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Abstract

This paperinvestigateshe formationof color cate-
goriesandcolor namingin a populationof agents.
The agentsperceve and cateyorize color stimuli,

andtry to communicat@boutthesepercevedstim-

uli. While doing so they adapttheir internal rep-

resentationgo be more successfulat corveying

color meaningin future interactions. The agents
have no accesgo globalinformationor to therep-
resentation®f other agents;they only exchange
word forms. The factorsdriving the population
coherencere the sharedervironmentand the in-

teractions. The experimentsshov how agentscan
form a coherentlexicon of color terms and —

particularly—how a coherentcolor cateyorization
emegesthroughtheselinguistic interactions.The
resultsare interpretedin the light of theoriesde-
scribingandexplaininguniversaltendenciesn hu-

mancolor categorizationandcolor naming. At the
sametime, the experimentsconfirm aspectof the
theoriesof Luc Steeld1997;1994 who views lan-

guageasa complex dynamicsystem,arising from

self-omganizatiorandculturalinteractions.

1 Introduction

Color has enthralledscientistsfor centuries. Many disci-
plinesin science,amongwhich physics,neurology cogni-
tive science philosophy psychology linguisticsand anthro-
pology, have all contributedto a vastbody of work on the
aspectsof humancolor vision, including color perception,
color cateyorizationand color naming. Cognitive processes
concernedwith color have often beenconsideredas being
idealtestgroundfor verifying theoriegproposedn theabove-
mentioneddisciplines. Moreover, empirical studieson color
perceptionhave always offered ample food for thoughtfor
quite a few differentopinionsin cognitive science;pftenthe
interpretatiorbeingchangedo betterfit this or thatperspec-
tive.

The experimentddescribecherestudycolor cateyorization
and color namingin artificial, well-controlled simulations;
trying to provide justification or even new insightsin theo-
rieson color catgyorizationandcolor naming.

1.1 From color perception to color categories

Human color perceptioncan be studied at several levels.
At the neurologicallevel, electro-magneti@negy is trans-
formedin the photoreceptorsf the retinainto a neuralsig-
nal, which is thencorveyedto the brain. Humanshave three
differenttypesof color sensitve photoreceptorsone sensi-
tive for reddishlight, one for greenishand one for bluish
light. The cells are cone shapedand they are respectiely
calledthe L, M and S-conesgdesignatingheir sensitvity to
long, middle or shortwavelengths.Humansarethustrichro-
matic species. However, at the psychologicallevel humans
seemto reactrather differentthan one would expectfor a
specieshaving threetypesof photoreceptors.Hering’s op-
ponentcolor theory later definedquantitatvely by [Jame-
sonandHurvich, 1969 andobsened experimentallyduring
in vivo experimentson macaquemonkeys by [DeValois et
al., 1964, aguedfor anantagonistimatureof color percep-
tion: color seemsto occurin pairs, with black opposedto
white, greenopposedo redandblue opposedo yellow. This
gave rise to the two stagecolor theory; in a first stagelight
is receved by threetypesof photoreceptorsandin the sec-
ond stagethe outputsare interconnectedo form red-green,
yellow-blue andwhite-blackchannels However, we arestill
left with a continuouscolor experiencehandlingcolor infor-
mationwould requirecutting up that color continuum. This
bringsusto color categorization.

1.2 Color categoriesand color terms

Color appearancéasa categyorical nature; this is immedi-
ately suggestedy the factthat every languagehasdifferent
color words to indicatedifferent color sensations.The be-
lief was long held that culturesdivided the color spectrum
into arbitrary catgyories. However, in 1969 Berlin and Kay
publishedtheir influential monograpi 19649, in which they
provide empirical evidencefor universaltendenciesn color
catgyorization. They concludethat humanshave eleven ba-
sic perceptuakolor catgyories; basic meaningthat the cor-
respondingcolor termis a monolexemic, uniquecolor term,
salientand unambiguougo all languagespealers. Human
languagesave at leasttwo and at mosteleven basiccolor
termsreferringto theseperceptuatolor catgyories(English
hasall elevenof them:black,white, red,greenyellow, blue,
brown, purple,pink, orangeandgray). A secondconclusion
is thatbasiccolor termsappeaiin languagesn a specificor-



der Whena languagehasonly two color termsit will be
atermfor BLACK and WHITE, whena third color termis
added,it will be RED, next either GREEN or YELLOW is
lexicalizedandso on. At aboutthe sametime, nev quanti-
tative informationon the opponentcharacteiof color vision
seemedo supportBerlin andKay's theoriesvery well [Kay
andMcDaniel, 1978. Thus,the universaliststancequickly
becamewidely accepted. However, recently critical views
have beenoffered on universalistextremism, pleadingfor a
moresubtleattitudeandfor morecarefully collectedandin-
terpretedquantitatve data[Saundersand van Brakel, 1997;
Lucy, 1997.

1.3 Therelation to language

Investigatingthe formation of color categories and color
terms can also help elucidatesomeaspectsof humanlan-
guagessuchasconcepformation,lexicon groundingandthe
propagatiorof lexicalizationsthrougha population.

Languageis uniqueto humans;althoughmary animals
are capableof communicatingmessagesthey are not able
of employing the full rangeof linguistic capabilitiesas we
humanscan. Concreteand abstractconceptformation, ex-
tensve lexicalizationsandsyntaxall seemto be exclusive to
humans.The way humanshandleabstractreasoninghierar
chical structuresand arbitrary mappingis unsurpassedand
thereis goodreasonto believe thatlanguages crucialto all
this. Thenatureof languageandthe origin of languagemight
indeedhelpusunderstandhumanintelligence.

On the origin of language,two extreme stancesexist.
Someassumehat humanlanguagecapacityis innateandat
largegeneticallydefined Chomsly, 1980;PinkerandBloom,
1990; Bickerton, 1994, while othersbelieve that language
emepgesfrom the combinedplay of the humancapacityof
abstractingand learning and cultural interactions[Deacon,
1997;Steels,1999.

Steeld1997;1999 considersanguageo betheproductof
culturalevolution. Accordingto Steeldanguagecanbe seen
asadistributed,dynamicalandadaptve system.Languages
notcontrolledby onecentralintelligence;insteadthe knowl-
edgeof the languageis distributed over its users. None of
the usershasperfectknowledgeor control of the language.
Languagses alsorobustto changesn the population;users
mayleave or join thecommunitywithout significantlyaffect-
ing the languagespolenin the community In additionlan-
guagecanbe seemasa complex dynamicsystem:cateyories,
concepts,word forms, grammay ...constantlyemege and
changeaccordingto populationdynamicswhich canbe de-
scribedusingideasfrom thefield of dynamicsystemsThese
theorieshave beensuccessfullyused,for exampleto explain
theself-olganizatiorof universatendencie vowel systems
[de Boer, 2001]. The simulationdescribedn this paperuse
thesameconcepts.

The paperis structuredasfollows. Section2 describeshe
internalorganizationof theindividual agentgtherepresenta-
tion of colorperceptionthecategorizationandtheconnection
betweercolorword andcolor categyories).Section3 provides
detailson the dynamicson the individual level and on the
populationlevel. Section4 providesresultsillustrating some

typical outcomesof simulations,while section5 and6 con-
clude.

2 Theagents

The simulationusea populationof agents.On anindividual

level, the agentsall have the ability to perceve color, to cat-

egorize their perception,to lexicalize their color catgyories
andto adaptto otheragentsn orderto be moresuccessfut

communicatingcolor meaning.On the populationlevel, the

agentscommunicatewith eachother using a simple proto-

col calledtheguessinggame.In aguessinggame two agents
communicat@boutavisualcontect. Throughplayingseveral

thousandef thesegamesa commonlexiconis built up.

2.1 Color perception and representation

Whenperceving the physicalworld, amappingis madefrom
the physical spaceto a representationn the psychophysi-
cal space Uponthis representatiorfurther cognitive actions
suchascategorizationor recognitionaretaken.

The color stimuli are presentedo the agentsas spectral
power distributions, expressedas enegy at wavelengthsin
the visible spectrum(rangingfrom 380 nm to 800 nm). No
information on spatialor temporalpropertiesare given, the
colorsarepresentedn “aperture”mode,void of ary conte-
tual information. The sensationS € S is a physicalstimu-
lus andhasto be mappedo a psychophysicatepresentation
R € R, for thisamappingS — R is needed.Therepresen-
tationR shouldfulfill threerequirementsFirstandfor all it
shouldbeagoodmodelfor how humansperceve color. Sec-
ond, it shouldmake discriminationpossible:two stimuli are
discriminableif andonly if they mapontodifferentpointsin
therepresentatiospace.Third, oneshouldbe ableto define
asimilarity measurevertherepresentatiospace.

The CIE L*a*b* color spacesatisfiestheserequirements
andhasprovenits merit at categorizing real-world color im-
ages(see[Lammens1994). It is a three-dimensionatolor
spacedesignedto be perceptuallyequidistantand can be
representedh Cartesiarspace. L* representdightness,a*
correspondsapproximatelyto redness-greennessd b* to
yellowness-bluenessFor a definition and for a corversion
from spectralpower distribution to CIE L*a*b* seefor ex-
ample[WyszeckiandStiles,2000)

2.2 Color categorization

When an agentis to communicateaboutthe world, a sym-
bolic representatiorf the perceptionis needed. This sym-
bolic representatiomrisesby cutting up and structuringthe
representatiospace.

The color space(which is the psychophysicatepresenta-
tion spacen theseexperiments)s usedto definecateyories.
A catggory hasa numberof featuresjn our caseL*, a* and
b*, andfor eachfeaturea fuzzy membershigunctionis de-
fined. If an unknawn stimulusis perceved, a measureis
neededodf how well a cateyory matcheshe unknown repre-
sentation.Several solutionsare possibleto represent cate-
gory, onecouldtake a radially symmetricfunction suchasa
Gaussianpr a multilayer perceptrorcould be used.Herean
adaptve network is chosenanadaptie network resembles



radialbasisfunction—seeeg. [BroomheadindLowe, 1989,
exceptthatthereis only oneoutputunit, whichis divided by
the numberof hiddenunits). Adaptive networks areour pre-
ferredchoicefor representingategyoriessincethey candivide
the input spaceinto regionswhile not beingrestrictedin ary
way: the regionscanbe corvex or not, symmetricalor not,
connectedr disparategven overlapis possible. A second
adwantagds thatadaptie networksareeasilyanalyzed.This
is valuablefor monitoringtheperformanc®f thesimulations.
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Figurel: adaptie network for representing color category,
it consistof onehiddenlayerof locally tunedreceptorgully
connectedo alinearoutputunit.

Figure 1 shavs the adaptive network. It consistsof a
layer of an unspecifiednumberof hidden units acting as
tunedreceptorsandone outputunit. Theinputx is athree-
dimensionalvector containinga L*, a* and b*-value. The
hiddenunits are Gaussiarfunctions z; (x), with centerm,;
andwidth o ;. Theoutputof thenetwork y(x) is theweighted
sum of the Gaussiansweightedby the numberof hidden

Units.
( ‘)2
Zj (X) = exp <_7‘$J

1 J
y(x) =+ > wjzj (%)
j=1

For adaptinghe network, acombinationof instance-based
andreinforcementearningis used. Therearefour possible
actions:addingor removing a hiddenunit, andincreasingor
decreasinghe weightw; of a unit. The width ¢; of a unit
—initialized to a default value—is never changed.

2.3 Lexicalizing categories

Finally, theagentseedword formsin orderto communicate
aboutcolor categories: word forms arethe only information
exchangeduy the agents.A categyory canbe associateavith
oneor moreword forms,allowing for synorymy. It is alsoal-
lowedfor thesamewordformto beassociatewvith morethan

onecataory, allowing for polysemy Notethatcateyoriesare
only lexicalizedwhenthey needto be communicatedpften
agentshave catgyorieswith noword form associated.

An agenthasa setof meaningsM, a meaningis a pair
containinga catgyory ¢; € C anda setof word forms F; (F;
canbeempty).

M = {<01,F1> ; }

Word forms arerandomlyselectedrom a finite alphabet,
no otherrestrictionsareappliedto the creationof word forms
(for example, it is not the casethat more often usedwords
tendto beshorterasobsenedin humanlanguages).

3 Thesimulation

Duringasimulationsteptwo kindsof game$ areplayed.The
discrimination game is playedat the individual level. The
guessing gameis playedatthepopulationlevel. More onboth
gamescan be found in [Steels,1999. More detailson the
implementatiorof the gamescanbe foundin (referencedo
own work arenotallowedby theanorymousreview process).

3.1 Thediscrimination game

Thegoalof thediscriminationgameis to constructateyories
in orderto successfullydistinguishcolor stimuli. It follows
asimplescenarioandis completedoy oneagentwithoutthe
needfor interactionswith otheragents.

An agenthasa, possibleempty setof categoriesC. A ran-
domcontet O = {oy, ..., on } is createdandpresentedo the
agent.It containsN objectso; (in this casecolor stimuli) of
which oneobjecto; is thetopic. Thetopic hasto bediscrim-
inatedfrom the rest of the context. The gameproceedsas
follows.

1. Contxt O = {oy,...,on} andthetopico; € O are
presentedo theagent.

2. Theagentperceveseachobjecto; andreturnsasensory
representatiofor eachobject: S,; = {s{’,...,s%; }.

3. For all N sensoryrepresentationghe closestmatching
catgorycg, € C isfound.

VC € C : yc (So) S ycso (SO)

y. IS the output of the adaptve network belongingto
categoryc, andy,_ istheoutputof theadaptie network
reactingbestto S,,.

4. Thetopico; canbediscriminatedrom thecontext when
thereexistsa category matchingthetopic but notmatch-
ing ary otherobjectsin the context.

{6501 33 CSo } Nes,, = {CSOt }

This scenariocanfail in two ways. First, the agenthas
no cateyoriesyet (C' = 0); in this casea category is created
with its centeron the topic. Secondno discriminatingcat-
egory canbe found: the category found for the topic is also

1The useof gamesfor studyingbasiclinguistic interactionsis
largely inspiredby Wittgenstein 1953.



found for otherobjects. Whenthis catayory is far from the

topic (accordingto somedistancemeasure)a new cateyory

is created Whenit is closerthana certainthresholddistance,
the catggory is adaptediy addinga new hiddenunit with its

centeron thetopic.

When playing several of thesediscriminationgamesan
agentis ableto createcateyoriesthat discriminateone ob-
ject (i.e. color stimuli) from others. Next to basicmecha-
nism,theweightof the hiddenunitsaredecreasewith every
game. Over time, this resultsin the “forgetting” of hidden
units. Only whena categyory hasprovento be usefulin an
interaction theweightsareincreasedagain.

3.2 Theguessing game

For theguessinggame two agentsarerandomlychosenOne
actsas the speaker, the otherasthe hearer. A context O
is presentedo both agents,but only the spealer knows the
topic. Thegamegoesalongthefollowing scenario.

1. The spealer triesto discriminatethe topic by playing a
discriminationgame|f it findsadiscriminatingcategory
cs,, thegamecontinuesptherwisethe gamefails.

2. The spealerlooksif ary word forms areyet associated
with ¢g, . If not, anew word form f is randomlycre-
atedandassociated!f howeveroneor moreword forms
arealreadyassociateavith cs, , thenoneword form f
is selectedhccordingto its successn previousguessing
games.Theword form f is thencorveyedto the hearer

3. Thehearerdooksif it hasf in its associatie memory if
notthegamefails: theheareiis shavn thetopic o; andit
learnsthe properword form for it by addinga category
for thetopic.

4. If the hearerdoeshave the word form f in its lexicon
it finds the associateaateyory ¢’ andtriesto point out
thetopic. Thiswill only work whenthe hearercandis-
criminatethetopicfrom the context, otherwisethegame
fails.

5. If the hearersucceedsn pointing out the correctob-
ject asthe topic, the gameis successful.lf the hearer
points out the wrong object, the spealer identifiesthe
topic and the heareradaptsits catagyory ¢’ by addinga
hiddenunit, sothecateyory resembleshetopic betterin
futuregames.

Whenaguessinggameis successfutheweightsof thehid-
denunits of the category cs,, areincreasedthis strengthens
a catggory makingthe probability of it beingusedin future
gamesigher Cateyorieswhichdonotcontrituteto thegame
arethroughthis lesslik ely to be usedin futureinteractions.

The interactionsare responsibldor achiezing agentlexi-
conswhich are coherentover the population. And because
theagentsadapttheir catgyoriesaccordingto the outcomeof
the guessinggame,the categoriesof the agentsshav coher
enceaswell. Thisis anillustrationof the SapirWhorf thesis,
which claimsthatlanguagénfluencegheway its usersexpe-
riencetheworld [Whorf, 1950.

4 Results

For the simulationstwo datasetsareusedasinput: onecon-

taining spectralmeasurementtaken from over 1200 color

chipsof the Munsell color notationsystemandonewith 300

measurementsf colorsof plantsandflowers.A contextis se-

lectedout of thesedatabases;ontainingminimum 2 andup

to 10differentcolorsamplesAs areferenceartificial created
colorsamplesareuseto testtherobustnes®f the system.
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Figure2: the averagesuccessateplottedfor 20 agentsover
10000games.Theuppercurve shovsthediscriminative suc-
cessthelower curve thecommunicatve success.

Theresultsshav thatthe agentscreatea setof categories
with which they candiscriminateary color context offered
(providedthatthe color stimuli in the context aredissimilar
enough;for example,the colorscannot be metameric).Fig-
ure 2 shows the successateof a populationof agentsduring
atypicalrur?. Thediscriminative success—telling how good
theagentsareatdiscriminatingthe context— quickly risesto
100%. The communicatie success—measuringhow good
the agentsare at corveying meaning—rises quickly, then
dropsoff asthe gamesreachtheir full compleity andthen
graduallyrisesagainasthey agreeon acommonlexicon.

Anotherresultdemonstratethe benefitof communication.
Whenno guessinggamesare played,so that thereis no in-
teractionbetweenthe agents,the agentsdo not manageto
form coherentatayory sets.Clearlythe ervironmentalbind-
ing is not strong enoughto obtain sharedcategorizations.
Whentheinteractive components introduced by letting the
agentsplay guessinggamesthe coherencef the color cat-
egories rapidly increases. The coherenceis computedby
cross-summinghe similarity for all categoriesof the entire
population.Let C' = UC containall the categoriesof all the
agentsthecoherencés thencomputedas,

(el
coh = Z Z sim (c}, ¢})
i=1 j=i+1
The higherthe coherencethe betterthe cateyoriesof the

agentsagree.Catagyoriesarematchedaccordingto a similar-
ity function. Thesimilarity betweertwo cateyoriesc, andcy

2Notethatsimilar phenomenareobseredfor awide variety of
parametesettings the limited spacehowever doesnot allow exten-
sive reportingof results.



500

400 -

300 A

coherence

200

1007/\/\/V\f/v,\/\»/\v\/JJV\/\n/\,\‘/\N\/v\/‘/\/\/

0

0 2000 4000 6000 8000 10000

games

Figure 3: coherenceof the color cateyoriesin a population.
The bottom data seriesshows the coherencewithout inter-
actions, the top seriesshavs how interactionsincreasethe
coherence.

is computedasin eq. 1, with J., andJ., beingthe number
of hiddenunits for both categories. It is proportionalto the
inverseof the Euclideandistancedetweerthe centersof the
hiddenunitsof bothcategories.

1
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i=1 j=i+1

sim(eq, cp) =

Figure3 shavsatypicalrun, with apopulationof 20agents
playing20000gamesthecontext containss color stimuli se-
lectedfrom the Munsell database .The coherenceof a pop-
ulation only playing discriminationgamesis low compared
to a populationbenefitingfrom interactionghroughguessing
gamesjt demonstratesow linguisticinteractionsarerespon-
siblefor coherencef categories.This might seemsurprising
becaus¢heagentsieverhave accesso thecateoriesof other
agents.However, throughthe linguistic interactiongheir in-
ternalrepresentationadaptto allow for improvedtransferof
meaning.A sideeffect of this is thatthe categoriesbecome
coherenbverthepopulation.

The numberof color categories (and proportionally the
numberof associateavord forms) createdby theagentgises
quickly andstabilizesafterawhile. Figure4 shavs a typical
run: the numberof categoriesstabilizeson anaverageof 9.4
color cateyoriesper agent. The numberof color catejories
dependwn several parametesettings. Parameterdiaving a
large influenceon the numberof color cateyoriesare (1) the
numberof color samplesn the context, morecolor samples
forcethe agentsto createmorecolor catgoriesto be ableto
discriminatethecolorsand(2) thesimilarity of thecolor sam-
ples;if the samplesarerathersimilar, fine grainedcategories
areneededo discriminatethem.In anutshell thecontext ex-
ertspressuren theagentgo createmoreor lesscategories.

3This bearsresemblancéo the folk theorieson why equatorial
languageshave less color terms; it seemslanguagecommunities
therehave experiencedesspressureo extend their color vocahu-
lary becauseolortechnologyhasevolvedmoreslowly andhasonly
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Figure4: numberof categyoriesfor 10 agentsduring 20000
games. The gray curvesshov the numberof categyoriesfor
eachagenttheblackcurve shovsthe populationaverage.

The environmentdoesnot only influencethe quantity of
catayories,it alsoaffectstheir quality. Whenthe context con-
tainsonly highly saturateatolors,the agentswill only create
catgyoriespresentingchigh saturatectolors. Likewise, when
thecontext containsasignificantlyhigheramountof redsam-
plestheagentsrelik ely to all have acategoryandwordform
for red.

5 Discussion

Theevolutionaryorderof theemepgenceof namedcolor cat-
egories,asobsenedby Berlin andKay, doesnot shov up in

the experimentswherethereis no biasimposedon the color
perceptionor on the ervironment. Whenin simulationthe
agentshave only two color terms,they will have a termfor

warm-brightcolorsandonefor dark-coolcolors,whichis in

accordancavith obsenationsof humanlanguagesHowever,

whenthe agentshave threeor more color terms,thereis no

preferencdor creatinga category for reddishcolors:thecre-
ation of categoriesis entirely opportunistic.For humansthe
storyis different,whenhumanlanguage$ave threeor more
color terms,therewill always be a term for reddishcolors.
Several explanationshave beenofferedfor this (see[Hardin,
1987 for anoverview) thatcanbe summarizedn two ideas:
the preferencecould be built into humanbiology or it could
be rootedin nearuniversalervironmentalconstraints. For

yearsthe focushasbeenon the former: by interpretingthe
neurophysiologicastructureof humancolor perceptionone
is ableto explain mary obsenedphenomenaf colorlexical-

izations.However, somediscrepanciesemainwhich cannot

be explainedby the neurologicamakeupof color perception.
For instance why do somelanguagesot follow the evolu-

tionary order proposedby Berlin and Kay? Why do some
language$have morethanoneword for blue? And why do

languagespolen aroundthe equatorhave lesscolor terms?
See[SaundersindvanBrakel, 1997.

Although a strong caveat should be issuedwhen gener
alizing from artificial simulationsto real-world phenomena,
simulationscansometime®ffer new insightsandmighthelp
usfind new waysto tackle problems.The simulationsshov

beenfairly recentlybroughtup to Westernstandards.



how in simpleartificial linguistic setting,acoherentolorlex-
ical and color categorizationscan emege in populationof
agents. This doesnot meanthat sharedhumancolor cate-
goriesemepgethroughculturalinteractionsthereis evidence
that alreadyinfantshave a categorical preferencedor certain
stronghuesJong beforethey engagen linguistic interactions
[Bornstein,1973. However, it mightvery likely thatit is the
interplay betweencultural dynamicsand biological disposi-
tionsthatis responsibldor how we categorizecolor, andnot
coloralone.

6 Conclusion

The experimentsshav how out of self-organizationandlin-
guistic interactionsa coherentcolor lexicon canemenge. In
addition, it shawvs how color categyoriescan becomeshared
amongagroupof languagaiserssolely by linguisticinterac-
tions. The color lexiconsandcatajory setsstabilizeundera
large rangeof parametesettings,shoving the robustnesof
the system.Theagentsandtheir interactiondynamicsform a
dynamicsystem with attractorsn the form of stablelexical
andcatayory sets.

Marny thingsstill needto beinvestigated Mostimportant,
theinfluenceof biasontheperceptiorandontheenvironment
needso be studied. The conditionsunderwhich morereal-
istic color categoriesarise,including the evolutionaryorder,
needto be studied. Already it is clearthatthe ervironment
andcontectualinformationwill play animportantrolein this.
As abonus,it might beinterestingto seeif the systemcould
learncolor categgoriesandnamesrom a humaninstructor
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