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Fixation and consensus times on a network: a unified approach

G. J. Baxter,1 R. A. Blythe,2 and A. J. McKane3

1School of Mathematics, Statistics and Computer Science,

Victoria University of Wellington, PO Box 600, Wellington, New Zealand
2SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK

3Theory Group, School of Physics and Astronomy,

University of Manchester, Manchester M13 9PL, UK

We investigate a set of stochastic models of biodiversity, population genetics, language evolution
and opinion dynamics on a network within a common framework. Each node has a state, 0 < xi < 1,
with interactions specified by strengths mij . For any set of mij we derive an approximate expression
for the mean time to reach fixation or consensus (all xi = 0 or 1). Remarkably in a case relevant to
language change this time is independent of the network structure. A more rigorous result, in the
form of a bound, is found by mapping to particle coalescence dynamics on a network.

PACS numbers: 05.40.-a,89.75.Hc,87.23.-n,51.10.+y

Mathematical models predicting biological and social
change are becoming increasingly commonplace, with the
last few years having seen an explosion of activity among
statistical physicists in cultural dynamics [1]. One aspect
of this work which is not widely appreciated is that sev-
eral seemingly distinct phenomena can be described by
very similar models: in some cases they can even be ex-
actly mapped into each other [2]. Examples include bio-
diversity [3], population genetics [4], opinion dynamics
[1] and language change [5]. The common thread is that
objects that come in different variants are copied from
one place (an “island”) to another according to some
stochastic rule. If no new variants are created in the
process (e.g., by mutation) and the number of objects
does not grow without bound, one variant is eventually
guaranteed to take over an entire population, or go to fix-
ation in the genetics parlance. Changes in the network
structure connecting different islands, and the stochastic
rules used to choose the source and target islands, lead
to a variety of scaling laws relating the number of islands
and time to reach fixation (see, e.g., [6, 7, 8]). In this Let-
ter, we present a theoretical treatment of a very general
stochastic copying model that includes many previously-
studied cases and unifies the diverse fixation time results
obtained so far. By mapping to a particle reaction sys-
tem we show that our prediction for the fixation time,
obtained by making various approximations, can in many
cases be stated as a bound that simulations show is of-
ten saturated. We also discuss the consequences of our
findings on a current theory of new-dialect formation [9].

To establish the basic features of the large class of mod-
els we consider, we describe a prominent special case,
Hubbell’s model of biodiversity and biogeography [3].
Here there are only two islands: a metacommunity or
mainland (island 1) and a local community (island 2).
The objects are individuals which compete for a common
resource (e.g. trees competing for space, sunlight and nu-
trients [10]) and the variants are different species. At
regular time intervals an individual in island 2 is picked
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FIG. 1: Stochastic copying dynamics between two islands i

and j forming part of a larger network. After a death on i, an
object is replaced either with a copy from (a) the same island
i or (b) a different island j (rate mij).

at random to die and to be replaced by a copy of either
(a) another individual picked at random from island 2,
or (b) a migrant from island 1. Process (b) is assumed
to happen less frequently than (a), and as mentioned
above, if (b) is absent then the final state of the system
is one which contains individuals of only one species. The
number of individuals on island 2 is a constant, n, and
new species are created on island 1, but not island 2, by
mutation-like events. This model is a neutral theory; no
one species is assumed to be “fitter” than another.

The relationship between this model and simple neu-
tral models of population genetics is well known [3]: in-
dividuals are analogous to genes and species are types
of genes (alleles). A more general model comprises a set
of islands labeled i = 1, . . . , N each of which contains n
genes (in reality, n individuals each containing one copy
of the gene of interest). For simplicity we assume that
there is no mutation, so that no new alleles may be cre-
ated. The alleles are labeled by α = 1, . . . , M . The
dynamical processes, illustrated in Fig. 1 are as before:
a death on island i followed by (a) a birth on island i, or
(b) a migrant offspring from island j arriving on island i.
There are various ways to parametrize these dynamics.
As in [2], we let the parent (copied object) be taken from
island j with probability fj . In process (b) the proba-
bility the offspring (copy) lands on island i is taken to
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be proportional to mij , which specifies a migration rate

within a standard continuous-time limit described in [2],
but whose details are unimportant here. At any time t,
the state of the system can be given in terms of the frac-
tion xiα(t) of genes on island i that are allele α. Then,
the islands can be represented as nodes on a network,
which in the opinion dynamics and language change mod-
els are individuals i with opinions or language variants α
expressed with frequency xiα. In these social contexts,
fixation is sometimes called consensus.

Using the formalism first developed for these systems
in population genetics [4], we describe the evolution in
terms of a Fokker-Planck equation. Suppose, first of all,
that there is only one island and no mutation. Then the
only dynamical process is random genetic drift in which
the frequencies xα(t) diffuse on the interval [0, 1] due to
the random sampling in the death/birth process. For
simplicity, we will assume that there are only two alleles
which have frequencies x and (1 − x), so the state of
the system is described by the single stochastic variable
x ∈ [0, 1]. The probability that the system is in the state
x at time t, P (x, t), satisfies the Fokker-Planck equation
∂tP (x, t) = ∂2

x[D(x)P (x, t)] where the diffusion constant
is state dependent: D(x) = x(1 − x)/2 [4]. Moving to
the case of N islands, with migration rate mij from j to
i, the Fokker-Planck equation for P (xi, t) now reads [2]

∂P

∂t
=

∑

〈ij〉

(

mij

∂

∂xi

− mji

∂

∂xj

)

[(xi − xj)P ]

+
1

2

N
∑

i=1

fi

∂2

∂x2
i

[xi (1 − xi)P ] , (1)

where 〈ij〉 means sum over distinct pairs i, j. This may
be generalized to M > 2 and to include mutation [2], but
Eq. (1) will be sufficient for our purposes.

Analysis of Eq. (1) is, on the face of it, a hopeless
task since it has many degrees of freedom, xi, interact-
ing with arbitrary strengths mij . However, much of the
macroscopic dynamics is captured by the first and sec-
ond moments of xi(t). The mean, αi(t) = 〈xi(t)〉 can be
found from Eq. (1) to evolve according to

dαi

dt
=

∑

j 6=i

mij (αj − αi) ≡

N
∑

i=1

mijαi , (2)

where the equivalence holds if the diagonal elements
mii are defined to be −

∑

j 6=i mij . This matrix has a
zero eigenvalue, which we will assume is non-degenerate.
The associated right eigenvector has all elements equal
to one, and the left eigenvector we denote Qi, so that
∑

i Qimij = 0, and normalized such that
∑

i Qi = 1.
Then we find from Eq. (2) that the ensemble (noise-
history) average of the collective variable

ξ(t) =

N
∑

i=1

Qixi(t) (3)
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FIG. 2: Numerical solution for means αi, αj and (co)variances
σij ≡ βij−αiαj on a fully-connected network of N = 20 sites.
Note the αs converge at a time T0 much less than the mean
fixation time T , and at time T0, σij ≈ 0 for i 6= j. These
features become more pronounced as N is increased.

is conserved by the dynamics. Decomposing αi(t) in
terms of its right eigenvectors we see that it approaches
a constant independent of i as t → ∞. Since all xi(t)
tend to 0 or 1 as t → ∞, this is the probability of the
allele fixing. From (3) we see 〈ξ(t)〉 also approaches this
value in this limit and since ξ is conserved, the fixation
probability is ξ(0) [6, 11].

Numerical studies suggest that convergence of the en-
semble average αi(t) to its asymptote ξ(0) occurs on a
much shorter timescale than the ultimate fixation of a
variant, which in turn governs the rate of change of the
second moments βij(t) = 〈xi(t)xj(t)〉, see Fig. 2. Eq. (1)
implies for the latter

dβij

dt
=

∑

k

mikβkj +
∑

ℓ

mjℓβiℓ + δijfi (αi − βii) (4)

whilst the mean time to fixation, T , is given by the solu-
tion of a backward version of the Fokker-Planck equation
(1) [12]

− 1 = −
∑

〈ij〉

(xi − xj)

(

mij

∂T

∂xi

− mji

∂T

∂xj

)

+
1

2

N
∑

i=1

fi [xi (1 − xi)]
∂2T

∂x2
i

. (5)

The assumption that the time over which all the αi con-
verge, T0, is much less than T (see Fig. 2) leads to the
following approximate treatment of this equation. We as-
sume that T depends only on the state of the system at
time T0, and principally through ξ(0). Changing to the
ξ(0) variable using Eq. (3) we find that the first term on
the right-hand side of Eq. (5) vanishes [6] giving

− 2 =
N

∑

i=1

fiQ
2
i xi(T0) [1 − xi(T0)]

d2T

dξ(0)2
. (6)

This equation still depends on the variables xi at time
T0. We can estimate these by assuming that correlations
between the nodes are absent, i.e. βij = αiαj = ξ(0)2 i 6=
j, and that the rate of change of the variance of xi is
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sufficiently slow that the time derivative in Eq. (4) when
i = j can be neglected (see again Fig. 2). Then βii at
time T0 can be estimated from Eq. (4).

By replacing xi(1 − xi) in Eq. (6) by αi − βii at time
T0, we find [ξ(0)(1 − ξ(0))] d2T/dξ(0)2 = −2/r where

r ≈
∑

i

Q2
i fi

2
∑

j 6=i mij

2
∑

j 6=i mij + fi

. (7)

The mean fixation time is obtained by integrating the
equation for T (ξ(0)), with the boundary conditions
T (0) = T (1) = 0 to give

T (ξ(0)) = −
2

r
[ξ(0) ln ξ(0) + (1 − ξ(0)) ln(1 − ξ(0))] ,

(8)
which in tandem with (7) is our main result, derived for a
large class of stochastic-copying processes on any network
and arbitrary migration rates. The parameter r, and the
form of (7), admits a physical interpretation within an
interacting particle picture which we describe below.

First we remark that if the rates mij are chosen to
mimic the voter dynamics described in [6, 7], viz, fi =
1/N and mij ∝ 1/(Nkj), where ki is the degree of node
i, we obtain (modulo choice of time units) the same ex-
pression for the fixation time in terms of moments of the
degree distribuion. We also recover the various scaling
forms found in [8]. A more stringent test of our results
can be constructed by choosing fi and mij from various
random distributions in such a way that the numera-
tors and denominators in (7) are of similar magnitudes.
Simulation results (not shown) on Erdös-Rényi random
graphs of varying densities [13] are consistent with the
predictions of Eqs. (7) and (8), except when T and T0

turn out to be of a similar order in N .
More interesting is a remarkable result for the utter-

ance selection model of language change [5], in which
mij is proportional to two factors, the frequency speak-
ers i and j meet, and a social weight speaker i gives
to speaker j’s utterances. A socially-neutral model, as
proposed in [9] for new-dialect formation, is obtained if
the latter weights are all equal. Then, mij is symmetric
for any set of interaction frequencies, and one finds the
time to fixation is completely independent of the network
structure! This is because the symmetry of mij implies
that its left and right eigenvectors are proportional to
one another; hence Qi = 1/N , and

∑

j mij ∝ fi. This
network independence of r, and hence T , is confirmed by
simulation results shown in Fig. 3 (although see below
for some caveats). To evaluate the plausibility of this
socially-neutral model as a mechanism for new dialect
formation requires in addition to this result detailed con-
sideration of human memory lifetimes, to be discussed
elsewhere [14]. Ultimately, we find that a purely neutral
model is hard to reconcile with available empirical data.

A more solid understanding of Eq. (7) and its validity
is obtained by considering a mapping of the stochastic-
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FIG. 3: Fixation times within the socially-neutral utterance
selection model (defined in the text) on various networks with
N nodes (see legend).

copying dynamics to the A+A → A particle coalescence
reaction of non-equilibrium statistical mechanics [15] on
a network, also called the coalescent in population genet-
ics [16]. Here we sketch the main ideas of this approach,
with full details appearing elsewhere [17]. One consid-
ers the history of two present-day objects, which we now
call particles. Looking backward in time, each particle
hops from node i to j at rate mij . Eventually, a parti-
cle reaches the stationary distribution previously denoted
Qi. Two particles on the same site coalesce at rate fi. If
the reactions did not induce any correlations in the parti-
cle positions, then asymptotically the mean reaction rate
r would approach

∑

i Q2
i fi, since two particles would be

on node i with probability Q2
i . This result is valid when

the hop rates mij are large compared to the coalascence
rates fi [18]. The additional factor appearing in (7) can
thus be interpreted as a correction due to correlations.

More formally, one can show [17] that the asymptotic
relative probability Q(ij) of finding one particle on island
i and the other on j, given that they have not coalesced,
satisfies

∑

kl

Q(kl)M(kl)(ij) = −rQ(ij) , (9)

where M(ij)(kl) = mikδjℓ + mjℓδik − fiδijkℓ and δijkℓ is
zero unless all the indices are the same, in which case it
is unity. In other words, Q(ij) is the left eigenvector of
the matrix M with eigenvalue −r. This equation is hard
to solve in general, but a variational approach is possible
if the single-particle process satisfies the detailed balance
condition Qimij = Qjmji (this holds if mij is symmet-
ric, for instance). Then, if pλ

(ij) is a right eigenvector

with eigenvalue λ, qλ
(ij) = QiQjp

λ
(ij) is the corresponding

left eigenvector, which can be shown from the fact that
QiQjM(ij)(kℓ) = QkQℓM(kℓ)(ij). Furthermore, one can
show (in the usual fashion [19]) that all the eigenvalues
are real and negative and form an orthonormal set, i.e.,

(pλ, pλ′

) ≡
∑

ij

QiQj(p
λ
(ij))

∗(pλ′

(ij)) = δλ,λ′ (10)
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in which the equivalence defines a scalar product and the
asterisk denotes complex conjugation. It then follows
that any vector p can be expanded as p =

∑

λ(pλ, p)pλ

from which one obtains in the usual way the variational
result [19] (p, Mp) ≤ −r(p, p), which provides an upper
bound on the magnitude of the reaction rate r through
a specific choice of p. From Eq. (8), we see that it will
provide a lower bound for the mean time to fixation.

The parameters p(ij) account for correlations between
particle pairs through the relation Q(ij) = QiQjp(ij).
Hence the variational approach allows a systematic treat-
ment of these correlations. For example, we can assume
no correlations between different islands, p(ij) = 1 for
all i 6= j, and leave pi ≡ p(ii) as variational parameters.
Minimising r = −(p, Mp)/(p, p) yields, after some calcu-
lations, the pair of equations

pi =
2

∑

j 6=i mij

2
∑

j 6=i mij + fi − r̃
, r̃ =

∑

i Q2
i pi(fi − r̃)

1 −
∑

i Q2
i

(11)

that must be simultaneously solved for the optimum
value of r, denoted r̃. Analysis of these equations [17]
shows that there is a unique solution with all positive pi,
and that r̃ itself satisfies a slightly weaker bound

r ≤ r̃ ≤
1

1 −
∑

ℓ Q2
ℓ

∑

i

Q2
i fi

2
∑

j 6=i mij

2
∑

j 6=i mij + fi

, (12)

which is the right-hand side of Eq. (7) with an extra fac-
tor [1 −

∑

i Q2
i ]

−1 included. In many cases, this factor
contributes only to sub-leading order in N as N → ∞,
and (7) is recovered; additionally, numerical solution of
Eqs. (11) shows that for many networks and parameter
choices, r̃ approaches (7) as N → ∞. The value of the
results (11) comes instead from the more controlled na-
ture of the approximations made in deriving them, and
the fact that they are in the form of a bound that is valid
for models that satisfy detailed balance.

We have discussed above a number of cases where
this lower bound on the fixation time is saturated. One
may thus ask under what circumstances the fixation time
is underestimated. We have observed this to occur on
some networks exhibiting local structure: for example,
on Watts-Strogatz small-world networks [20] each node is
connected to a vanishing fraction of non-neighbor nodes.
To improve the bound, one would need to build this local
structure into the variational ansatz, which we suggest as
a task for future work, along with establishing criteria for
determining when the assumption that T0 ≪ T is invali-
dated.

In summary, we have shown how to find the fixation
time for a very broad class of stochastic-copying mod-
els that have applications in a wide range of physical,
biological, and social contexts. Although approximate,
the analytic result shows good agreement with simula-

tion data for a range of networks. We have also devel-
oped a more systematic treatment via a mapping to the
coalescence reaction A+A → A on an arbitrary network,
and hope that the variational principle outlined here can
be extended to examine the effects of, for example, local
structure on particle correlations. This approach relies on
an underlying detailed-balance symmetry, and it would
be interesting to try to extend to cases where this is vi-
olated. Finally, we have briefly discussed how a particu-
larly striking result—that fixation time is independent of
network structure—is of direct relevance to current lin-
guistic theory [9, 14] and hope that in the future many
other mathematical results for formal models of social
behavior will be applied in empirical contexts.

RAB holds an RCUK Academic Fellowship. AJM
wishes to thank the EPSRC (UK) for financial support
under grant GR/T11784.
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