Chapter 1

An Algorithm for
Bootstrapping
Communications

Jacob Beal
MIT AI Lab
jakebeal@mit.edu

In a distributed model of intelligence, peer components need to communicate with
one another. I present a system which enables two agents connected by a thick twisted
bundle of wires to bootstrap a simple communication system from observations of a
shared environment. The agents learn a large vocabulary of symbols, as well as inflec-
tions on those symbols which allow thematic role-frames to be transmitted. Language
acquisition time is rapid and linear in the number of symbols and inflections. The
final communication system is robust and performance degrades gradually in the face
of problems.

1.1 Introduction

Neuroscience has postulated that the brain has many “organs” — internal sub-
divisions which specialize in one area. If we accept this view, then we need some
sort of mechanism to interface these components. The design of this mechanism
is limited by the hardware which the brain is constructed out of, as well as
the size of the blueprints specifying how it is built. Neurons, as hardware, are
relatively slow and imprecise devices, but they are very cheap, and it’s easy to
throw a lot of them at a problem in parallel. Our DNA is only about 1 gigabyte,
too small to encode the full complexity of interfaces between all of the different
components.

2 An Algorithm for Bootstrapping Communications

Comm Lines

A B

Feature Lines

Figure 1.1: The agents labelled A and B are interconnected by comm lines — a
bundle of wires with an arbitrary and unknown permutation. The agents also share
some feature lines with the outside world, again with unknown permutations.

I approached this design problem from a hardware hacking point of view,
with the question, “If T were designing the human brain, how would I build
this interface?” It needs to be self-configuring, to beat the limited blueprints
problem, and it needs to learn quickly. On the other hand, hardware is very
cheap, and I can design in a domain with a huge number of interface wires
between two components.

I have developed an algorithm which bootstraps communications solely from
shared experience and I present it here as an existence proof and a tool for
thinking about how a brain might be composed out of independent parts that
learn to communicate with each other: it is possible for two agents to rapidly
construct a language which enables them to communicate robustly.

1.2 System Model

There are two agents in the system, connected by a very large bundle of wires
called comm lines. Each agent has another set of wires called feature lines, over
which external information can arrive. Metaphorically, the comm lines are a
nerve bundle connecting two regions of the brain and the feature lines are nerve
bundles that carry part of the brain’s observation of the outside world. The
actual wires in the bundles might be arbitrarily twisted and rearranged between
the two ends of the system, so we add an unknown permutation to each bundle
to model this effect and prevent any implicit sharing of ordering information
between the two agents.

The comm lines have four states: 1,-1,0, and X. When undriven, the line
reads as 0. Information is sent over the line by driving it to 1 or -1, and if
the line is being driven to both 1 and -1, it reads as a conflict — X. In the
experiments conducted here, I used a set of 10,000 comm lines.

Feature lines are named with a symbol which they represent and read as un-
driven, driven, or driven with another symbol. In the experiments I conducted,
names of feature lines are things or actions and the symbols driven on them are

An Algorithm for Bootstrapping Communications 3

A B

abmary bob_eatjim _hit mary hit jim lab et bob
bt ot P
oz B oS RIS
= 3 3 3 5 =

Figure 1.2: During a training cycle, the feature lines of both units are driven. Each
agent attempts to learn from the comm lines driven by the other agent.

A B

labmary bob _eatjim _hit mary hit jim lab et bob
bt ot BARES
g o§os g88 &
) ﬁ 8 s = 3

Figure 1.3: During a test cycle, the feature lines of one unit, say A, are driven and the
feature lines of the other unit are observed. The test is scored by number of mistakes
in B’s reproduction of A’s feature lines.

roles. So typical feature lines might be bob, mary, or push, and typical roles
might be subject, object, or verb. The set of feature lines is of undefined size
— the agents have no knowledge of what feature names or roles exist until they
encounter them in practice.

An agent can read and drive both comm and feature lines, but are constrained
to synchronous schedule. Each cycle of the system has a “talk” phase and a
“listen” phase. Agents can read lines at any time, but can only drive comm
lines during the talk phase and feature lines during the listen phase. At the
end of the talk phase, for symmetry breaking purposes one agent is randomly
selected to have spoken first. The agent which spoke first can read the results of
both agents speaking in its listen phase, while the one which spoke second reads
only what the first agent spoke.

There are two types of cycles — training cycles and test cycles. In a training
cycle, the data on the feature lines is sent to both agents. In a test cycle, one
agent is randomly selected to receive input from the feature lines, while the other
receives no input. Performance may then be evaluated on the basis of how well
the output of the agent receiving no input matches the values on the feature
lines.

4 An Algorithm for Bootstrapping Communications

1.3 Algorithm

The key idea driving this algorithm is that sparseness makes it easy to separate
the stimuli.

Knowledge in the system is represented by two sets of mappings: symbol
mappings and inflection mappings. An inflection mapping links a symbol carried
on a feature line to a real value between 0 and 1. A symbol mapping links a
feature line with two sets of comm lines, designated as certain and uncertain,
and includes an integer designated certainty.

These mappings are used symmetrically for production and interpretation of
messages. In the “talk” phase, each driven feature line selects the certain comm
lines associated via the symbol mapping and drives them with the unary fraction
associated with the symbol on the feature line via the inflection mapping. In
the “listen” phase, if enough of a feature line’s associated comm lines are driven,
then the feature line is driven with any inflection mapping symbols within a
fixed radius of the unary code on that set of comm lines.

Both types of mappings are generated randomly when a feature or inflection
is first encountered, then adjusted based on observations of the other agent’s
transmissions. These adjustments take place only if an agent spoke second; if it
was the first one to speak, then its own transmissions are on the lines as well,
inextricably mixed with the transmissions of the second agent, and this would
make accurate learning significantly more difficult.

Inflection mappings are adjusted with a very simple agreement algorithm: if
the received unary code is significantly different from expected, the code in the
mapping is set to the received value. If a unary code matches which should not
have, then it is purged and generated anew.

Symbol mappings are slightly more complicated. The first time an agent
hears a given symbol spoken by the other agent, it adds every driven comm
line to the uncertain lines for that symbol. Each time thereafter that it hears
the symbol again, it intersects the driven lines with its uncertain lines, thereby
eliminating lines associated with other symbols. After several iterations of this,
it assumes that there is nothing left but lines which should be associated with
the symbol, adds the uncertain lines to the certain lines, and begins to use them
for communication. A few more iterations after that, it begins paring down the
certain lines the same way, so that the two agents can be assured that they have
identical mappings for the symbol.

A more detailed description of the algorithm, including code implementing
it, may be found in [1] and [2].

1.4 Results

To test the algorithm, I used a system with an n,, of 10000 comm-lines and a
Nyps Of 100 random wires selected to generate a new symbol mapping.

I trained the system for 1000 cycles, then evaluated its performance over an
additional 200 cycles. Each cycle, an example is generated and presented to the

An Algorithm for Bootstrapping Communications 5

system. In the training phase, there is an 80% chance it will be presented to
both agents and a 20% chance it will be presented to only one (That is, 80%
training cycles, 20% test cycles). During the evaluation phase, the first 100 are
presented to the first agent only, and the second 100 are presented to the second
agent only. A test is considered successful if the input feature set is exactly
reproduced by the listening agent.

The examples input to the feature lines are thematic role frames generated
from a set of 50 nouns, 20 verbs, and 4 noun-roles. Each example is randomly
generated with 0-2 verbs assigned the “verb” role and 2-4 nouns assigned noun-
roles. No noun, verb, or noun-role can appear more than once in an example.
A typical scene, then, might be ’ ((approach verb) (jim subject) (shovel
instrument) (lab object)), which corresponds loosely to “Jim approached
the lab with the shovel.” All told, there are more than 1.2 billion examples
which can be generated by the system, so in general an agent will never see a
given scene twice.

In a typical run of this system, after about 200 cycles most symbols will have
entered the shared vocabulary and can be successfully communicated between
the two agents. After about 500 cycles, the set of inflections will have stabilized
as well. In the final round of 200 tests, the success rate is usually 100%, although
occasionally due to the stochastic nature of the algorithm, the inflections will
not yet have converged by the end of 1000 tests and consequently one or more
will not be transmitted correctly.

1.4.1 Convergence Time

The time needed to develop a shared vocabulary is proportional to the number of
symbols in the vocabulary. A symbol is learned when both agents have certainty
for that symbol greater than t.. An agent increases certainty when it speaks
second, which is determined randomly, so we may estimate this as a Poisson
process. Thus, we may calculate the expected number of cycles, ¢, as follows:

(i)

221,

IR S st

E(c) = 2t, on1
n=2t.+1

Evaluating this for ¢, = 4, we find an expectation of 10.187 uses of a symbol
before both certainty thresholds are reached.

For these experiments then, with an average of 3 nouns and 1 verb per
training cycle, then, we can calculate the expected number of shared symbols S
as a function of elapsed cycles ¢:

1
0.8)) +nyerss * (1 — P(10.187,¢

Nnouns Nyerbs

S(t) = Nnouns * (1 — P(10.187,¢ 0.8))

where P is the incomplete gamma function. Since this function is linear in
the number of symbols, we see that the time to build a shared vocabulary is

6 An Algorithm for Bootstrapping Communications

Shared Symbols
8 38 3

8

o 100 200 300 400 500 600 700 800 900 1000
Cycles

Figure 1.4: Number of shared symbols versus elapsed time for 50 nouns and 20 verbs.
Dotted line is theoretical estimate S(t), solid line is experimental data.

linear in the number of symbols. Figure 1.4 shows experimental data confirming
this estimate.

Once a shared vocabulary of symbols exists, the algorithm can begin learning
inflections. If n; is the number of inflections to be learned, and r; is chosen such
that r; * n; < 0.5, then we can show that the time to develop a shared set of
inflections is O(n;).

An inflection may be learned any time a symbol is successfully transmitted in
a training cycle. This occurs if the new inflection does not conflict with any of the
previously learned inflections - that is, if n symbols have already been learned,
then it must be the case that for all v; s.t. 1 <4 < n, |vp41 — v;| < 2r;. Since
the value of the new symbol, v,41, is chosen by a uniform random process on
the interval [0, 1], the probability p,4+1 of choosing an acceptable inflection value
is no less than 1 — (2r; *x n). The n;th inflection, then, has the least probability
of success, pp, = 1 — (2r; x (n; — 1)) > 2r;, and p,, is generally bounded below
by 27‘1'.

For these experiments then, we can calculate the expected number of inflec-
tions, assuming a shared vocabulary, as a function I(¢) of elapsed cycles t. There
are expected to be 3 noun inflections and 1 verb inflection per training cycle,
so the least frequent inflection is expected to appear at with frequency at least
1/n;. Thus, we obtain

I(t) =n; (1 — P(1, 2r,~t%0.8))

7

where P is the incomplete gamma function. Since this function is linear in
the number of inflections, we see that the time to build a shared set of inflec-
tions is linear in the number of inflections. Figure 1.5 shows experimental data
confirming this estimate.

Thus, the algorithm is expected to converge in O(s +n;) time, where s is the
size of the vocabulary and n; is the number of inflections.

An Algorithm for Bootstrapping Communications 7

o 100 200 300 400 500 600 700 800 900 1000

Figure 1.5: Number of shared inflections versus elapsed time for 4 noun inflections and
1 verb inflection, in a system with 50 nouns and 20 verbs. The dotted line is theoretical
estimate I(t), beginning with cycle 230, where S(t) predicts half the vocabulary to be
learned. The solid line is experimental data.

1.4.2 Channel Capacity

The number of symbols and roles which can be learned without false symbol
detection and inflection misinterpretation is dependent on the number of wires
Ny, the number of wires per symbol n,,,s, and the percent stimulus necessary
to recognize a symbol pj.

If we want no combination of symbols to be able to generate a spurious
recognition, then each symbol must have at least 7.5 (1 — ps) wires not used by
any other symbol. This means that a vocabulary would have a maximum size of
only m. In practice, however, we can assume that only a few symbols are
being transmitted simultaneously. If we assume that no more than m symbols
will be transmitted at once, then we can conservatively estimate capacity by
allowing any two symbols to overlap by no more than n,ps * ps/m wires. Thus
any given symbol covers a portion of symbol space with volume:

nwps (1—22)
Z Nwps Ny — Nawps
() ()

=0
The whole symbol space has volume (ni‘u’:s), S0 a conservative estimate of the
maximum number of symbols that can exist is:

(o)
Nuwps

nwps(1-22) My —T
Z p (1 m)(wbps)(w .wps)

=0 [1

This yields a satisfactorily large capacity for symbols. For the experiments
described above, with n,, = 10000, nyps = 100, p, = 0.8 and a maximum of 6
concurrent symbols, we find that the capacity is 1.167 x 102 distinct symbols.

8 An Algorithm for Bootstrapping Communications

cessful Transmission

Rate of Suc

Figure 1.6: Number of comm lines versus transmission robustness. Horizontal axis
is m, from 100 to 100,000. Vertical axis shows the symbols and inflections correctly
received per symbol and inflection transmitted (spurious receptions count against this
as well) over the course of 200 test cycles on a system trained with 50 nouns, 20 verbs
and 4 noun-roles, nyps = 20, ps = 0.8. Accuracy degrades smoothly with decreased
channel capacity.

1.4.3 Performance Degradation

We expect that the performance of the algorithm will degrade gracefully as the
channel capacity is reduced. As the average Hamming distance between symbols
drops, the chance that a combination of other symbols will overlap to produce a
spurious recognition or interfere with the inflection being transmitted rises. Since
symbols receiving too much interference are discarded, the algorithm will tend
to break up clusters of symbols and move toward an efficient filling of symbol
space. Thus, reducing the ratio n,, /n,ps ought to cause the transmission errors
to rise gradually and smoothly. In practice we find that this is in fact the case,
as shown in Figure 1.6.

1.4.4 Parameter Variation

The values of the parameters used in the experiments above were not carefully
chosen. Rather, I made a guess at a reasonable value for each parameter, ex-
pecting that the algorithm should not be very sensitive to the parameter values.
(If it were, then I could hardly claim it was a robust algorithm!)

To test this, I ran a series of experiments in which I trained and tested the
system with one of the parameters set to a different value. For each value for
each parameter I ran 10 experiments: Figure 1.7 shows the performance of the
algorithm as a function of parameter value for each of the six parameters ps, r;,
te, tpy Wi, and Nyps. (Ny is excluded because its variation is evaluated in the
preceding section) As predicted, the performance of the algorithm is good over
a wide range of values for each variable.

An Algorithm for Bootstrapping Communications 9

1 w@_{ 1 1
= =
E= 2
Bos Bos 1
g s
s s
S o6 S os 1
7 2
8 8
g g
3 0.4 3 0.4 4
s 5
2 2
g g
F o2 F o2 —

Q o

0.5 0.6 0.7 0.8 0.9 1 0.02 0.04 0.06 0.08

pS I"
(a) Variation of ps (b) Variation of r;

1 B K
_ /f _
E= E=
208 Zos >_6W/\'/4>
g g
s s
S o6 S o6
7 7
8 8
g g
3 0.4 3 0.4
s 5
2 2
g g
F o2 F o2

o o

> 3 a 3 6) 6 8 10 12 14 16

lC (p
(c) Variation of t. (d) Variation of t,

e e 5 @ 3 x 1
< <
S S
2 0.8 8 0.8 Bl
£ 1=
z z
S S
Eoe = B
7] B
2 2
2 2
g g
304 304]
Rl R=1
z b1
& &

0.2 0.2 1
o o
10 15 20 25 30 20 40 60 80 100 120 140 160
Wi Mps
(e) Variation of wy, (f) Variation of nyps

Figure 1.7: Variation in performance as each parameter is varied. For each graph,
the horizontal axis shows the value of the parameter being varied and the vertical
axis shows the fraction of symbols and inflections correctly received per symbol and
inflection transmitted. Measurements are the average values over the course of 10 runs
of 200 test cycles, as in 1.6. For each run of test cycles, the systems were trained with
50 nouns, 20 verbs and 4 noun-roles, with base parameter values ps = 0.8, r; = 0.05,
te =4, tp = 6, wy = 20, nyps = 100, and n, = 10000. All parameters in the system
can tolerate small variations without serious degradation in performance.

10 An Algorithm for Bootstrapping Communications

1.5 Contributions

I have built an algorithm which allows two agents to generate a shared language
on the basis of shared experiences only. The behavior of this algorithm can be
analyzed and performs as predicted by theoretical analysis.

1.6 Acknowledgements

Particular note should be given to the help from several people. Gerry Sussman
started me thinking about the problem and pointed me in this direction. My
research is part of a continuing effort started by Yip and Sussman to build a
“TTL databook for the mind” — a compatible system of modules that capture
aspects of mental activity and can be combined to build ever more powerful
systems. Thanks also to Catherine Havasi for hacking some of the early code
with me and being a needling presence to keep me from slacking off.

Bibliography

[1] BEAL, Jacob. “An Algorithm for Bootstrapping Communications” MIT Al
Memo 2001-016, August, 2001.

[2] BEAL, Jacob. “Generating Communications Systems Through Shared Con-
text” MIT AT Technical Report 2002-002, January, 2002.

[3] KIrRBY, Simon. “Language evolution without natural selection: From vocab-
ulary to syntax in a population of learners.” Edinburgh Occasional Paper in
Linguistics EOPL-98-1, 1998. University of Edinburgh Department of Lin-
guistics.

[4] KIrBY, Simon. “Learning, Bottlenecks and the Evolution of Recursive Syn-
tax.” Linguistic Evolution through Language Acquisition: Formal and Com-
putational Models edited by Ted Briscoe. Cambridge University Press, in
Press.

[5] MINSKY, Marvin. The Society of Mind. Simon & Schuster, Inc, New York,
1985.

[6] MOOERS, Calvin. “Putting Probability to Work in Coding Punched Cards:
Zatocoding (Zator Technical Bulletin No. 10), 1947. Reprinted as Zator Tech-
nical Bulletin No. 65 (1951).

[7] Yip, Kenneth and SussMAN, Gerald Jay. “Sparse Representations for Fast,
One-Shot Learning.” MIT AI Lab Memo 1633, May 1998.

