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Abstract

Human, syntactic language is one of the most
intriguing behaviors and receives increasing at-
tention from researchers in numerous fields. Here
we present a model that goes an important step
further than previous work because it explicitly
connects low-level perception and categorization,
hierarchical meaning construction and syntactic
language. The model thus shows a solution to
the ‘symbol grounding problem’ (Harnad, 1990):
the meaning of the symbolic system — logical sym-
bols and syntactic rules — is grounded in its rela-
tion with a simplified but realistic world. We dis-
cuss the different components of this collabora-
tive effort: (i) a realistic simulation of Newtonian
dynamics of objects in a 2D plane; (ii) schema-
based event-perception and categorization; (iii) a
semantics based on predicate logic; and (iv) a cat-
egorial grammar for the production and interpre-
tation of language. The integration of the dif-
ferent components poses on the one hand novel
and important constraints; on the other hand,
it allows for experiments that help to identify
the relations between the different levels. We
note some important similarities and differences
with SHRDLU (Winograd, 1976) and the Talking
Heads experiment (Steels et al., 2002), and give
an agenda for future experiments.

1. Introduction

Human language is one of the most intriguing adaptive
behaviors that have emerged in evolution. With our lan-
guage we can communicate about events that have hap-
pened in the past or will happen in the future; we can
express complex causal relations, phrase questions or im-
peratives, and share in detail previous experiences. Lan-
guage makes it possible to express an unbounded num-
ber of different messages, and it serves as the vehicle for
transmitting knowledge that is acquired over many gen-
erations. Human language, with its grammar, is viewed
as the last major transition in evolution (Maynard-Smith
and Szathméry, 1995): a transition that opens up a fun-

damentally new level of information transmission and
selection.

In many fields, from anthropology to computational
linguistics, human language is a central issue. In re-
cent years also researchers in the field of simulation of
adaptive behavior have studied the origins and nature
of human language. Such studies have concentrated on
the emergence of a lexicon of arbitrary form-meaning
mappings, either through evolutionary optimization (e.g.
MacLennan and Burghardt, 1994; Noble and Cliff, 1996)
or through ‘coupled’ learning behavior in populations
of agents (e.g. Hurford, 1989; Steels, 1996a; Oliphant,
1999). With the same approach, interesting results have
also been obtained on the emergence of sound systems
(e.g. De Boer and Vogt, 1999) and syntax (e.g. Kirby,
2000; Batali, 2002).

These studies have focused on issues that were largely
ignored in more traditional approaches, in particular the
question: how did human languages become the way
they are? Moreover, they have put an emphasis on
studying “complete agents”, agents that not only have
the ability to interpret language (the focus of most work
in formal linguistics), but also to produce language, ac-
quire language and use it to perform a task in an environ-
ment. This shift in emphasis has brought new criteria
on what makes useful representations, formalisms and
models, and it has brought new challenges.

Harnad (1990) defines one of these challenges as the
‘symbol grounding problem’: how is symbol meaning to
be grounded in something other than just more meaning-
less symbols? Harnad argues that it is cognitive theory’s
burden to explain how “human beings (or any other de-
vices) [...] can (1) discriminate, (2) manipulate, (3)
identify and (4) describe the objects, events and states
of affairs in the world they live in, and they can also (5)
“produce descriptions” and (6) “respond to descriptions”
of those objects, events and states of affairs.” (Harnad,
1990). We here present a system that is, for a simplified
world, capable of doing all these things.

But our ambitions go even further. If we are to se-
riously explore the functional and semantic constraints
on the (1) use, (2) acquisition and (3) evolution of lan-
guage, we need a sophisticated model of meaning that



is grounded in interactions with the world. Most exist-
ing models of the evolution of syntactic language (e.g.
Batali, 2002; Kirby, 2000) presuppose the existence of a
set of meanings, that is moreover extremely simple (of
the type “john sees mary”). In this article we describe
a system that was designed to investigate the acquisi-
tion and evolution of a language that is grounded in a
rich interaction with the world: by giving the agents the
possibility to observe and act upon a world, by letting
the agents evolve their own meanings, thus letting the
meanings really mean something in this world.

2. Previous work

2.1 SHRDLU (Winograd, 1976)

One of the first fully integrated system system was
SHRDLU, consisting of a simulated blocks world, a se-
mantic processing module, a planning algorithm, a gram-
mar, etc. The currently described system bears many
similarities with SHRDLU, but there are also important
differences, the most important being that SHRDLU
shows no grounding.

The blocks world in SHRDLU is a set of predicates,
for example stating there is a red cube C' and a trian-
gle T. In addition there are relations like ON(T,C),
stating that the triangle is currently positioned on the
cube. Finally, the ‘physics’ of the world are a set of
transition rules stating that, for example, if SHRDLU
would perform the action PICK-UP(T), then the re-
lation ON(T,C) will no longer be satisfied. All this
information is preprogrammed, given in advance to
SHRDLU. This means SHRDLU would be totally lost
if a new kind of object enters the scene, for which it
does not know any rules or relations. It would get even
worse if this object, say a ball, would suddenly start to
roll, a behavior not imaginable by SHRDLU because it
was given no transition rules for it, and it has no means
of creating new transition rules.

The current system does not presuppose anything
about its world, except that it provides the agent with in-
puts. The agent remains adaptive, keeps an open mind,
and would not be totally lost if suddenly some new ob-
ject would enter the scene. This makes our job a lot
more difficult of course, and we do not claim we have
solved the problem even in the restricted domain of a
blocks world. But we do think that research on integrat-
ing and exploiting ideas from both the classical and new
AT can provide an important step forward and maybe
lead to a SHRDLU that would not be lost when facing
an unknown experience, or even when placed in ‘the real
world.’

2.2 The Talking Heads (Steels, 1997)

Another important predecessor of the system described
in this paper is known as the ‘Talking Heads’ (TH) ex-
periment (Steels, 1997). This experiment is based on the
notion of language games (Steels, 1996a; Wittgenstein,
1967). The goal of the TH experiment was to study the
emergence of a shared lexicon through social interactions
in a population of language-capable agents.

At the outset, the agents in the TH experiment have
no concepts of the world and no language. Driven by
their (preprogrammed) urge to be able to discriminate
the different objects in their world they start dividing
up their sensor data into regions, thus forming basic
but nevertheless useful primitive concepts (discrimina-
tion games; Steels (1996b)). These concepts (meanings)
are then communicated in language games. This way,
through their social interactions, they collaboratively in-
vent the language they need to communicate, and work
towards a shared language. This in turn provides feed-
back on the value of created concepts.

There is no central entity in the experiment that de-
cides on the language. In the beginning communication
is chaotic, because different agents will independently
try different words for expressing the same meanings, or
even develop different concepts. The driving force to-
wards convergence is every individual agent’s desire to
be able to communicate with as many other agents as
possible, which causes it to adopt those words that (ac-
cording to its own observations) most other agents use.
This behavior generates a feedback loop in which a cer-
tain word, as soon as it gains a small edge on other words
that express the same meaning, will be adopted by pro-
gressively more agents, until the whole population uses
it (Steels et al., 2002).

An agent’s learning mechanisms remain in force
throughout the agent’s life cycle, even when the pop-
ulation’s language has been stable for a long time. This
allows the population to remain resilient for changes in
the environment; the agents will be able to create new
language structures as necessary to accommodate any
change in the environment as soon as it occurs.

The system described below bears many similarities to
the Talking Heads system. The Talking Heads showed
that the concept of an integrated system for language
games, combining both classical and new Al ideas, can
lead to successful experiments and important results,
both in linguistics, machine learning and philosophy. It
has therefore been an important step forward. But, in
order to investigate more complex aspects of language
(and cognition in general), and in order to validate these
conclusions for more complex environments, it has to be
extended in several ways:

e The TH’s world is static. There is no time, no cau-
sation, nothing is really ‘happening.’ Clearly, cause-



consequence chains are fundamental to language (and
intelligence), and a realistic world should reflect this.

e The conceptualization and learning mechanisms in
the TH agents are not capable of representing cau-
sation, or indeed any other type of complex event.
Concepts are, at best, combinations of regions in in-
put space. Even static notions like ‘tower’ cannot be
represented.

e The agents cannot perform actions in the world,
and are therefore unable to achieve goals other than
getting better in communication and discrimination.
This also means it is not possible to let the evolu-
tion of concepts and language take advantage, of the
agent’s ability to perform actions, nor guide or reflect
other goals.

e The language production and interpretation capaci-
ties of the TH do not allow for compositional mean-
ings, as is clearly the case in natural languages (gram-
mar). The utterance ‘blue square left triangle’ is in no
way distinguishable from ‘left square blue triangle’.
This is because words and meanings are equivalent
in the TH, no grammaticalization step is performed
between the construction of a semantic description
and the construction of an utterance.

3. Simulating Newtonian dynamics

As a first step towards our new system, we built a vir-
tual and simulated world for our agents to ‘live’ in. On
the one hand the world should not be so complex that it
would be impossible to implement or run within a rea-
sonable time frame. On the other, it should be complex
enough to allow for hidden (state-)variables, time, causa-
tion, etc. A simple yet realistic model of part of the real
world seems a good candidate. Therefore we chose to im-
plement a blocks world that is two-dimensional and only
consists of rigid polygonal bodies, but where the bodies
actually behave as prescribed by the laws of Newtonian
physics, including rotation, static and dynamic friction,
gravity, etc.

There is a vast amount of literature and research
on physically correct simulation of rigid bodies, mainly
driven in recent years by the emerging possibilities to use
these techniques in virtual reality and computer anima-
tions, for production process optimization and, of course,
for computer games (e.g. Hanh, 1988; Moore and Wil-
helms, 1988; Keller et al., 1993).

There are two main approaches to simulating the laws
of physics for rigid bodies: either all interactions be-
tween contacting bodies, even interactions at so called
resting contacts, are modeled by a collision (impulse-
based methods, e.g. Mirtich and Canny (1995)), or rest-
ing contacts are modeled trough action/reaction forces
(constraint-based methods, see e.g. Baraff (1994)). Some

attempts have been made to combine the two approaches
(e.g. Mirtich, 1995).

What is important for our purposes is that, with both
approaches, it is possible to simulate real undeformable
world objects very realistically. Although this is not the
place to elaborate about technical and mathematical de-
tails of rigid body dynamics, we mention that colliding
contacts are handled by impulse forces including friction
and energy dissipation, parameterized by a coulomb fric-
tion coéfficient p and a coéfficient of restitution e (see
Hanh (1988); Moore and Wilhelms (1988) and Chatter-
jee and Ruina (1998) for a more thorough analysis of the
subject), while resting and sliding contacts are handled
by action/reaction forces as described in (Baraff, 1994),
slightly modified to allow for fast friction force calcula-
tion. Using this scheme, the behavior of simulated rigid
bodies seems to be very realistic.

The system we implemented allows one to define a
world and add body definitions to it without further
having to care about how the bodies should act or in-
teract. The main simulation loop is as depicted below,
although in reality it is a bit more complex because it
involves detecting penetrations between bodies and pos-
sibly backing up the simulation (collision detection.)

simulate (simulation-definition) {
initialize the simulation;
loop {
advance simulation state up to
next contact or next display time;
determine and apply contact forces;
display the simulation;

T}

The state of a simulation consists of the position X, ori-
entation «, impulse P, angular momentum L, force F
and torque 7 for every rigid body in the simulation, to-
gether with some extra derived state variables to make
for example collision detection faster.

Advancing the simulation means solving a system of
coupled differential equations describing the change of
all state variables with respect to time:

X = P/m,
& = LJI,
P = F,
L = 7

These are the laws of Newton, and they allow us, or an
agent, to apply external forces to the bodies.

At every simulation step we can ask the system to
provide us with information about its current state. For
example we can get information about the position or
color of blocks in the simulation. This information (or
part of it, possibly after a number of transformations or
noise adding) can now be used to supply an agent with
input or observations. This will be discussed in the next



section; fig. 1 gives a sequence of simulation frames for
a simple simulation of a ball bouncing down some stairs
and colliding with some domino bricks.

Figure 1: some subsequent views on an example simulation.
Time increases from left to right before top down.

One can see that, although the ball does not hit the
top stair block at an edge, it does start moving to the
left after the first collision. This is because the ball is
rotating counterclockwise, so that friction causes the ball
to move to the left during the collision.

4. Conceptualization

This section describes the part of the system that pro-
cesses the input an agent gets from the simulation (the
raw data) and tries to transform it and detect meaning-
ful or useful concepts. In the current and first experi-
ment, these concepts consist of events like ‘an approach’
or ‘a collision’, but also objects like ‘a red triangle’ or
‘a tower’. It is not our aim to build an ‘event detection’
system however, but to build a system that is able to
construct and detect concepts, to give meaning to and
make use of the raw data it receives trough observation.

In the first subsection we formulate and discuss some
criteria the event perception system should obey. The
second subsection describes the actual design of our sys-
tem in more detail. The last subsection gives a short
comparison with related systems.

4.1 Some criteria

The simulation described in the previous section pro-
vides input for an agent. It defines the world of inter-

action for an agent; the world the agent should observe,
reason about and act upon. The first question at this
point is what type of data from the simulation should
be given to an agent. For example, we could provide an
agent simply with all pixel values of a simulation win-
dow. The other extreme would be to give the agent
access to the entire state of the simulation (positions,
impulses, contacts, etc.) This would not be consistent
with our aim and philosophy of grounding both the ori-
gin and meaning of an agent’s concepts, for then, the
world would again be part of the agent. For practical rea-
sons, we chose a middle way. We transform (not copy)
part (not everything) of the state of the simulation to
a new set of observation variable-value pairs. This raw
data represents the equivalent of data an animal receives
trough its receptors. Of course, it is not equivalent, it
only represents perceptional data as one would define it
in a real animal. However, the agent does not get infor-
mation from the simulation that could not be provided
by applying segmentation and other standard image pro-
cessing techniques on camera images (such as used in the
TH, Steels et al., 2002).

The next question is: what should the event detec-
tion or concept formation system do with this raw data?
The system should be able to detect meaningful and thus
useful concepts with respect to some task the agent is to
perform (e.g. a language or discrimination game, predic-
tion, ‘moving all red blocks to the left’,...)

In addition, we don’t want an agent to ‘get lost’ when
a previously un-encountered event happens. It should
therefore be able to create new detector channels, new
concepts triggered by other primitive or previously cre-
ated event detectors. For example, assume an agent is
at some point able to measure, trough observation, po-
sitions of objects in the blocks world and it would be
useful for the agent to create a detector for approach-
ing objects. A new ‘approach’ detector could be built,
looking for pairs of objects of which the positions are
getting closer. Note that, because newly created detec-
tors in their turn become building blocks for other event
detectors, arbitrarily abstract concepts could come to ex-
istence. These will however still be grounded as is also
explained in Harnad (1990).

Finally, it should be possible to attach actions and
predictions to the occurrence of an event.

4.2 Implementation

Our implementation consists of item and template data-
structures, together with a system for processing them.
Items can represent virtually anything, they are data
structures that have a unique ID and a set of features,
every feature having a name, a value and a history (see
later). Observation of the simulation can for example
result in a set of object items having features for position,
color, etc.



Apart from observation, other items representing more
abstract or newly created channels should be created.
This is the task of templates. Templates are detectors
for various things. They can become active for simple
object items, but also for configurations of objects (e.g.
‘tower’) or events (such as approaches or touches). Tem-
plates consist of an activation slot, an action slot and a
prediction slot. The activation slot is a set of conditions
on items the template needs to get activated. For exam-
ple, the approach template mentioned above, could have
an activation slot

(and (has-feature-p position 7x)
(has-feature-p position 7y)
(decreasing-p (distance 7x 7y))),

where has-feature-p and decreasing-p are predefined
predicates and distance could be a newly evolved de-
tector. The symbols starting with a question mark rep-
resent variables, to be bound to items for activation of
the template: the template can be activated when it
can find a binding for its activation slot consisting of
items that, when filled in, make the activation predicate
become true. The action slot of a template could for
example be to create a new item.

As mentioned, next to a (current) value, features also
have a history. This reflects the change the feature
value has made before it got its current value and is
the way our event detection system handles time and
change. Because it is impossible to record every change,
some way of filtering, some way of abstraction has to
be done. We therefore adopted some ideas from quali-
tative physics (see e.g. Weld and de Kleer (1990) for an
overview or Kuipers (1994) for a particular but com-
prehensive model): only the direction of change of a
feature’s value is recorded. In addition, a new history
epoch is started whenever this direction changes itself.
For example, suppose a bath tub is filling with water,
starting of empty. The height of the water in the tub
starts at zero. From there on it increases, but only until
it reaches the edges, from where it is steady again. Thus,
the history of a water-level feature would after the whole
experiment consist of three epochs: (1) zero and steady
before start time, (2) between zero and full and increas-
ing after start time, and (3) full and steady after filling
time. Of course, a template’s activation slot should be
able to test on the history of a feature, as is the case
with the approach template above.

4.8  Relation with other systems

Neural Networks: Concept formation in the sense of
pattern recognition and learning of new patterns is
currently probably best done by neural networks
(NN). At the lowest (least abstract) level, the crite-
ria we put forward could be seen as a description of a
neural network where concepts would be frequently

re-occurring activation patterns that proved useful
in some way or another. At this point, however, it
would be difficult to replace the techniques we have
used with a neural network. In a NN it can be hard
to identify individual concepts, because they can be
distributed all over the network and may never be
entirely the same. In addition it is not clear how, for
example, a neural network can be constructed that
can handle an input of a variable number of objects
or can represent something like ‘an object’ as a well
bounded collection of time varying features and prop-
erties in the first place (the binding problem, von der
Malsburg 1981) without making use of e.g. standard
image processing techniques to preprocess network
input.

Frame Systems and Semantic Networks also have
some of the characteristics mentioned above. They
have been extensively studied in the field of knowl-
edge representation and computational linguistics. In
Brachman and Levesque (1985), a comprehensive col-
lection of some of the most influential papers on the
history of knowledge representation is given. How-
ever, it is not well understood how time and change
can be incorporated, or how such frame systems or
networks could be learned (a question we also in part
still have to answer). One particular interesting im-
plementation of empirical learning of a kind of frame
system is described in Drescher (1991). Drescher
implements a mechanism to learn schema’s where
a schema is a tripartite structure comprising a con-
text, action, and result. Learning is done by alter-
ing and chaining together schema’s to improve the
agents performance in predicting its living environ-
ment. Next to prediction, we think language can
also be an important constraining principle guiding
a learning agent to a shared and useful set of con-
cepts.

Event Detection is another related field. There are
two main approaches to event detection, that both
define a set of primary events that can be detected in
video-streams using e.g. segmentation and that both
assume every event can be formulated in terms of the
primitive events. In the rule based approach (Baillie
and Ganasca, 2000), the logical and temporal rela-
tions are formulated explicitly by he designer in a set
of rules. These methods resemble our approach but
are not designed to learn new events'. Our system
is capable of representing such rules. In the induc-
tive approach (Siskind, 1992), definitions of events
are not explicitly represented but learned by a neural
network or a hidden Markov model. After training,
the system is able to respond to the occurrence of

Lsupervised learning of event definitions is currently investi-
gated and seems successful



certain events. But in such a system it is difficult
to reason about events or give information about the
internal structure of an event, thus making it less
suitable for language production and other symbolic
cognitive tasks.

5. Semantics descriptions

The conceptualization module recognizes and filters
events from the huge stream of events that can be re-
trieved from the raw data. Only those events are re-
tained that have some relevance to the agent, according
to certain criteria. These criteria depend on the differ-
ent tasks that the agent has to perform within the world,
ranging from basic ‘survival’ tasks such as charging bat-
teries (for a mobile robot), to higher-level tasks such as
communication and cooperation with other agents.

At any time however, the agent will be performing
only a limited subset of all tasks that it should pay at-
tention to while it is in operation. For example, when a
mobile robot just charged its batteries, the importance
of the battery-charging task will be at a very low level.
Accordingly, the events that relate to this task, such as
detecting the battery level, should be perceived but not
attended to unless they become important.

The event stream generated by the event perception
has to be filtered so that those events that are impor-
tant to the agent at a certain time step are immediately
available for further processing (action planning, verbal-
ization, etc). This is the semantic subsystem’s responsi-
bility: one of its tasks is to act as an attention focusing
system, providing a concrete representation (semantic
descriptions) for those aspects of the perceived environ-
ment that require immediate processing.

5.1 Semantic descriptions

In our system, semantic descriptions are combinations
and manipulations of concepts that express a certain
aspect of the environment; things like ‘the blue square
approaches the circle.’ They take the form of simple,
Prolog-inspired programs, and are thus based on predi-
cate logic. Each statement can represent a predicate (for
example, (blue ?7x), or a function to perform on an ob-
ject or an event (for example (patient ?y ?x) which
extracts the patient from event ?z and binds it to %y).
The semantic descriptions are relatively similar to pro-
cedural semantics-type descriptions such as introduced
by Woods (1968) and later in slightly different form by
Winograd (1976). Both Woods’ and Winograd’s systems
were mainly aimed towards language understanding, and
not language production. Especially Woods’ system uses
explicit procedures that can only be used to do queries
on a data base. In Winograd’s system there is language
production, but his solutions to the problems he faced
were ad-hoc and specific to the small blocks world. For

(?x | (approach 7x)
(agent 7y 7x)
(blue ?7y)
(square 7y)
(patient 7z 7x)
(circle ?z))

Figure 2: Semantic description for the blue square approaches
the circle

example, the semantic descriptions that SHRDLU uses,
are based on semantic markers: a predefined hierarchy
of concepts that the system knows beforehand. One of
the things we want to do with our system however, is
precisely to study how such a concept hierarchy emerges
from the interactions of the system with the world. This
makes it impossible to use a closed set of predefined se-
mantic markers, and emphasizes the need for a mecha-
nism of abstraction, so that the system can create con-
cepts in a hierarchical way by itself.

An example of a semantic description is shown in fig. 2.
This sequence of predicates says that ?7x must be an ‘ap-
proach’ event that has an agent 7y which is blue and
square and a patient 7z which is a circle. The agent has
an evaluator that is able to process these sequences of
predicates within the set of perceptions that the agent
acquired from the current context, and construct a set of
bindings for ?x, ?y and 7z such that the entire predicate
is true if and only if such a set exists.

Variable ?x is the head of the meaning; this is in-
dicated by the explicit mention to the left of the opera-
tions. In this case, the ‘approach’ event is the head. The
same sequence of predicates can also be used to express
the head 7y, in which case a natural language rendering
could be ‘the blue square approached by the circle.’

5.2 Meaning Construction

Since our agent lives in a complex, changing world, we
want it to adapt to this world. This means that it is not
desirable to give it in advance the semantic descriptions
that it will need to be able to perform its tasks. Hence,
we must include a mechanism that allows the agent to
create new semantic descriptions on-the-fly, as it needs
them to describe something.

The mechanism that allows an agent to construct
meanings of arbitrary complexity is abstraction or nam-
ing. The agent is not only capable of constructing com-
plex semantic descriptions, as shown in the previous sec-
tion, but it is also capable of giving new descriptions
names and incorporating them in its repertoire of oper-
ations that it uses to construct semantic descriptions. A
description added in this way can subsequently be used
in new descriptions in the same way that primitive oper-
ations are used to construct lower-level semantic descrip-



tions. For example, the description of fig. 2 with topic
7y, abstracted as (operationl ?7y) could be used as the
topic in a description for the blue square approaching the
circle is large:

(7w | (operationl 7w)
(large 7w))

This mechanism also completes the compositionality
of the semantic system: descriptions are functions of
their elements, which in their turn can be composed of
several other descriptions, and so on.

5.3 Relation with conceptualization

There is an important interplay between the conceptu-
alization and the construction of semantic descriptions.
Events are constructed from raw perception data by us-
ing detectors that find correlations between the data
(e.g. the distance between two objects becoming mono-
tonically smaller), and identify them as ‘events’ (e.g. an
‘approach’ event). Semantic descriptions are constructed
in a similar way, by finding relations between objects
and events. When semantic descriptions are used of-
ten, this indicates that they are important, which might
trigger a process to move the detection of the mean-
ing one stage earlier, i.e. the conceptualization phase.
For example, an agent might notice several times that
an ‘approach’ event is often followed by a ‘touch’ event.
If this happens frequently enough, the agent’s semantic
subsystem could instruct the event perception module to
combine those two events into a new ‘collision’-event de-
tector that watches for approach-touch sequences. This
could be compared to e.g. learning to dance: in the be-
ginning one has to consciously think of every step you
one makes, but after a while the whole process becomes
fluent and automatic.

6. Grammar

The final component of the system deals with transform-
ing the semantic descriptions to natural language and
vice versa. This transformation is the work of a gram-
mar. Many grammar formalisms exist, each with strong
and weak points. For the purposes of our system we
needed a formalism that can deal with the semantic de-
scriptions that the semantic component uses. Some con-
sensus criteria for such a formalism are (see e.g. Gamut,
1991):

Compositionality: The formalism should support
compositionality, i.e. the meaning of a sentence is
a (systematic) function of the meaning of its parts.
Simply storing complete sentences and their meaning
is not enough, nor is simply adding up the meaning
of different words (as in the multiple word games,
Van Looveren 2000). Instead, the formalism should
be able to build-up sentences by combining lexicon

entries, and attribute the argument structure (the
“who did what to whom”) based on word order
or morphological markers. However, the formalism
should not be restricted to only build-up sentences
from words: it should be able to deal with larger
units such as complete idioms as well.

Phrase structure: To attribute argument structure
correctly (and in a later stage deal with e.g. stress
patterns), the formalism should be able to recognize
the phrase structure of sentences. I.e. it should iden-
tify “the block” as a phrase (a noun phrase) in the
sentence “the circle approaches the block”, and ob-
serve that “approaches the” is not such a phrase.

Recursion: It should be possible to nest phrases in
other phrases, as in “the block approaches the block
that just hit the triangle” (the triangle’s phrase is
nested in the block’s phrase). Only a system that is
both compositional and recursive can “make infinite
use of finite means”, which is seen as a fundamental
property of human language (Chomsky, 1999).

Moreover, we prefer a formalism (i) that is simple, but
easily extendible; (ii) that is well understood; (iii) for
which learning algorithms exist; (iv) where semantic and
syntactic operations are intricately tied together; and (v)
that is largely lexicalized, i.e. all information is in the
lexicon and words, combinations of words, and sentences
(e.g. idioms) can be treated in the same way.

6.1 Categorial Grammar

Categorial grammar is such a formalism. A categorial
grammar implies that every syntactic entity of a lan-
guage (i.e. a word) has a grammar category assigned to
it. In the simplest case, there are only two basic cate-
gories: n and s (for noun and sentence, respectively). All
other categories for a sentence part p; can be constructed
by combining the basic categories by considering the sen-
tence part po that can come immediately before or after
a word. The combination of two sentence parts will be
assigned a resulting category.

For example, “block” and “circle” are both of the basic
category n. Now, if we want to say “the block” or “the
circle”, we need “the” to be of a category that must
be followed by an n, and which results in something of
category n. So, “the” is of category n/n: it results in a
category n (the first one), if it is followed (forward slash)
by a sentence part of category n (the second one).

Similarly, we can define a verb “approaches” as a sen-
tence part that produces a complete sentence s if they
are both preceded and followed by something of category
n: n\s)/n. This means that, if the verb is followed by an
n, the result r is something that is of category n\s; this
means in turn that r should be preceded (backslash) by
something of category n to produce an s. Table 3 shows



the n/n

block n
approaches | (n\s)/n
the n/n
circle n

Figure 3: Syntactic categories for the words in “the block
approaches the circle”.

the lexicon for the words in the sentence ‘the block ap-
proaches the circle’.

In our system we use a variant of categorial grammar
that is slightly more general than this pure form. We
represent n/n (a category that needs an n on the right
side to yield an n) as (n n r). A category is thus ei-
ther one of the basic categories n or s, or of the structure
(yields needs constraint), where yields and needs
are categories. The constraint is in the present imple-
mentation either an 1 (left) or an r (right), but can be
extended to other types of constraints. This will be nec-
essary to model free word-order languages (such as Latin
or German).

6.2 Semantics

In the categorial grammar tradition the usual way to
deal systematically with the meanings of combinations
of lexical entries, uses Church’s lambda calculus (see
e.g. Gamut, 1991, for a discussion). We adopt this solu-
tion, which means that we have to extend the semantic
description with the possibility to include lambda ()
terms. Lambda terms can be seen as listing the vari-
ables that still need to be substituted; they disappear
when a complete semantic description is reached.

E.g. the following is the semantic description for “x
approaches y”, where x and y still need to be filled in:

(1) (?x | A?x A?y | (approach ?7z)
(argumentl 7x)
(argument2 7y))

When applied to the following semantic description
(2) (7p |l (circle ?7p)
the resulting description is as follows:

(3) (?p | A?y | (approach ?7z)
(argumentl ?7p)
(argument2 ?7y))
(circle 7?p))

Le. the variable 7x in (1) is replaced by the head of
(2), and the A7x is removed. (3) means something like
“the circle approaches y”, where y still needs to be filled
in. (3) can in turn be applied to e.g. the description
of a block, yielding a description meaning “the circle
approaches the block”.

6.3 Production & Interpretation

We have implemented a production algorithm and an
interpretation algorithm that, given the proper lexi-
con, map semantic descriptions on natural language ex-
pressions and vice versa. These algorithms are rather
straightforward:

production starts with a target semantic description;
the system selects all its partial matches in the lexi-
con and searches for a way to combine these entries
that yields a correct sentence (e.g. of type s), with a
semantics that is identical to the target description.
In the current version it is implemented as a standard
constraint-satisfaction problem.

interpretation starts with a natural language sen-
tence; the system finds all partial matches in the
lexicon and searches a way to combine these entries
such that it matches the complete sentence and yields
a consistent interpretation (a semantic description,
without A’s and with all variables bound). In the
current version it is implemented as standard depth-
first, exhaustive search.

7. An example of the system ‘at work’

In this section we give an example of how the system be-
haves on input from a simple simulation shown in fig. 4,
where two red squares are moving in opposite direction.

Figure 4: Some subsequent views on an example simulation,
Time increases from left to right before top down.

In this example, the agent could be the speaker in a
language game. It therefore has to pick a subject from
the simulation (actually, from the items the simulation
triggered into existence) to talk about, find a semantic
description for it and finally verbalize this description in
a grammatical correct utterance.

Thus, the first step the system takes when the simu-
lation starts is to try to detect events. For this example,
we gave the system definitions for various moving events



form meaning category
head substitution list meaning
" approaches” 7x (A?7y A7x) ((APPROACH 7z) | (SN R)N L)
(ARGUMENT1 ?z 7x)
(ARGUMENT?2 ?z ?7y))
”approached by” 7y (A?7y A7x) idem | (SNR)NL)
”approach of” 77 Ay A7x) idem | (SN R)NL)

Figure 5: The agent’s lexicon entries for ‘approach.’

(e.g. moving left, right, falling down) for various kinds
of objects (square, rectangle) for various features (color)
and for some other events (approach) For example the
move left template looks for items which have a feature
x-position which is decreasing.

At the end of the frame sequence shown in fig. 4, ob-
servation resulted in 5 body-items, two contact items,
one move-left and one move-right item, two falling items,
three approach items and three move-away items. These
correspondent respectively with the five objects in the
scene, the two 'walls’ contacting the ’ground’, the two
squares moving to the left and right and falling, and
the movements towards each-other and away from each-
other of all combinations of objects of which at least one
is moving.

The next step for the system is to pick an item as
a subject to talk about and find a (preferably unique)
description for it. Suppose the system picks the square
moving to the right. Some descriptions found by the
system for this item were:

(?x | ((SQUARE 7x)
(LOW 7x)))

(?x | ((MOVING-RIGHT 7y)
(ARGUMENT1 7y ?x)))

(?x | ((MOVING-RIGHT ?7y)
(ARGUMENT1 7y 7x)
(RED 7x)
(SQUARE 7x)))

(?x | ((ARGUMENT2 ?y 7?x)

(MOVE-AWAY ?y)
(ARGUMENT1 7y 7z)
(ARGUMENT1 ?y 7u)
(MOVING-LEFT 7u)
(SQUARE 7x)
(SQUARE 7y)))

The following step is to transform the semantic de-
scriptions to a grammatical sentence. For this the sys-
tem needs a lexicon. The lexicon entries containing the
approach predicate for example are given in fig. 5.

The above semantic descriptions are translated to

"the low square"
"the moving to the right"
"the red square moving to the right"

"the red square moving away from the square
moving to the left"

The system is also able to interpret sentences like the
above, thereby creating semantic descriptions consistent
with the utterance, finding bindings for it etc. The above
utterances are not sentences but noun phrases. It is also
possible to let the system describe what is happening in
a running simulation, thereby forming correct sentences
like ”the red square moves to the right.”

8. Discussion and future work

Is this whole setup a return to classical, symbolic AI? We
think it is in the first place an attempt to combine ideas
from both classical Al and new, adaptive Al. Both ap-
proaches have their difficulties and merits and both an-
swer different questions. In many cases the problems of
one approach are just the answers provided by the other.
A major problem of classical Al is that is produces care-
fully engineered non-adaptive systems. A major problem
of distributed, dynamically complex systems it that they
are hard to engineer, unpredictable and, if a successful
system is built it is hard to define what precisely was ‘the
good idea’ that made it all work. In addition, by leaving
it all up to the agent by not providing any abstractions
away from the huge and vicious world to start from, we
leave ourselves with an enormously difficult problem to
solve, namely ‘the whole thing’ at once.

An important thing that should be added to the Har-
nad’s list of challenges for cognitive theory (Harnad,
1990) is how such natural language users can learn and
adapt themselves to changes in the environment. We ar-
gue language plays an important role in this and have
designed a system that provides us with the means to
test this hypothesis. At the same time, it allows us to
investigate important issues on the origins and evolution
of language.

While building an integrated and open system we had
to make each subsystem powerfully enough to meet other
subsystems’ requirements. For example on the one hand,
the semantic description language we developed needs to
be able to represent and handle all things it gets from the
conceptualization module. At the same time, it needs to
be able to provide the input required by the grammar
module. This way, requirements and specifications in



one module also produce requirements and specifications
for another. If we want to incorporate tense and aspect
in the language, the conceptualization module needs to
know about time as well and in such a way that ap-
propriate information can be propagated upward to the
grammar module and vice versa. The mechanism of in-
tegration thus provided us at each level with some design
guidelines.

But this mechanism can also be used by the system
itself. If the agent ‘feels’ at the grammatical and seman-
tical level that it would be useful to have a concept for
something that represents an ’approach—+touch’ event, it
can instruct its conceptualization module to create such
a ‘collision’ notion according to the requirements and
specification of the higher levels.

In the future we plan to use the system to investigate
some specific aspects of language like tense, grammar,
causality, etc. The main goal is to answer questions
about the origins and evolution of language. We will
therefore have to extend the system with good learning
algorithms. In addition, we plan to replace the simula-
tion by a camera and a robot arm. The simulation could
still be used as an ‘imagination’ module by an agent (see
Siskind (1992) for a successful implementation of this
idea and related papers for a psychological evidence for
such a module in humans).
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