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We study a modified version of the naming game, a recently introduced model which describes how shared
vocabulary can emerge spontaneously in a population without any central control. In particular, we introduce
a mechanism that allows a continuous interchange with the external inventory of words. A playing strategy,
influenced by the hierarchical structure that individuals’ reputation defines in the community, is implemented.
We analyze how these features influence the convergence times, the cognitive efforts of the agents, and the
scaling behavior in memory and time.
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I. INTRODUCTION

The origin and spread of languages and the evolution of
their differentiation are problems addressed by various theo-
ries that cross different philosophical orientations, varying
from nativism and evolutionary approaches to behaviorism
and conventionalism. A good archetype of this last perspec-
tive can be retrieved in the last of Wittgenstein’s reflections
�1�. There, language is seen as an activity that arbitrarily
attributes meanings to words throughout the function they
assume in the life of humans. Meaning is defined by the use
of language: “the meaning of a word is its use in the lan-
guage” �1�. In this light, language is a sort of training to react
in a specific way in relation to a specific sign: a language
game.

A particular linguistic problem that can be considered as a
grounding test for this hypothesis is the rise of a new linguis-
tic quantity. Linguists tried to characterize in a quantitative
way such changes �2�, using simple mathematical models to
describe the rise �or fall� of a linguistic element �3�. In par-
ticular, among the possible different linguistic changes, we
will point our attention to learning processes characterized
by fast dynamics, such as, for example, the birth of neolo-
gisms. Looking at dictionaries, it is possible to see how ev-
ery year thousands of new words appear or substitute others.
Moreover, reading and comparing throughout different peri-
ods some newspapers, we can observe how many words or
syntactic changes spread out or substitute the old ones. Fi-
nally, we can observe the emergence and death of jargon,
technical words, or idiomatic expressions. These facts may
be considered as a good paradigm for testing more general
theories, which can also account for long-term processes, in
the same way as, in biology, the study of very fast evolution-
ary shifts, comparable to the life span of a human being
�microevolution�, can give insights into the behavior of evo-
lutive processes characterized by geological time scales.

A well-known artificial experiment implemented to simu-
late these fast learning dynamics, with the aim of testing the
general hypothesis concerning the origin of languages which
we have sketched above, is the “talking heads experiment”

�4�. There, embodied software agents bootstrap a shared lexi-
con without any external intervention. Robots concretize a
language game, developing a vocabulary throughout a self-
organized process, a naming game. In resemblance with Wit-
tgenstein’s point of view, language can be seen as an autono-
mous adaptive system shaped and reshaped by the use and
the behavior of the local linguistic activity �5�.

Recently, these studies have also attracted the interest of
the statistical physics community. The dynamics of such
naming games is characterized by a period of spread and
diffusion of new competing words, followed by a sudden
transition �2,3� towards the use of a single word. These facts
are quite common to other well-known social dynamics �6�,
where a population aims to reach a common and shared state,
the consensus �7�. One of the novelties of these studies con-
sists in the fact of abandoning any evolutionary approach �8�,
dealing with the emergence of communication conventions
on fast time scales. Moreover, no central control, which can
determine a global coordination, is considered, even in the
form of some selection force.

A first study in this direction has recently appeared �9�,
directly inspired by the experiments conducted with the use
of robots �5�. In that work the naming game is modeled as
simply as possible, with the aim of implementing a lower
bound in complexity and processing power. Each player is
characterized by an inventory of words associated with an
object. At each time step two players, randomly chosen, in-
teract following some simple rules. The speaker retrieves a
word from his inventory or, if his inventory is empty, invents
a new word and transmits the selected word to the hearer. If
the hearer’s inventory contains such a word, the communi-
cation is a success. The two agents update their inventories
so as to keep only the word involved in the interaction. Oth-
erwise, the communication is a failure and the hearer adds an
association between the new word and the object. These
simple rules put into action three mechanisms: an uploading
mechanism that introduces new words from an external in-
ventory of words, an overlapping mechanism that allows the
spreading of a particular word among the players, and an
agreement mechanism that deletes useless words. With these
simple mechanisms the system undergoes a disorder-order
transition towards an absorbing state characterized by a
single word for all the players. This behavior scales up to
very large populations.*edgardo@if.uff.br
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As stated before, Baronchelli et al. �9� implemented their
naming game inspired by the behavior of the talking heads
experiment. In this paper, we are interested in modeling
some features more related to a real community of speakers,
such as, for example, a classroom of pupils becoming com-
petent in a language, a community of foreigners learning a
new language, or the dynamics of jargon creation in a met-
ropolitan tribe or in a group of researchers coping with new
objects or concepts. Looking at these situations, the real
world language is open ended, with no evident constraints on
the possible number of different words. We can evidence a
sort of fluidity by which new words can enter or leave the
lexicon inventory.

In contrast, in the original model �9�, each agent can store
an unlimited number of different names only potentially, and
not as a matter of fact. This may be understood if we look
with attention to that dynamics. Even if the agents can store
an unlimited number of words, the rules of the game allow
the introduction of new words only if the agent’s inventory is
empty, and this happens just in the first Monte Carlo �MC�
steps. After this fast transient, when everybody has, at least,
one word, the system manifests itself like a closed system
and no other new words are included. The game is charac-
terized by a fixed number of different words, which, through-
out the overlapping and agreement mechanism, reduces to 1.

A second point that we want to investigate is the limited
feedback between speakers in the case of a failed communi-
cation and its relation with social structures. In a real situa-
tion of failure, the hearer is led to learn the association be-
tween the object and the word only if he recognizes the
speaker as a sort of teacher. Even the fact that the speaker
and the hearer are able to establish, by means of a subsequent
action, if the talk was successful or not does not seem a
sufficient factor to justify the learning of a new association.
In contrast, in the original definition of the naming game, the
overlapping mechanism always forced the hearer to learn
from the speaker. This dynamics is perhaps the most power-
ful for reaching the consensus state, but may be considered
realistic only in the case where the speaker has the fixed role
of monitoring and the hearer of reproducing—in other
words, if the speaker acts as a teacher and the hearer like a
student. It is realistic to suppose that, in general, these roles
are defined by the social structure of the community, and not
randomly assigned during each communication.

The previous scenario, described by Baronchelli et al. �9�,
assumed players operating under full anonymity. A general
attention for the social structure of the community and for
the role of population heterogeneity has already appeared in
later works, which defined heterogeneous topologies, where
different agents play different roles �10�, or noncompletely
random interactions �11�. However, in our work, we want to
point our attention to more specific facts. In situations relat-
ing to humans, players may accumulate information about
their environment and specifically about potential future in-
teraction partners. All players carry some sort of reputation
reflecting their success in communication and, through ob-
servation of third-party interactions and gossip, a player’s
reputation may become known to others. Finally, we can
suppose that all players care for learning from agents known
to generally obtain successful interactions.

We were naturally led to explore if the model of Baronch-
elli et al. �9� is robust to changes that contemplate these
general assumptions and what effects these elements have on
the dynamics and statistical behavior of the system. We are
interested in introducing these new elements not only to de-
scribe a more realistic situation, but to test the robustness of
the mechanisms outlined in the previous model and to inves-
tigate if some simple new structure is able to improve our
system performance in reaching consensus.

For these reasons, in the remainder of the paper, we will
present our version of the model. We will describe an open
system where each agent can actually store an unlimited
number of different names. This fact is possible thanks to a
dynamics that allows the introduction of different words at
every MC step. Moreover, we introduce a hierarchical struc-
ture between the agents playing our naming game, making it
possible to distinguish between the players which act as
teachers and the ones which act as learners. This will be
obtained through the establishment of the concept of status
or reputation, a universal feature of human sociality, which
can be generally related to numerous large-scale human col-
lective behaviors �12�. The importance of introducing this
concept becomes clear if we look at language as a kind of
collective, and not individualistic, problem-solving process.

II. MODEL

The game is played by P agents. An inventory that can
contain an arbitrary number of words represents each agent.
Moreover, an integer number �R� labels each player and rep-
resents its reputation across the community. We introduce
reputation as a score �13� which is variable in time. The
population starts with a random distribution of the R values,
and during the time evolution, the reputation of each player
changes according to its performance during the game, fol-
lowing the rules explained below. During each interaction,
the agent with greater reputation acts like a teacher and the
other one like a learner.

At each time step, the following microscopic rules control
our model.

�1� The speaker, with reputation RS, retrieves a word from
its inventory or, if its inventory is empty, invents a new
word.

�2� The speaker transmits the selected word to the hearer,
characterized by the reputation RH.

�3a� If the hearer’s inventory contains such a word, the
communication is a success. The two agents update their
inventories so as to keep only the word involved in the in-
teraction. The speaker’s reputation increases by 1.

�3b� Otherwise, the communication is a failure. If RS
�RH, the hearer adds the new word to its inventory and the
speaker does nothing. If RS�RH, the speaker invents a new
word and the hearer does nothing. The speaker’s reputation
decreases by 1.

The implementation of these rules defines an open-ended
system where an unlimited number of words can be really
invented. Players invent new words if their inventory is
empty �which happens only in the early stages of the simu-
lation� or if their communication is a failure. In fact, we can
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think that, in real life, individuals that are not able to com-
municate are naturally led to look for new words.

The process determines, across the population, a hierar-
chical structure that allows one to define distinct roles during
each communication event. This structure is dynamical and
changes throughout the temporal evolution. Every player is
continually assessed: reputation is defined as a score, which
can be high or low, depending on the previous rounds of the
play.

III. NUMERICAL RESULTS

We will describe the time evolution of our system looking
at some usual global quantities �9�: the total number of
words �Ntot� present in the population, the number of differ-
ent words �Ndif�, and the success rate �S�, which measures an
average rate of success of communications.

An initial transient exists where agents have an empty
inventory. In this early stage, in each interaction, each
speaker invents at least a new word and each hearer can
possibly learn one. Already in this phase, the behavior of our
model differs from the one of the original naming game. In
fact, in those simulations, this phase corresponds to the rise
of Ndif and finishes when the total number of different words
reaches its maximum, equal to N /2, which is maintained
along a plateau. With our model, the curves Ntot�t� and Ndif�t�
behave in the same manner and constantly increase until a
maximum is reached at tmax. During this long learning phase,
the total number of distinct words does not display any pla-
teau �see Fig. 1�.

When the redundancy of words reaches a sufficiently high
level, the number of successful plays increases. The curves
Ntot�t� and Ndif�t� begin a decay towards the consensus state,
corresponding to one common word for all the players,
reached at time Tcon.

In this dynamics it is possible to distinguish between two
phases. The first one is where the system reorganizes itself,
building correlations as a consequence of a collective behav-
ior. It starts when the time evolution reaches Tmax and S�t�
maintains a linear increase in time. The second one is when
the disorder-order transition takes place and a very fast con-
vergence process toward the absorbing state occurs. Also in
our model, the system passes through a quick reorganization
before entering the fast transition dynamics. In Fig. 1 we
report the temporal evolution for Ntot�t�, Ndif�t�, and S�t�. In
these simulations the initial values of the agent’s reputation
follow a Gaussian distribution centered in 0 with standard
deviation �=5.

In general, the system evolution is strongly dependent on
the initial condition of the reputations’ distribution. The evo-
lution is obviously not dependent on the mean value of the R
distribution, but depends on the value of its spread �. For
example, if we start with every player characterized by the
same value of R, for the same parameters, the maximum of
the total number of words reaches the largest value. In other
words, in this situation the system needs the greatest memory
size. Increasing the spread value, the necessary memory size
decreases, until reaching a minimal value. For instance, if we
chose the R values from a Gaussian distribution and we in-

crease the standard deviation, the maximal memory neces-
sary to begin producing successful plays decreases, reaching
a minimal value for a standard deviation equal to 5 �an op-
timal value that is preserved for different population size�. In
this interval of � values, the convergence time towards con-
sensus seems to be not very different. In contrast, if we fur-
ther increase the spread, Tcon considerably increases. Long-
standing quasi stationary states appear, characterized by the
presence of a fixed small number of words designating the
same object. Figure 2 clearly shows this behavior.

We can understand this fact noting that, if an agent has a
relatively high reputation, in general, it will not learn words
from other players. On the other side, it will have a greater
chance to propagate its own words. Agents with the highest
R value will act as nucleation points, causing the spreading
of the words that generally survive in the final state. For this
reason, in a population with a broad distribution in the repu-
tation, a higher number of prestigious agents form different
clusters of agents with the same words and a coarsening
dynamics generates a very slow evolution towards consen-
sus.

Furthermore, we explore how initial asymmetric distribu-
tions of R could affect the system evolution �see Fig. 3�. We

FIG. 1. Top: temporal evolution for the total number of words
�Ntot�t�� and for the number of different words �Ndif�t��. Bottom: the
success rate �S�t��. Data are averaged over 100 simulations with
P=500. The agents’ initial reputations follow a Gaussian distribu-
tion with standard deviation 5. In the inset we present the distribu-
tion of the convergence time �P=100, �=5�. Data are fitted by a
log-normal distribution.
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run simulations with two classes of agents: one with R=5
and the other with R=−5. When the subpopulation of R=5
players is a majority, the system performance, in terms of
memory cost, gets worst. In contrast, if the number of play-
ers with a high reputation is smaller, the memory cost nec-
essary for reaching consensus is sensibly reduced. These re-
sults have a simple interpretation. It is easier to reach
consensus in an authoritarian community, where the few in-
dividuals with a high reputation can easily and efficiently
spread their words among population.

IV. SCALING LAWS

From the viewpoint of applications and for better under-
standing the model behavior, we investigate how the macro-

scopic observables scale with the size P of the population.
At first, we look at the scaling behavior of the system

memory size. The maximum number of total words
�max�Ntot�� and the maximum number of different words
scale according to the same power law: P3/2 �see Fig. 4�. The
behavior of max�Ntot� is the same founded by Baronchelli et
al. �9�. In contrast, in their work, the maximum number of
different words scales as P, because it is governed by a dif-
ferent dynamics that does not allow the introduction of an
unlimited number of new different words.

In our model, the scaling of the time position of the peak
that corresponds to the maximum number of total words is
Tmax� P3/2 �see Fig. 5�. To sum up, the dynamics of accumu-
lation and spread of words of our model is very similar to the
one given by the model described in �9�, which required a
large agents’ memory �P3/2� and a long period of words ex-
changing between players �P3/2�. A way of improving this
behavior, experimented for the model in �9�, is its implemen-
tation on a low-dimensional regular lattice, where a minor
memory requirement is found, at the cost of a very slow
convergence towards consensus �14�.

The time necessary to reach convergence to the global
consensus �Tcon� is the other fundamental quantity that char-
acterizes our system. Tcon displays an interesting behavior:
for small communities �P�10 000� the hierarchical structure
defined by the reputation parameter has a strong influence
over convergence and

Tcon � P1.2.

This scaling behavior is slower than the one found by
Baronchelli et al. �9�, where Tcon� P3/2. It is also slower of
the same model when embedded in a small-world topology,
where the convergence process has a P1.4 dependence �15�
�we remind the reader that slower scaling behavior in P
means faster convergence time�. Unfortunately, the positive
effect of reputation breaks up as the dimension of the com-
munity grows. For a population larger than 10 000 individu-

FIG. 2. Temporal evolution for the number of different words
for a population with a reputation obtained from Gaussian distribu-
tions with different standard deviations ���. The inset shows the
very slow convergence towards the absorbing state, characterized
by the presence of long-standing quasistationary states. Data aver-
aged over 100 simulations with P=500.

FIG. 3. Temporal evolution for the number of different words
for populations with an initial asymmetric distributions in R. The
population with 10% of agents having R= +5 �teachers� and the
others having R=−5 shows the minor memory requirement. The
population with 90% of teachers needs the largest amount of
memory. Data averaged over 100 simulations with P=500.

FIG. 4. Maximum number of total words and, in the inset, maxi-
mum number of different words for different population sizes. The
lines have slope 3 /2. In all simulations the agents’ initial reputa-
tions follow a Gaussian distribution. These results are robust with
respect to the choice of different � values.
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als there is a sudden change �see Fig. 5� and the new depen-
dence becomes P3/2. This large-scale behavior of Tcon is an
expected outcome: in all the implementations of these mod-
els, the P dependence of Tcon must be higher or equal to the
Tmax dependence. From this perspective, the temporal scaling
behavior of the dynamics of accumulation and spread of
words �Tmax�, which usually scales as the system memory
size, directly influences the P dependence of Tcon.

We can better understand our results with the help of
some simples considerations. The convergence time encom-
passes the time necessary for the conclusion of two different
dynamical processes which can have distinct scaling behav-
iors. The first process, which occurs from the starting of the
simulation up to Tmax, is characterized by the accumulation
of new words in the agents’ memory and the establishment of
correlations between them. In this time span, the introduction
of the reputation structure does not have any relevant role in
the scaling behavior, which shows the same exponent ��
=1.5� as in the classical model. The second process, which
extends from Tmax to Tcon, is characterized by the fast align-
ment among all memories. This second time period �Tcon
−Tmax�, in contrast, is strongly influenced by the presence of
the hierarchical structure introduced by the players’ reputa-
tion. In fact, if we look at its scaling behavior �see Fig. 5�,
we find a power law with an exponent � slightly smaller than
1.2. These facts suggest that Tcon�P� can be alternatively fit-
ted by a linear combination of these two power laws: Tcon
=aP�+bP�.

From these considerations we can interpret the origin of
the crossover pointed out by our previous fitting procedure.
A characteristic Pcha value exists that defines two different
scaling behaviors. For P� Pcha the slower power law P� is
the relevant one; for P� Pcha, the relevant is the faster one
�P��. These facts introduce the notion of a small system,

which can be interpreted as the characteristic scale for which
the social structure is relevant in defining the overall conver-
gence time of the ordering transition. This happens when the
second process of fast alignment results in being more rel-
evant than the dynamics of memory accumulation.

Finally, this analysis suggests to us an interesting suppo-
sition. If we arrange the agent plays in a small-world topol-
ogy where, for the original definition of the naming game,
the memory costs and, in particular, the time to reach its
maximum are reduced �P dependence �15��, the scaling law
Tcon� P1.2 may be preserved for any population size.

The scaling behavior of the convergence time that we
obtained for relative small communities is quite promising.
As far as our knowledge goes, for mean-field-like interac-
tions, only a complex playing strategy which introduces an
ordering in each agent inventory �play smart strategy �16�� is
able to obtain faster convergence times �a scaling behavior
slower than P1.5�. Such an algorithm implies a cognitive ef-
fort for each individual. In contrast, our model introduces a
light structure at the collective level of the community which
is able to obtain similar behaviors for small populations.

V. CONCLUSIONS

We presented results regarding an implementation of the
naming game. Our model describes an open-ended system
and embodies a hierarchical structure introduced by players’
reputation, which reflects their success in communication.

We showed that convergence towards the use of a single
word is possible. The analysis of the scaling behavior, in
dependence on the population size, evidences that our model,
in the limit of very large populations, belongs to the same
universality class of the model of Baronchelli et al. �9� for
the behavior of the maximum number of total words, its time
position, and the convergence time. In contrast, for small
communities a slower P dependence in convergence is
found. These results assess the robustness of the disorder-
order transition for real open-ended systems. They propose
an innovative collective structure able to improve the system
performance in reaching consensus, suggesting a way for
optimizing artificial semiotic dynamics. Moreover, we found
how a dependence on the initial distribution of the agents’
reputation exists, which can lead to the appearance of long-
standing quasistationary states characterized by a low num-
bers of words. From a more general point of view, we tested
the possibility of reaching consensus through a more realistic
overlapping mechanism, implemented by introducing the
concept of reputation.

Finally, we want to recall how many interesting problems
remain open and could be subjects for future works. First of
all, it will be interesting exploring the role of the system
topology. Different complex topologies could be studied for
agents embedded on more realistic networks. As mentioned
above, the exploration of the effects of a small-world topol-
ogy on the two P-scaling regimes could be particularly rel-
evant. In fact, if it could represent a trade-off between the
memory peak time and the convergence time, a really faster
convergence for large populations would appear. Second, it
could be interesting to elucidate if, for large � values, it is

FIG. 5. �Color online� Convergence time �Tcon, data on the top�
and time position of the peak that corresponds to the maximum
number of total words �Tmax, data on the bottom� for different popu-
lation sizes P. Tcon displays a crossover: for P�10 000, Tcon

� P1.23�0.01; for P�10 000, Tcon� P1.49�0.03. Tmax is well described
by a power law with exponent 1.54�0.01. The inset shows the
power-law dependence of the alignment time Tcon−Tmax �the fitted
exponent is 1.14�0.02�. We present simulations where the agents’
initial reputations follow a Gaussian distribution with different �
values.
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possible to define an order-disorder transition, with a critical
� value for which consensus is not attainable. More gener-
ally, this study should show a thorough investigation of the
role of different R distributions.
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