositional language. The
model estimates the likelihood of a language type emerging on the basis of
the expressivity of the corresponding hypothesis. For a given language type,
the appropriate hypothesis structure was found using the MDL principle.

5.1 The expressivity of a prefix tree transducer

Using a prefix tree transducer, only meanings which have been observed in
conjunction with a signal can be expressed. Given a holistic language, a
prefix tree transducer is the best we can do: there is no principled way of
expressing a novel meaning on the basis of previously observed meanings. To
calculate the expected expressivity of an agent using a prefix tree transducer
we need to calculate the probability of observing some arbitrary meaning m
drawn from the meaning space. In order for a meaning m to be observed by
an agent it must first be used to label an object, as there is no guarantee that
m will be used at all (recall Figure 1). Secondly, the object(s) labeled with m
need to be observed at least once by the agent. The likelihood of observing a
meaning/signal pair (representing an object) depends on the severity of the
transmission bottleneck.

After observing a series of objects, each of which is represented by a
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meaning, the agent will have accumulated a set of observed meanings. We
denote this set as O. The probability of observing some arbitrary meaning m,
i.e., Pr(m € O), is determined by the number of objects in the environment
(N), the number of meanings in the meaning space (M, where M = V)
and the number of random object observations during an agents lifetime (R).
The probability of observing the meaning m is defined as:

rneor= S {5 (505 ) (U5 ) () o

=0 r=1

This expression takes into account that first m must be used to label an
object, and second, that after R observations of the objects, m is observed at
least once. Appendix A provides an explanation for Equation 6. To estimate
the number of distinct meanings observed, and therefore the number of dis-
tinct meanings which can be expressed, we simply multiply this probability
by the number of possible meanings, V¥'. The expressivity of an agent using
a prefix tree transducer as a hypothesis is denoted as Ep¢fis:

Eprefiz =Pr(m e 0)- V" (7)
To summarize, we first calculate the probability of the meaning being used to
label an object and that object being observed. This probability, multiplied
by the number of possible meanings, yields the expected number of meanings
observed by an agent. As no generalization can occur, the expressivity of the
agent using a prefix tree transducer is equivalent to the number of meanings
observed.

5.2 The expressivity of a compressed transducer

Given a compositional language the compressed transducer structure max-
imizes the expressivity of an agent: expressivity becomes a function of the
number of feature values observed, rather than a function of the number of
meanings observed. Recall that given the Optimal Generalization Bias, to
express a meaning m requires that all the feature values in m have been ob-
served. The rate at which feature values are observed is at least the rate at
which whole meanings are observed. As a result, the expressivity achieved by
a compressed transducer is always at least the degree of expressivity achieved
when using a prefix tree transducer.

To estimate the expressivity of agent using Optimal Generalization we
need to calculate the probability of observing some arbitrary feature value.
Recall that this probability will be greater than the probability of observing
some arbitrary meaning, because fewer entities need to be seen, given the
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same number of observations. More formally, for some arbitrary feature f;
(1 <i < F), f; can take on a value drawn from the set of possible values
{1,2,...,V}. We require the probability that some arbitrary feature value
drawn from this set is observed after R object observations.

As before, this is a two stage process. First, we must take into account
that the arbitrary feature value must be used in at least one of the meanings
chosen to label the objects. The feature value may be used once or more, or
not at all. Given that for some arbitrary feature there are V' possible values,
N objects are labeled, and R random samples of these objects are taken,
we can use an expression similar to Equation 6 to estimate the probability
of observing some arbitrary feature value v one or more times. After R
observations, for the arbitrary feature f;, the set Oy, of feature values is
observed. We denote the probability of observing an arbitrary feature value
as Pr (v € Oy,) and define it as:

o= £ GRS () o

z=0 r=1

Now, for some meaning m = (v1, ve, ..., vr) the ability to express m requires
that each feature value v; has been observed. We can therefore express the
probability of expressing m as the combined probability of expressing each of
the feature values of m. We denote this probability as Pr (v; € O, A...Avp €
Oy,) and define it as:

Pr(vi € Op, A...ANvp € Op) =Pr(veO,)" 9)

This is the probability of being able to express some arbitrary meaning m.
Contrast this probability with that represented in Equation 6. For some
meaning m, Equation 9 tells us the probability of being able to express m.
Equation 6 tells us the probability of observing an arbitrary m. This is an
important distinction, as to estimate the expressivity of an agent using a
compressed transducer we need to multiply the probability of expressing a
meaning m with the expected number of expressible meanings. The expected
number of distinct meanings used when labeling NV objects is:

Nused = (1 - (1 - %) N) VE (10)

To find the expected number of objects for which a signal can be derived
we then multiply the probability of expressing a meaning by the number of
expressible meanings:

Egeneralisation = PI‘(’U S Ofl)F . Nused (11)

28



Compressed transducers are derived from prefix tree transducers by means
of state and edge merging operations. Compression can only increase expres-
sivity because consistency with the observed data is always maintained. The
minimum expressivity for a compressed transducer is therefore E,,¢i,. We
can now define the expressivity of compressed transducer as:

Ecompressed = max {Egeneralisationa Eprefizc} (12)

5.3 Language stability

The above analysis relates transducer structure to expressivity. Given a com-
positional language, hypothesis selection using the MDL principle results in
a compressed transducer. The expressivity in this case is defined by the ex-
pression for Eg,mpressed- A holistic language results in a prefix tree transducer
being chosen. The expressivity in this case is defined by Ep¢fiz-

Next, we relate expressivity to stability. In the ILM, language stability is
the degree to which the hypotheses induced by subsequent agents maintain
the mapping between meanings and signals. The entire set of associations be-
tween meanings and signals may not be externalized as utterances. They may
exist by virtue of the hypothesis alone. The stability of a language is there-
fore related to the proportion of the objects which can be expressed without
resorting to invention. Invention either introduces or maintains unstructured
areas of the mapping between meanings and signals. Stability is therefore
related to expressivity. The notion of stability used here corresponds to the
probability of a language being transmitted from one generation to the next
without change. The stability value of a language is the proportion of the
objects which can be expressed through generalization. We can now charac-
terize the degree of stability for a language type. The degree of stability of a
compositional language, Scompositionat, and of a holistic language Shoiistic can
be defined as:

E d
Scompositional X % (13)
E .
Sholistic X %fm (14)

An important measure we employ is that of relative stability. We denote
relative stability as S and define it as:

Scom ositional
S = P (15)
Scompositional + Sholistic

For a coverage value and a meaning space structure (defined by ¢, F', and V/,
respectively), the S value tells us the degree to which compositional language
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is more stable than holistic language. S reflects how much larger E .y, is
than Epopstic, (0.0 < S < 1). When S > 0.5 compositional language is more
stable than holistic language. The case when S < 0.5, which does not occur
in these experiments, corresponds to the situation when holistic language is
more stable than compositional language. There is no stability advantage to
either language type when S = 0.5.

5.4 Model analysis

The key measurement used in the model is the relative stability, S, of com-
positional language over holistic language. The value of S is dependent on
four variables:

1. The number of features used to construct the meaning space, F.
2. The number of values used by each feature in the meaning space, V.

3. The bottleneck size, represented as the expected object coverage, ¢ (see
Equation 4).

4. The number of objects in the environment, N.

The value of S indicates more than just the relative stability of com-
positional language over holistic language; S also reflects the likelihood of
compositional language emerging. When, as a result of invention, composi-
tional structure is introduced, the relative stability of compositional language
tells us how likely this compositional structure is to persist (recall Section
2.3.1). Figure 8 and 9 shows the relationship, for different degrees of cover-
age, between S and the structure of the meaning space. The parameter N
is not of any real consequence, as changing it will just shift the landscape
away from the origin: larger meaning spaces are required to represent more
objects. In contrast, the model reveals that several important relationships
exist between F', V, ¢, and S:

1. S is at a maximum for small bottleneck sizes. In Figure 8(a) S nears
the maximum value of 1 for certain meaning space structures. This
result demonstrates that compositional language can still be learned
even though exposure is limited. In contrast, holistic language will not
persist over generations when only a small subset is observed. This
result is important, as it demonstrates that the poverty of the stimulus
is an important determinant of compositional language.
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Figure 8: The relationship between meaning space structure, low coverage,
and relative stability. In these examples, the number of objects, N, is 40.
The two surfaces demonstrate the relation between meaning space structure
and S for low coverage values: (a) ¢ = 0.1, (b) ¢ = 0.2. The highest S
values (S ~ 1.0) occur for low coverage (¢ ~ 0.1) and medium complexity,
illustrated in (a). The number of features plays a more significant role than
the number of values per feature.
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Figure 9: The relationship between meaning space structure, mid and high
coverage, and relative stability. Each surface demonstrates the relation be-
tween meaning space structure and S for mid and high coverage values: (a)
¢ = 0.5, and (b) ¢ = 0.9. The maximum S values decreases rapidly when
coverage is increased. The size of the region in which S > 0.5 grows as the
coverage increases. This indicates that for smaller values of S, more meaning
space structures lead to an advantage for compositionality.
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2. High S values only occur once a certain degree complexity in the mean-
ing space has been reached. This means that the conceptual space of
the agent must be broken up into multiple features and values for com-
positionality to become an option. For meaning spaces with only a few
features, S cannot reach a high value. In short, there must be certain
degree of feature structure before compositional language can become
advantageous.

3. Most clearly illustrated in Figure 8(a), the largest meaning spaces,
those which contain more than approximately 2 million meanings, lead
to small values of S. In all the examples (Figures 8 and 9), a very
high degree of structure leads to low S values. Beyond a certain point,
the more highly structured the meaning space, the less likely different
meanings are to share feature values. Consider the most extreme case
where each object will be labeled with a meaning containing a feature
values not present in labeling of any other object.

4. When labeling N objects there is a tradeoff between the number of
features used and the number of values per feature used. The more
features used, the fewer the number of feature values required to rep-
resent NV objects. When a meaning is observed, F' feature values are
observed. This means that all feature values will be observed sooner if
the NV objects are conceptualized more in terms of features than feature
values. This is a relationship most strikingly illustrated by the surface
shown in Figure 8(a). Here, compositional language is far more stable
when many features are used.

Before relating these results to language and its evolution, it is worth
considering the interactions between F', V| ¢, and S in more detail.

Figure 8(a) would indicate that a meaning space M; with F' = 10 and
V' = 2 results in higher relative stability that a meanings space M, with
F =2 and V = 10. Why is the number of features so important? First,
there is an order of magnitude more meanings in My that in M;. From
looking at the surfaces shown in Figures 8 and 9, it is not easy to discern the
size difference between the meaning spaces. The number of meanings found
in M, fits the other parameters well for high S, the number of meanings
found in M5, on the other hand, is large enough that the likelihood objects
sharing feature values is relatively low.

Recall that F' feature values are observed when a single object is ob-
served. As more objects are observed, the likelihood of full feature value
coverage increases rapidly in comparison to the degree of object coverage.
This discrepancy in feature value coverage and object coverage is greatest
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Figure 10: The rate at which expressivity increases as a function of object
coverage. For compressed transducers the increase in expressivity is much
faster than that found with prefix tree transducers. The proportion of the
objects which can be expressed, P, is plotted against the degree of coverage of
the object space, c. Compressed transducers quickly reach high expressivity.
Prefix tree transducers can only express those objects they have observed,
hence the linear relationship between ¢ and E. The value of E is shown
for two different meaning spaces (FF = 4,V =4 and F = 6,V = 6). The
more features used, the fewer the number of observations required before all
feature values are observed.
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for small ¢ (bottleneck) values. This is why compositional language is rel-
atively more stable in comparison to holistic language in this region of the
parameter space. Expressivity is a function of object coverage for holistic
language. Expressivity is a function of feature value coverage for compo-
sitional language. Figure 10 illustrates this relationship: the expressivity
achieved, represented as a proportion of the objects, reaches a maximum for
much lower coverage values when a compressed transducer is chosen.

As the degree of object coverage increases the set of meaning spaces for
which S > 0.5 increases. The higher the coverage the greater the number of
objects observed. This relationship allows larger meaning spaces to be used,
as enough observations are occurring such that previously rare co-occurrences
of feature values now become more likely.

5.5 Summary

By pairing compositional language with the compressed transducer structure,
and holistic language with the prefix tree transducer structure, language sta-
bility can be reduced to the issue of transducer expressivity. The model does
exactly this. The relative stability measure reflects the degree of stability
advantage conferred by compositional language. Using the model, the pa-
rameter combinations that yield high S where found to occupy the part of
the parameter space characterized by a combination of low object coverage
and high, but not outrageously high, meaning space complexity.

6 Discussion

How much of the characteristic structure of language is explicitly coded in
the LAD? If we neglect the pressures of language evolution on the cultural
substrate, and take seriously the claim of the poverty of the stimulus, the
LAD must explicitly code much of language structure. Rather than neglect-
ing the role of language evolution on the cultural substrate, we treat it as
the fundamental determinant of language evolution. Our hypothesis is that
compositional structure is a function of the dynamics of cultural evolution.
In the model presented here, agents have the innate ability to produce
compositional language. One could criticize this model, and other models of
the cultural evolution of language, on the grounds that compositional struc-
ture is built in: the emergence of structure is not surprising. Any evolutionary
model operates within a space of possible solutions: a space of genomes in the
case of genetic evolution, and a space of languages in the case presented here.
The possibility of a design does not imply its occurrence. What makes the
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case of language evolution so problematic is the interaction between the two
evolutionary substrates. When examining this interaction, any explanation
for language structure must appeal, to some degree, to a genetic component.
It is far from clear how much of the structure of language is specified innately:
the “argument from the poverty of the stimulus” is a prima facie explanation
for linguistic nativism (Pullum & Scholz, 2002). Consider the other extreme,
where we entertain the possibility that the innate basis for language is not
entirely language specific. For example, a bias toward the compression of
representations is clearly not language specific. A domain specific evolution-
ary argument is not required to account for all uses of learning. In short, the
work presented here should be seen as exploring the possibility of a weak form
of linguistic nativism: the interaction between any innate basis for language
and a general ability to learn is complex, and certainly not well understood.

We argue that compositional structure is an emergent property of iterated
observational learning. Several parameters control the behavior of the iter-
ated learning model. Importantly, the role of learning has been framed as a
search for the hypothesis with the smallest encoding length, according to the
MDL principle. This approach to learning is motivated by need for organisms
to compress observed data (Reznikova & Ryabko, 1986; Li & Vitanyi, 1997;
Ryabko & Reznikova, 1996), specifically, linguistic data (Wolff, 1982). Using
a mathematical model of language stability, in conjunction with the view of
learning as compression, we have mapped a large part of the parameter space
of the iterated learning model.

The most important parameter is the severity of the transmission bot-
tleneck, denoted by c¢ in the model. This parameter controls the degree of
exposure an agent has to the language of the previous generation. Without
a transmission bottleneck — when ¢ approaches the maximum value of 1
— all languages are equally stable. Introducing a bottleneck, by decreasing
the value of ¢, leads to the set of stable languages being restricted to contain
only those that are learnable from limited exposure. These are compositional
languages. We draw a parallel between the presence of a transmission bot-
tleneck and the situation of the poverty of the stimulus. The poverty of the
stimulus, when we take into account iterated observational learning, results
in compositional language structure constituting a steady state.

The structure of the meaning space, defined by F' and V, is another de-
terminant of compositional structure in our model. There is a tradeoff. Low
structural complexity in the meaning space means that compositionality of-
fers little advantage over holistic language. This occurs when few feature
values are used, and objects are discriminated primarily in terms of feature
values. With low structural complexity, the components (feature values) of
the meanings co-occur too infrequently. The biological evolution of semantic
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complexity, which is assumed in our model, has been proposed by Schoen-
emann (1999) as necessary determinant in the emergence of syntax. The
model supports this conclusion. Furthermore, we found that too much com-
plexity in the meaning space is counterproductive. There is a limit to the
stability payoff gained from increased structural complexity, as the feature
values used in constructing the meanings will co-occur too infrequently for
generalization to function.

The findings presented here strengthen the compelling argument that
iterated learning, the process of information transmission via observational
learning, is a candidate explanatory mechanism for the emergence of syntactic
structure. We have taken the foundational work of Kirby (2001a) and Batali
(2001), which establishes the ability to evolve structured language, and built
on this work by identifying the key requisite conditions. We focused on
the transmission bottleneck, the most salient model parameter, and drew a
parallel with the the poverty of the stimulus. The poverty of the stimulus
is traditionally characterized as a problem, overcome by innately specified
compositional syntax, but we argue it is in fact a fundamental determinant
of the emergence of compositional syntax on a cultural substrate.
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A Objects, meanings, feature values, and the
transmission bottleneck

Part of the model developed in Section 5 requires a calculation that estimates
the likelihood of observing an entity. The calculation appears in two guises.
First, where the entities are meanings, and second, where entities are feature
values. We gloss the problem in terms of the first interpretation:

Given N objects and M meanings, a random meaning is assigned
to each object. After R random object observations, what is the
probability of observing some arbitrary meaning?

Abstracting from the details of the model, the problem can be generalized
as follows:

Given N balls and M colors, first, all the balls are assigned a
color. For each ball, a color is chosen at random, with every color
being equi-probable. Second, balls are sampled at random with
replacement, R times. The question is then, for some particular
N, M, and R, what is the probability of observing some arbitrary
color at least once?

First, given M colors, we assign a random color to each of the N balls. What
is the probability that a single ball is colored A?

1
P l dA)=—
r(coloured A) "
The probability that the ball is not colored A is then:
M-1
P t col d A) =
r(not coloured A) i

We denote the event that p balls are colored A as X(p), where A is an
arbitrary color. Now, after allocating colors to all N balls we can say:

o = (4" ()

e = 5 (57) ()

Pr(X(z)) = (%)(MJ)N (JZ)
- (YT () "
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Now we consider sampling R balls at random, with replacement. First, we
observe that

X
Pr(1st ball sampled has color A | N balls colored A) = N
which means that:
. N-X
Pr(1st ball sampled is not colored A | N balls colored A) = —

Let the event that the nth ball sampled has color C', given that x balls are
colored C, be denoted by the term color(n) = C. To simplify matters, we
also write color(n, ng,...) = C to denote the event that each of ny,no, ...
balls sampled are colored C. We are interested in the event that at least
one ball sampled has color C' and denote this event as (. We can represent
Pr(O|X(z)) as follows:

Pr(0|X(z)) = Pr(color(1) = C)
+ Pr(color(2) = C | color(1) # C)
+ Pr(color(3) = C'| color(1,2) # C)
+ Pr(color(4) = C | color(1,2,3) # C)
+

Pr(color(R) = C | color(1,2,...,(R—1)) # C)
More formally, in terms of z, N, and R:
+£ (N—x) +£ <N—x)2+'”+£ (N—:L‘)(R_l)

N N N N N N

RN — gy (=)
We can express Pr(O) in the following manner:

Pr(0) = Pr(0|X(0))-Pr(X(0)) +
Pr(0|X(1)) - Pr(X(1)) +...+ Pr(O|X(N))-Pr(X(N))

And then, using Equation 16, we can express Pr(Q) as follows:

_+_

Pr(0|X(z)) =

x
N
x
N

Pr(0) = > Pr(0|X(z))-Pr(X(z))

- i (B0F)) () O

To summarize, given N balls, and for some arbitrary color A, the probability
of observing at least one ball colored A after R observations is given by
Equation 17.
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