Proceedings of the Alife IV Workshop; Cambridge, MA; 1994.

Innate Biases and Critical Periods:
Combining Evolution and Learning
in the Acquisition of Syntax

John Batali
Department of Cognitive Science
University of California at San Diego
La Jolla, CA 92093-0515

batali@cogsci.ucsd.edu

Abstract

Recurrent neural networks can be trained to rec-
ognize strings generated by context-free grammars,
but the ability of the networks to do so depends on
their having an appropriate set of initial connection
weights. Simulations of evolution were performed
on populations of simple recurrent networks where
the selection criterion was the ability of the networks
to recognize strings generated by grammars. The
networks evolved sets of initial weights from which
they could reliably learn to recognize the strings.

In order to recognize if a string was generated by
a given context-free grammar, it is necessary to use
a stack or counter to keep track of the depth of em-
bedding in the string. The networks that evolved
in our simulations are able to use the values passed
along their recurrent connections for this purpose.
Furthermore, populations of networks can evolve a
bias towards learning the underlying regularities in
a class of related languages.

These results suggest a new explanation for the
“critical period” effects observed in the acquisition
of language and other cognitive faculties. Instead of
being the result of an exogenous maturational pro-
cess, the degraded acquisition ability may be the re-
sult of the values of innately specified initial weights
diverging in response to training on spurious input.

1 Introduction

One of the most popular, and controversial, explana-
tions of the ability of children to learn their native lan-
guages, is that humans are born with innate biases to be
able to recognize and produce certain kinds of linguistic
structures (Chomsky, 1987). Human languages are ap-
parently too complex, and the evidence available to the
language-learner is too sparse, for general-purpose learn-
ing mechanisms to accurately acquire linguistic compe-
tence (Gold, 1967; Wexler & Culicover, 1980).

It has been suggested that first language acquisition
is the result of the maturation of some kind of language-
specific acquisition device which subsequently disappears
when the child gets older (Lennenberg, 1967). One line
of evidence for this hypothesis is the apparent existence
of a “critical period” for language acquisition (Newport,

1990). Children not exposed to a language before the
age of five or so are often not able to learn language as
well as those exposed to language while younger.

We are motivated by such issues (and the attendant
controversies) to explore the interactions between evo-
lution and learning in the acquisition of syntax. The
proposals for “innate biases” and a “language acquisi-
tion device” are very vague, and, at best, promissory
notes to be cashed out when and if we understand bet-
ter how language is processed in the brain, and therefore
what innate biases could be like, and what sorts of ac-
quisition devices might be used. And of course if a bias
or an acquisition device is innate, it must have evolved
somehow.

Artificial neural connectionist networks constitute a con-
crete (and somewhat biologically plausible) model of
computation and learning. However the precise limits
of their computational power have yet to be determined.
Fodor & Pylyshyn (1988) argue that neural networks
cannot represent recursively structured representations
in a way that allows for the sorts of mental inferences
that people can perform. One response to this argument
is that neural networks have been shown to be capa-
ble, in principle, of performing any computation that
a universal Turing machine can perform (Pollack, 1987;
Siegelmann, 1993). However the practical question re-
mains, for any given task, whether a network can be
trained perform the task upon exposure to examples.

General purpose neural network training algorithms,
for example weight updating by backpropagation of error
(Rumelhart, Hinton and Williams, 1986), are useful for a
very wide range of problems, but whether or not a given
network and learning algorithm will converge on a solu-
tion for a given episode of training is crucially dependent
on the initial connection weights of the network. Small
differences in the initial weights can determine whether
or not the training algorithm will converge on a solution,
how quickly convergence occurs, and the specific prop-
erties of the solutions that are found (Kolen & Pollack,
1990).

Such considerations suggest a specific version of an in-
nateness hypothesis: The initial values of the connection
weights of a neural network are innate, the result of evo-
lutionary processes where the selection criteria are based



input hidden output
units units units

input symbol
symbol predicted

recurrent connections

Figure 1: A simple recurrent network for recognizing
strings generated by a grammar. Symbols from the
string are presented sequentially to the input units. The
network is trained to predict the next symbol in the
string. Each unit in a layer has connections to each
of the units in the next layer; these connections are not
shown. Recurrent connections from hidden units feed
back to the input layer. The specific numbers of input
units, hidden units, output units, and recurrent connec-
tions varied in the different experiments.

on the ultimate performance of the networks after their
connection weights are modified by training. The innate
initial weights assure that the networks will efficiently
and reliably find good solutions to the tasks they face.

Since the innate biases of the networks are realized
as a set of specific values of initial connection weights,
those biases are degraded if the weights of the networks
diverge from those that evolved. Such divergence can be
the result of training on spurious input. This suggests an
explanation of some critical period effects that does not
require any appeal to maturational processes or special-
purpose language acquisition devices.

2 Networks & Grammars

Recurrent neural networks (as shown in figure 1) have
been shown to be capable of recognizing and generat-
ing strings satisfying simple grammars (Jordan, 1986;
Servan-Schreiber, Cleeremans and McClelland, 1988; El-
man, 1990a). A typical training regimen (and the one
used in the experiments reported here) consists of pre-
senting the symbols from a string generated by the gram-
mar sequentially to the input units of the network. Ac-
tivation is then fed forward through the network. The
activations of the output units are taken as a predic-
tion of the next symbol in the string. The prediction
is compared with the actual symbol that appears next,
and the error between the predicted and correct value is
backpropagated through the network to adjust the con-
nection weights between units.

One way of characterizing the complexity of formal
languages is in terms of the kinds of automata that can
recognize strings from the language (Hopcroft & Ullman,
1979). The “regular languages,” for example, can be
recognized by finite-state machines. Recurrent neural
networks are quite capable of being trained to imple-
ment finite state machines; they can learn to use the
values passed along their recurrent connections to rep-

resent the state (Cleeremans, Servan-Schreiber and Mc-
Clelland, 1989). Hence recurrent neural networks can be
trained to recognize strings from regular languages.

Human languages are more complex than regular lan-
guages (Chomsky, 1957). In particular, all human lan-
guages allow for recursive nesting of phrase structure.
The simplest class of formal languages which can gen-
erate strings exhibiting recursive phrase structure is the
class of “context-free” languages. Recognition of strings
in a context-free language requires, in addition to stor-
ing the state the recognizer is in, the use of a “pushdown
stack” to keep track of the depth of nesting in the string.

An example of a syntactic pattern which requires a
context-free grammar to express is that of the “center-
embedded” constructions in natural languages. In such
a construction some constituent, for example a noun
phrase, must be matched with another constituent, for
example a verb phrase, across some intervening mate-
rial, for example a relative clause, which might exhibit
the same structure.

Recall Fodor & Pylyshyn’s (1988) arguments, men-
tioned above, that networks are incapable of manipulat-
ing recursive constituent structure. Christiansen (1992)
wonders, based on evidence from natural language cor-
pora, and psycholinguistic experiments, whether it is re-
ally sensible to presume that human languages can ex-
hibit very deep nested structures. He suggests, in fact,
that the limitations of networks in processing embedded
structures match closely with those observed in humans,
thus the network’s limitations support their appeal as
models of human language processing. While this re-
sponse is intriguing, if we choose to accept Fodor &
Pylyshyn’s challenge, and take the ability to recognize
whether strings were generated by a context-free gram-
mar as a minimal criterion for the ability to handle re-
cursive constituent structure, then we can demonstrate
that ability by showing that part of the network is im-
plementing a pushdown stack or some computationally
equivalent device.

The results of Gold (1967) show that if a general-
purpose learning algorithm is shown strings from a for-
mal language, only regular languages can be learned.
Gold lists several ways out of this predicament, includ-
ing the one we are exploring: that the learner possesses
innate biases to learn specific classes of languages. With
respect to learning context-free languages, this means
that the network must possess an innate bias to learn
to implement and manipulate something equivalent to a
stack.

Investigations of the ability of neural networks to learn
to recognize strings exhibiting recursive phrase structure
have begun to show how networks can represent that
structure. For example in (Elman, 1990b) and (Weckerly
& Elman, 1992) networks trained to recognize strings
containing nested relative clauses and center-embedded
constructions, respectively, use different trajectories of
the activation values of their hidden units to represent
the depth of embedding in the strings. Pollack (1990,
1991) shows how neural networks can implement dynam-
ical systems and suggests that some of the attractors of



such systems can perform the functions of a pushdown
stack. Giles, et al. (1990) and Sun, et al. (1990) describe
networks equipped with an external stack, which can
learn to manipulate the stack and recognize context-free
languages.

Elman (1993) addresses the difficulty of training net-
works to recognize recursive phrase structure. His solu-
tion involves beginning training with short input strings
and gradually increasing the lengths of the strings. This
training schedule is successful because the embedded ma-
terial (e.g., relative clauses), exhibits the same sequential
pattern as that of the structure it 1s embedded within.
Even with the use of special training routines, learning
to recognize strings generated by a grammar that allows
recursively nested structure is difficult, time-consuming,
and not guaranteed to succeed in any particular training
trial.

3 Simulated Evolution

A compelling intuition, first presented by Baldwin
(1896), is that evolution and learning can work syner-
gistically. Suppose we are considering a species of an-
imals whose fitness depends on their behavior. If the
behavior is encoded entirely genetically, evolution will
have difficulty locating a solution of relatively high fit-
ness if such solutions are very small regions in the space
of possible solutions. An animal whose behavior is modi-
fiable by learning, on the other hand, can locate a highly
adaptive solution if evolution places it near, rather than
precisely on, the solution. The combination of evolution
and learning thus broadens the optima in the solution
space and gives evolution more of a gradient to work
with. Hinton & Nowlan (1987) and Belew (1989), have
explored this idea in computational simulations.

Another potential interaction between evolution and
learning is illustrated by Kolen & Pollack’s (1990)
demonstration of the extreme sensitivity of the back-
propagation network training algorithm to the values of
networks’ initial connection weights. Belew, Mclnerney,
and Schraudolph (1991) suggest that the initial weights
for networks be located by a genetic algorithm, where
the fitness measure is based on the network’s ultimate
performance on a task after training. Nolfi, Elman and
Parisi (1990) describe a population of simple creatures,
controlled by networks whose initial weights are selected
by a genetic algorithm, that evolve the ability to learn
to behave appropriately for their environment.

In our experiments, the networks initial weights were
specified directly by a sequence of real numbers. The
initial weights of the first generation were uniformly dis-
tributed between —1 and +1. After each of the networks
in the population was trained, its fitness was assessed.
The top third of the networks survived unchanged into
the next generation, with their connection weights reset
to the initial values they had before training. Each of
these networks was also used to create two offspring. For
each offspring, a copy of the parent’s initial weights was
copied to the offspring. The offspring’s initial weights
were then modified by adding a random vector to the
initial weight vector. The values at each position of the

random mutation vector were normally distributed with
a standard deviation of 0.05. The new offspring networks
and the best networks from the previous generation were
then trained, and the cycle repeated each generation.

There are a number of different approaches to the sim-
ulation of evolution (Goldberg, 1989) and the specific de-
tails described above were chosen mostly on the basis of
trial-and-error. The direct connection (indeed identity)
between the genotype and initial phenotype of these net-
works is obviously not biologically plausible, and we are
exploring more realistic models of the interactions among
genetics, development, and learning. On the other hand
the genotype must be able to somehow affect the initial
weights. Rather than try to duplicate the details of mu-
tation and other genetic events, especially given the com-
plexity that the development process introduces to the
modeling of gene expression, we treated their cumulative
effects as a random vector affecting the whole genome.
Subsequent experiments suggest that simulating sexual
reproduction by creating new initial weight sequences by
combining those of two parents would speed up the evo-
lutionary search, but no such crossover operation was
used in the simulations reported here.

4 Learning a Simple Context-Free
Language

A very simple context-free language consists of strings
of the form a”b", that 1s: some number of tokens of the
symbol a, followed by the same number of tokens of the
symbol b; thus: ab, aaabbb, aaaaaabbbbbb, etc.

Any machine that can recognize whether a string is in
this language or not must somehow count up the number
of a’s it sees, and count down each time it sees a b. While
in general, context-free languages require a pushdown
stack that can store arbitrary symbols at each level of the
stack, for this language all that is required is a counter
which can be incremented, decremented, and compared
with zero.

A recognizer for this language must also keep track of
which of two states it is in: an initial state corresponding
to the sequence of a’s, and a second state corresponding
to the sequence of b’s. During the period the machine
is in the initial state, it may see either an a or a b; if it
sees an a, it remains in the initial state and increments
the counter; when it sees a b, it enters the second state
and decrements the counter. While in the second state,
it must only see b’s, and must decrement the counter for
each one.

The networks used for learning this language had 3 in-
put units, 10 hidden units, 3 output units and 7 recurrent
connections from hidden units to the input layer. Train-
ing consisted of presenting the networks strings from the
a”b" language preceded and terminated by ‘space’ char-
acter. Prediction error was backpropagated through the
network to update the connection weights. (The back-
propagation learning rate for all of these experiments was
0.1. No momentum term was used.) Each network was
trained for a total of 500,000 characters, which works out
to about 33,000 strings. (The strings ranged in length



Figure 2: Performance of a randomly initialized network
after training on strings in the a”b"™ language. Values
plotted are the activation values of output units, af-
ter the characters from the given string are presented
to the network. The symbol ‘sp’ stands for the string-
delimiting ‘space’ character. This network had an aver-
age prediction error of 0.251 for the set of test strings.

from 4 to 26 characters.) Each network’s average per-
character prediction error for a set of 12 test strings from
the language was then measured.

To assess the ability of networks to find solutions to
this problem, 513 randomly initialized networks were
trained on strings from the language. The mean value of
the networks’ per-character prediction error was 0.244,
with a standard deviation of 0.031. The best network in
this set achieved an average prediction error of 0.168.

The performance of a randomly initialized network af-
ter training on strings from the a”b” language is shown
in figure 2. The values plotted are the activation values
of the network’s output units, after each of the characters
from the string is shown to the network. The network
correctly predicts the appearances of the a character for
the first half of the string, and once the first b is seen,
the prediction for a drops to zero. In the second half
of the string, the prediction for b, initially high, begins
to drop off, and the the prediction for the ‘space’ char-
acter begins to rise. Although these predictions accord
with the statistics of the training strings, the network
has hardly learned the language very well. It should be
predicting only b until as many b’s as a’s have been seen,
at which point it should predict only the ‘space’ charac-
ter. The behavior of the network shown in figure 2 is
representative of virtually all of the randomly initialized
networks.

A population of 24 of these networks was used as the
initial generation of an evolutionary simulation. The fit-
ness value of a network was proportional to the inverse
of the average per-character prediction error it achieved
after training on 500,000 characters from strings from
the language.

By the 155th generation of this simulation, the best
network had an error of 0.151 and the average error for
all of the networks in the population was 0.179. This
is 2.2 standard deviations better than the randomly ini-
tialized networks achieved.

Figure 3 shows the activation values of some of the units
of a network that evolved in this experiment, as it is

s a a a a a a a a b b b b b b b b

Figure 3: Activation values of units of an evolved net-
work after training, while recognizing strings of various
lengths. Plots labeled a, b, and sp show activation val-
ues of output units. The plots labeled rec show the
activation values of a unit feeding one of the network’s
recurrent connections.



shown a string of characters. Note that the network
predicts the a character very strongly after seeing the
initial ‘space’ character, and then predicts a until it sees
a b. From then on it predicts b until it has seen the
same number of a’s as b’s, at which point it predicts the
‘space’ character.

The strong prediction of a for the first half of the string
is interesting because this prediction does not match
the statistics of the strings the network was trained on.
Since a b can follow an a at any point in the string, the
statistics would predict a and b at roughly equal levels
throughout the first half of the string (or perhaps an ini-
tially higher value for a, decreasing uniformly through-
out the first half of the string). However if the string is
long enough, the average error the network receives over
the length of the string is smaller if it receives a one-
time error of 1.0 at the point where the first b appears,
rather than an error of about .5 for each character in the
first half of the string. The network has found a solution
that reflects not the statistical regularities in its input,
but the correct underlying rule.

The plots labeled rec show the activation value of one
of the units feeding a recurrent connection in the network
as it is presented the characters from the string. The ac-
tivation value of this unit illustrates how the network
manages to recognize the strings correctly. The unit is
behaving as a counter: each a increases its activation
value until b is seen, after which the value decreases.
When the activation value of this unit approaches zero,
the network predicts the ‘space’ character. As described
above, the behavior of this unit is precisely what is re-
quired for the network to recognize the language a"b”.

The networks that emerged in the final generation of
the simulation were able to learn to recognize strings
whose level of embedding was 12, which was the level
of embedding in the longest string the networks were
trained on. If the networks were shown longer (and
therefore more deeply embedded) strings, they would
usually still be predicting b strongly at the end of the
string.

5 Learning from a Class of Languages

The population of networks in the first experiment was
able to combine evolutionary search with backpropaga-
tion learning to learn a particular language. An attrac-
tive solution would have been for a network to need no
training at all — it would be “born” with the connec-
tions already correct to recognize the target language.
This solution is not implemented in humans. Children
are able to learn whatever language they are exposed
to, no matter what language their parents spoke. While
there are no innate biases to learn particular languages,
it is possible that all human languages share certain ab-
stract structural features, and there are innate biases to
learn languages with those structural features.

We explored this idea by simulating the evolution of
a population of networks trained on languages gener-
ated by a class of related grammars. In each generation,
each of the members of a population of networks was
trained on a particular language. A network’s ability to

learn the language it was trained on was used to com-
pute the network’s fitness value, and hence whether it
survived into the next generation and reproduced. But
in the next generation the network’s offspring would, in
general, face a different language. To flourish over the
generations, networks had to develop biases not for a
specific language, but for those properties shared by all
of the languages in the class.

Each of the languages in the class used the symbols a, b,
c, and d. In a given language, each of these four symbols
is assigned to one of three categories: the ‘push’ symbols,
the ‘pop’ symbols and the ‘idle’ symbols. In a grammat-
ical string from any language in the class, each ‘push’
symbol must be matched on its right by a ‘pop’ symbol.
Any number of ‘idle’ symbols can appear anywhere in a
string, except that the first symbol in the string must be
a ‘push’ symbol, and the last symbol in the string must
be its matching ‘pop’ symbol.

Each language had at least one ‘push’, ‘pop’, and ‘idle’
symbol, and one of the three categories had two sym-
bols. The 36 possible languages defined this way fall into
three subclasses, corresponding to the languages with
two ‘push’ symbols, two ‘pop’ symbols and two ‘idle’
symbols. There are 12 languages in each subclass, dif-
fering only in which symbols are assigned to which cat-
egory.

For example one language in the class has a and b
as the ‘push’ symbols, d as the ‘pop’ symbol and c is
the ‘idle’ symbol. The string ‘baadcadcdd’ is in this
language.

The intuition being explored here is that the specific
lexical items used in languages are their most arbitrary
features. Underneath lexical differences, languages may
share aspects of linguistic structure (word order, case
systems, phonological or morphological processes, etc.),
and there may be underlying regularities common to all
languages. Thus a language with ¢ and d as its ‘push’
symbols, a as its ‘pop’ symbol, and b as its ‘idle’ symbol,
would be structurally very similar to the language in the
previous paragraph, although its strings would look quite
different.

To recognize a string from one of these languages, an
automaton must keep track of the value of a counter.
Whenever it sees a ‘push’ symbol, it should increment
the counter; when it sees a ‘pop’ symbol, it should decre-
ment the counter; and when it sees an ‘idle’ symbol,
it should keep the counter at the same value. When
the counter reaches zero, the end of the string has been
found. This computation is involved in recognizing all
languages in the class, and hence the ability to quickly
learn to perform it would be an ideal innate bias for the
networks to acquire. Then, when exposed to a specific
language during training, the network would only have
to learn the specific mapping of the symbols to their
categories.

In this experiment, networks with 5 inputs, 10 hidden
layers, 5 outputs and 1 recurrent connection were used.
The single recurrent connection was used in order to
make the language-learning task as difficult as possible



TR

M NM/\ M
A
AT

VuL\/

0 50 100

§ IS e Tow st

150 200 generations

Figure 4: The evolution of networks trained on languages from the class of context-free languages. The value plotted
is the average of the pred scores of the networks in each generation.

for the networks, given the relative simplicity of the lan-
guages compared to the a”b” language.

The networks were trained on strings of characters as
in the first experiment. However in this simulation, the
performance of a network after training was assessed by
computing the average value of its ‘space’ output unit
at the end of each of a set of test strings. This value
will be referred to as the “pred” value of the network.
Ideally, it ought to be 1.0 — indicating that the network
has correctly predicted the end of each of the strings.
This value is more informative than the average per-
character prediction error for these languages, as the the
specific character that can follow another is much less
constrained than in the earlier language. As before, the
character prediction error seen was used for backpropa-
gation training of the networks.

The difficulty of this task was assessed by training 436
randomized networks with varying numbers of hidden
units and recurrent connections for 500,000 characters on
languages from the class. The average pred value after
training was 0.375 with a standard deviation of 0.117.
The best network had a pred value of 0.827. Of 103
networks with a single recurrent connection, the average
pred value was 0.280 with a standard deviation of 0.057;
the best network had a pred value of 0.457.

The evolutionary simulation was organized in a similar
fashion as the first experiment, with the pred value of
each network used to compute its fitness. Figure 4 shows
a record of the simulation. The value plotted at each
generation is the average pred value for the networks
in the population. After an initial period of relatively
aimless search, the members of the population steadily
improve their aptitude at learning the languages. (This
run represents about one week’s computation on a Sun
Sparc Station 10.)

Figure 5 illustrates the performance of one of the net-
works that evolved. The activation of the ‘space’ output
unit and the unit feeding the recurrent connection are
plotted against the symbols of a string. The recurrent
connection is used as a counter: the ‘push’ symbols a and
b increment its value; the ‘pop’ symbol d decrements it,
and the ‘idle’ symbol ¢ modifies the value only slightly.
When the recurrent value decreases far enough, the net-
work signals the end of the string.

Figure 5: Activation values of units in one of the net-
works that evolved to learn languages from the class of
context-free languages, after being trained on a specific
language from the class. For this language, the symbols
a, and b are ‘push’ symbols, d is the ‘pop’ symbol, and
c, is the ‘idle’ symbol. The solid line plots the activation
value of the unit feeding into the single recurrent con-
nection of the network after the given character is seen.
The dotted line plots the network’s prediction of the end
of string ‘space’ character.

After 150 generations, the average performance of the
entire population is better than the best performance
for the randomly initialized networks, and the perfor-
mance of the population steadily increases after that.
The networks are indeed developing an innate bias to-
wards learning the languages in the class.

Some aspects of the way this innate bias works were
investigated by looking at the performance of a network
from a late generation of the simulation before it had
been trained on any language. Its connection weights
were therefore those it had inherited. When tested on a
string from a language, its ‘space’ output unit is strongly
activated: it is almost 1.0 for each character of the string;
and the recurrent activation is essentially 0.0 throughout
the string. Thus the “newborn” network is apparently
hypothesizing the minimal language consistent with the
data it has seen: namely the empty set. (This is a rather
simple and extreme version of the sorts of strategies
studied in formal learning theory (Wexler & Culicover,
1980).) Furthermore, this prediction of the ‘space’ sym-



bol is innately associated with a zero recurrent input.
This association will be reinforced later when the recur-
rent connection begins to be used as a counter, and its
being zero signals the end of the string. Further investi-
gation of the innate biases of networks to learn related
languages is discussed below.

6 Critical Periods for Learning
Languages

The development of a number of animal faculties shows
a so-called “critical period” effect: Unless the animal
is exposed to the appropriate environmental input at a
certain period of its development, it may never acquire
the full faculty. For example Marler (1991) describes
how song sparrows deprived of the opportunity to hear
the songs of other sparrows between the ages of 20 and
50 days will ultimately learn very reduced versions of the
normal song of their species.

There is evidence for the existence of a critical pe-
riod in the acquisition of language by humans. Newport
(1990) describes how the ultimate ability of deaf children
to master sign language decreases markedly with the age
of first exposure, with significant degradation noticeable
if the children were older than around five years when
they first encountered sign language. Similar results are
obtained in studies of the ability to learn a second lan-
guage.

Lennenberg (1967), proposes that the critical period is
the result of the maturation, and subsequent disappear-
ance, of a specific language-learning mechanism. New-
port suggests an explanation in which the child’s ini-
tially limited cognitive abilities assist in the ability to
learn language, for example by limiting the size of ut-
terances that the child can store in memory and ana-
lyze. A related idea was explored by Elman (1993) in
training recurrent neural networks to recognize recur-
sively embedded strings by initially limiting the lengths
of the strings, corresponding to either limited cognitive
resources, or externally restricted input.

The experiments described here suggest a new expla-
nation of critical period effects. A consequence of a net-
work’s innate biases being realized as specific values of
initial connection weights, is that this bias can be de-
graded substantially if the weights of the network di-
verge from those that evolved. The backpropagation
learning algorithm changes the weights of the network
in response to an error signal based on a comparison be-
tween an expected output and the actual output of the
network. If the network is trained on spurious input —
strings not from the language it will eventually learn —
its connection weights will be adjusted to values that dif-
fer from those that evolved. With enough such training,
the weights of the network will diverge so far from the
innate values that the network will have lost its innate
ability to learn a language.

We presume that the network is trained on input pat-
terns available in its environment. Ordinarily, these will
be strings from the language that is ultimately to be
learned. Deprived of exposure to a language, the net-
work will be trained on whatever unstructured input ex-

ists; we model such unstructured input as random strings
presented to the network.

Marchman (1993) proposes an explanation of the crit-
ical period effect that also does not invoke an exogenous
maturational process. Her explanation, based on a neu-
ral network learning model, is that the network becomes
“entrenched” in a particular solution after some training,
and cannot find its way to new solutions. The expla-
nation being presented here is compatible with March-
man’s account, and indeed entrenchment effects will be
described below. The difference is that in our account
the effect is the result of the network’s weights being
removed from some ideal zone for learning, as opposed
to being stuck in some other solution, as in Marchman’s
proposal.

One of the networks that evolved to learn languages from
the class was trained for varying periods with random
strings. After some number of characters of such train-
ing, the network was then trained on one of the languages
in the class, for 500,000 characters. As illustrated in the
left hand plot of figure 6 the ultimate performance of
the network on learning a language decreases with the
length of exposure to random input.

More dramatic degradation in the performance of the
network is observed if the evolved network is trained on
one language for a while, and then switched to another,
as is illustrated in the right hand plot of figure 6. The
network was first trained for some number of characters
on languages from one of the three language subclasses.
Language class 1 has two ‘push’ characters; language
class 2 has two ‘pop’ characters, and language class 3
has two ‘idle’ characters. After the network was trained
for the indicated number of characters on the other lan-
guage, it was then trained for 500,000 characters on a
language from class 1. (If the initial training was on a
class 1 language, the subsequent training was on a dif-
ferent class 1 language.) The final average pred values
for a set of test strings from the language is plotted.
Note that there is little interference from a language of
the same class, but that a language from one class can
decrease the effectiveness of the network at learning a
language from another class, sometime to less than the
average performance of randomized networks at learning
the same language.

Apparently what is happening here is that the innate
biases the networks have evolved tend to place the net-
works’ initial weights in zones from which training will
guide the networks to good solutions. A period of ran-
dom training will jiggle the weights around, but won’t
move them out of the zone right away. On the other
hand, exposure to structured input will move the weights
out of the initial bias zone towards a particular solution.
Once out of that initial zone, a network will have a hard
time finding its way back into it. In fact, enough training
on structured input of the wrong kind (here, a different
language class) will actually put the weights of the net-
work into a zone from which learning cannot reach the
optima available to most randomly initialized networks.
This illustrates Marchman’s notion of “entrenchment.”

The behavior of the network illustrated by the right-



0.8 -
0.6 —
04 -

0.2 4 | | | | | |
0 100,000 200,000 300,000 400,000 500,000 600,000

QP 1
\\

0.2 o \\ -~
\
\ S, 2
\

0.0~ | | U F-mm o 13

0 60,000 120,000 180,000 240,000 300,000

Figure 6: Performance of a network in learning a language after exposure to spurious input. One of the networks
that evolved to learn from the class of related languages was chosen. The plot on the left illustrates the final pred
value for the network after first being trained on the indicated number of characters from random sequences, and
then trained on 500,000 characters from a language in the class. The plot on the right shows the final pred value for
the network after first being trained on strings from a language from each of the three subclasses of languages for
the indicated number of characters, and then trained on 500,000 characters from a language of class 1. The solid line
indicates the average performance of randomly initialized networks. Both plots display average values taken over 20
training runs each. Note that the scales of the abscissas are different in the two plots.

hand plots in figure 6 also shed light on how the net-
works’ innate biases work. The fact that there is less in-
terference between members of the same language class
suggests that the initial weights of the networks are such
that they can quickly locate solutions that exploit the
commonalities of the languages of the same class. Once
such a solution is in place, it is possible for a network
to learn a new mapping from symbols to their cate-
gories. On the other hand, once a network begins to
develop a solution for a language of one class, that so-
lution strongly interferes with the network’s ability to
learn both a new language’s structure and its mapping
from symbols to categories.

7 Learning Temporal Boolean
Functions

Some of these issues were explored by investigating the
evolution of networks on a simpler (and therefore more
quickly trainable) recognition task. Each of the networks
in a generation was trained on one of four temporal ver-
sions of two-input boolean functions. The four functions
are:

xor exclusive or of current and previous inputs

-xor negation of xor
prev value of previous input
-prev negation of previous input

These functions were chosen because they were found by
experiment to be the most difficult of the 16 temporal
boolean functions for randomly initialized networks to
learn.

An evolutionary simulation of 200 generations was
performed with a population of 24 networks. Each net-
work had 1 input unit, 3 hidden units, 1 output unit,
and 1 recurrent connection. In a generation, each net-
work was trained with 100,000 characters from one of the
temporal boolean functions, and the network’s final aver-
age prediction error was used to determine its fitness. As

with the networks evolving to learn languages from the
class of context-free languages, the offspring of networks
which did well in a particular generation at learning the
function they were trained on would, in general, face a
different function than their parent did. Hence the selec-
tive pressure was toward acquiring whatever innate bias
would help learn all of the functions, not just a specific
one.

The following table shows the performance of networks
after being trained on 100,000 characters from the tem-
poral boolean functions. The column headed “Random-
ized” shows the final average prediction error of net-
works with random initial weights; the column headed
“Evolved” shows the final average prediction error of net-
works whose initial weights were found by the evolution-
ary simulation. The results in this table are averaged
over 400 training runs each.

Randomized Evolved
boolean mean | standard | mean | standard
function | error | deviation | error | deviation

xor 178 .088 .0151 | .036
-xor 182 .088 .0006 | 5.00x1076
prev 205 | 077 0001 | 7.35x1077
-prev .202 .080 .0001 | 1.02x1076

The networks have apparently evolved some sort of
bias towards learning the boolean functions. At least
some of the nature of this bias is illustrated in the ta-
ble below. A network from the last generation of the
simulation run was given a sequence of inputs before it
was trained on any of the functions. The responses of its
output unit and the unit feeding its recurrent connection
are shown in the center columns. Note the activation
value of the recurrent unit is very close to the input to
the network. This value will be available to the network
as input when the next input is seen. This innate re-
sponse of the network means that when trained on the
temporal boolean function, the network just has to learn



1.00 —

.95 —

.90 —

.85 —

.80 —

75 4 | | | | | [ [

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

1.00 TN
\ n ST o---m-oTs--XOr
95—\
v “ \ //
Ny
N
907 ', ”\\ﬁ/;%\ 77777777777777 'pre\/
Lo .
85 - “\ "‘ ’ > \
N "
80— N
" S - prev
75 | | |
0 10,000 20,000 30,000

Figure 7: Performance of one of the networks that evolved to learn temporal boolean functions after exposure to
spurious input. The value plotted is 1.0 minus the average error of the network for a set of test strings after training
for 100,000 characters, after being exposed to spurious input for the indicated number of characters. The plot on
the left shows the result for a network exposed to random sequences. The plot on the right shows the results for
the network exposed first to the indicated temporal boolean function, and then to the —xor function. The values on

both graphs are averaged over 400 training runs.

the non-temporal version of that boolean function. The
right hand columns in the table show the performance of
the network after training with 100,000 characters from
the xor function. The behavior of the recurrent values
haven’t changed at all, and the network is correctly com-
puting the temporal xor function.

Before Training || After Training

input | correct || actual rec actual rec
output || output | wvalue output | value

1 1 19 .96 97 .96

0 1 .10 .04 .98 .04

0 0 .16 .04 .02 .05

1 1 19 .96 97 .96

1 0 A2 .96 .03 .96

0 1 .10 .04 .98 .04

Figure 7 shows the performance of the network after
exposure to spurious input. The left hand plot shows
how the network’s ultimate prediction error after train-
ing is affected by initial training on random sequences;
it exhibits the classic shape of a critical period effect! —
for a short period (in this case amounting around 20,000
characters) the spurious input has no effect at all on
the ultimate performance of the network. The ultimate
performance then drops rapidly, until after enough time
(around 50,000) characters, the behavior of the network
is the same as that of randomly initialized networks.

The plot on the right of figure 7 displays the final
performance of the network after first being trained on
one temporal boolean function for the indicated number
of characters, and then trained on the —xor function.

The different functions have different effects on the
ultimate ability of the network to learn -xor. Learn-
ing xor first has very little effect on the ultimate per-
formance of the network (except for a very strong ef-
fect at 4500 characters, which will be discussed below).

!See, for example, figure 2 of Newport (1990), or figures
2.18 and 2.19 of Marler (1991).

Learning -prev has almost no effect until around 7000
characters and then begins to have a slight, but signifi-
cant effect. Learning prev has a rather dramatic effect
on the ultimate performance of the network, decreasing
it to that of randomly initialized networks after 30,000
characters.

The glitch at 4500 characters in the plot labeled xor
provides a clue to how learning another function in-
terferes with the subsequent learning of —xor. As was
shown above, the networks have evolved a set of initial
weights that result in their recurrent connections pass-
ing the input value back into the network with the next
character. When the network has been trained on 4500
characters of the xor function, that behavior still oc-
curs, and the network is also producing output values
that are just beginning to approximate xor: the output
values when a 1 is expected are slightly more than .5 and
the output values when a 0 is expected are slightly less
than .5.

If the function being learned is then switched to —xor,
the network can respond to the new training in one of
two ways: either by changing the values of weights com-
puting the boolean function from the character input
and the recurrent input, or by changing the values of
the weights that result in the recurrent connection feed-
ing the current input back into the network. The latter
choice is made most of the time, and the recurrent con-
nections begin to carry intermediate values. Since the
recurrent pattern was a major source of the networks
innate bias towards learning the functions, they then
behave essentially as randomly initialized networks do.

After as few as 2000 more characters of initial training
on xor however, this effect disappears and the network
is able to learn -xor correctly even after 30,000 charac-
ters of exposure to xor first. Apparently after solidly
learning xor, the network is able to locate a solution
that involves negating an output unit without modify-
ing the weights that determine the values passed along
its recurrent connection.



In these experiments, the innate biases of the networks
implement a partial solution to the problem that the net-
works face when learning each of the temporal boolean
functions. Spurious input can degrade the network’s ul-
timate performance in two ways: either by drifting the
weights of the network away from the values implement-
ing the innate partial solution; or by interrupting the
standard development of the innate partial solution to-
ward its being a complete solution for some particular
function.

8 Discussion

Figures 3 and 5 demonstrate that recurrent neural net-
works can learn to implement a counter in the course of
being trained to recognize strings from context-free lan-
guages, and therefore satisfy the requirement posed by
the theory of formal automata. The networks are lim-
ited to a finite value for the maximum depth of recursive
nesting in the strings, but so would any actual hardware
implementation of an abstract automaton.

The languages our networks recognize are members
of a subclass of the full class of context-free languages:
they are members of the class of languages recognizable
by deterministic automata. It is difficult to imagine how
a network could efficiently implement a nondeterminis-
tic automaton — the network would somehow have to
encode a complex representation of a search state in its
activation values. On the other hand, it has been argued
that deterministic automata are sufficient for processing
natural languages (Marcus, 1980).

In order for the networks to be able to learn to rec-
ognize context-free languages, they had to start learn-
ing with proper sets of initial connection weights. The
values of those initial weights were found by a simula-
tion of evolution. The enormous investment in compu-
tational power illustrated by evolutionary searches like
that shown in figure 4 make it questionable whether such
searches really are a good way to obtain networks which
can recognize strings from grammars. However the point
is not to construct individual networks capable of recog-
nizing specific languages. Instead, these results demon-
strate that the members of a species can evolve biases
to learn different, but related, languages reliably and ef-
ficiently. These biases would be crucial for the members
of a species whose subgroups face different, but related,
communicative situations.

The innate biases the networks acquire seem to con-
fer sensitivity to the underlying regularities of a class of
languages. In the case of learning the temporal boolean
functions, the networks inherited a partial solution to
the task they had to learn. Such sensitivity to underly-
ing regularities, and partial solutions, makes the learning
task faced by the network easier. Only the more superfi-
cial aspects of the language need to be learned upon ex-
posure to examples. This was the initial motivation for
the proposal of innateness in the first place: a difficult
(or impossible) learning task is made tractable by in-
nate mechanisms or biases. However no domain-specific
innate acquisition mechanism needs to be introduced.

Instead all that is required is a general-purpose learning
mechanism in an appropriate initial configuration.

The sensitivity of the networks to the underlying reg-
ularities of the class of languages could make one suspect
that the network has an innate set of formal constraints
characterizing the abstract form of a grammatical string.
Language acquisition on this model consists in discover-
ing specific rules consistent with this set of general con-
straints (Pinker, 1989). But any constraints the network
possesses, and any rules it learns, are represented only
implicitly, in the connection weights of the network. In-
deed it might be best not to think of these initial connec-
tion weights as a specific set of formal constraints and
rules, but as the states of a dynamical system interact-
ing with an environment (the set of training examples).
It seems likely that the behavior of such systems would
submit to quite a different sort of analysis than that
of formal learning theory (Wexler & Culicover, 1980),
leading to a different characterization of the process of
human language acquisition than that of acquiring rules
subject to innate constraints.

Though these investigations were motivated partly by
Fodor & Pylyshyn’s (1989) critical analysis of the ade-
quacy of neural network models of cognition, the results
presented here are a long way from a refutation of their
argument. The networks have not been shown to ma-
nipulate abstract recursive structures to perform valid
inference, or any other of the sort of semantically sound
“structure sensitive” operations that Fodor & Pylyshyn
take to be criterial of cognition.

It is important, however, to note that their arguments
for the existence of recursively structured mental repre-
sentations rest on observed human abilities to perform
certain tasks: to find two sentences to be synonymous,
for example; or to draw a valid inference from a set of
premises. It is a hypothesis that recursively structured
representations are needed to account for these abilities.
The networks described here, for example, are able to
recognize recursively characterizable structures with no
recursively structured representations. If it turns out
that more and more cognitively relevant abilities can be
achieved without recursively structured representations,
than the fact that neural networks are, or are not, capa-
ble of such representations becomes less relevant.

It is likely that there are a number of interacting ex-
planations for the critical period effects observed in the
development of some cognitive abilities. For one thing,
it 1s possible there are adaptive benefits for animals to
acquire cognitive abilities in a certain sequence or at cer-
tain times (it is probably beneficial for children, for ex-
ample, to learn language while rather young). Also there
might be a value towards focusing cognitive effort on one
problem at time, perhaps under the control of general
maturational processes.

The explanation of the critical period effect proposed
here is a direct consequence of innate biases being re-
alized as the initial state of a general-purpose learning
mechanism. Such effects would be observed whether or
not any other maturational process or mechanism exists.



We are currently exploring better ways to analyze the
initial weights of the evolved networks, to better under-
stand exactly what the innate biases are encoding. We
are also attempting to evolve networks that can learn
more complex and more realistic grammars. All of our
evolutionary simulations so far have involved formal lan-
guages that we imposed on the networks to learn. We
intend to explore the evolution of populations of net-
works whose fitness is based on their performance on
a communication task, to see what kinds of languages
arise.

9 Conclusion

The proposal of “innateness” as a solution to puzzles
in cognitive development has been around since ancient
times. With the advent of computational modeling of
evolutionary processes comes the possibility of evaluat-
ing concrete proposals for the mechanisms of innateness.
The experiments reported herein are an exploration in
that direction.

The ability to recognize and generate complex tem-
poral patterns, necessary for language as well as other
activities, is important enough to expect that some in-
nate ability to learn to do so would be beneficial. Recur-
rent neural networks could implement that ability, with
the innate biases realized as appropriate values for the
networks’ initial connection weights.

Acknowledgments

I would like to thank Rik Belew and Jeff Elman for valu-
able advice and encouragement.

References

Baldwin, J. M. (1896). A new factor in evolution. Amer-
tcan Naturalist, 30, pp. 441-451.

Belew, R. K. (1989). When both individuals and popu-
lations search: Adding simple learning to the genetic
algorithm. Proceedings of the 3rd International Con-
ference on Genetic Algorithms, J. D. Schaefer, (ed.),
Morgan Kaufman.

Belew, R. K., Mclnerney, J., and Schraudolph, N. N.
(1991). Evolving networks: Using the genetic algo-
rithm with connectionist learning. In Artificial Life
11, SFI Studies in the Sciences of Complexity, Volume
X. C. G. Langton, C. Taylor, J. D. Farmer, and S.
Rasmussen, (eds.), Addison-Wesley, pp. 511-547.

Chomsky, N. (1957). Syntactic Structures. The Hague:
Mouton.

Chomsky, N. (1987). Knowledge of Language: Its Na-
ture, Origin, and Use. New York: Praeger.

Christiansen, M. (1992). The (non)necessity of recur-
sion in natural language processing. Proceedings of
the Fourteenth Annual Meeting of the Cognitive Sci-
ence Soctety, Indiana University, Bloomington.

Cleeremans, A., Servan-Schreiber, D. and McClelland, J.
L. (1989). Finite state automata and simple recurrent
networks. Neural Computation, 1, pp. 372-381.

Elman, J. L. (1990a). Finding structure in time. Cogni-
tive Science, 14, pp. 179-211.

Elman, J. L. (1990b). Distributed representation, simple
recurrent networks, and grammatical structure. Ma-
chine Learning, 7, pp. 195-225.

Elman, J.L. (1993). Learning and development in neural
networks: The importance of starting small, Cogni-
tion, 48, pp. 71-99.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and
cognitive architecture: A critical analysis. Cognition,

28, pp- 3-71.

Giles, G. L., Sun, G. Z., Chen, H. H., Lee, Y. C., and
Chen, D. (1990). “Higher order recurrent networks &
grammatical inference.” In Advances in Neural Infor-
mation Processing Systems, 2, D. S. Touretzky (ed.),
San Mateo CA: Morgan Kaufman.

Gold, E. M. (1967). Language identification in the limit.
Information and Control, 16, pp. 447-475.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Hinton, G., & Nowlan, S. J. (1987). How learning can
guide evolution. Complez Systems, 1, pp. 495-502.

Hopcroft, J. E. & Ullman, J. D.; (1979). Introduction
to Automata Theory, Languages, and Computation.

Addison-Wesley.

Jordan, M. (1986). Serial Order: a Parallel Distributed
Processing Approach. 1CS Report No. 8604. Institute
for Cognitive Science; University of California at San
Diego.

Kolen, J. F., & Pollack, J. B. (1990). Back propagation
is sensitive to initial conditions. Complez Systems 4,

pp- 269-280.

Lennenberg, E. H. (1967). Biological Foundations of
Language. New York: John Wiley & Sons, Inc.

Marchman, V. A. (1993). Constraints on plasticity in a
connectionist model of the English past tense. Journal
of Cognitive Neuroscience, 5, pp. 215-234.

Marcus, M. (1980). A Theory of Syntactic Recognition
for Natural Language. Cambridge, MA: MIT Press.

Marler, P. (1987). The instict to learn. In The Epigenesis
of Mind: FEssays on Biology and Cognition. Susan
Carey & Rochel Gelman (eds.), Hillsdale, New Jersey:
Lawrence Erlbaum Associates. pp. 37-66.

Newport, E. (1990). Maturational constraints on lan-
guage learning. Cognitive Science, 14, pp. 11-28.



Nolfi, S., Elman, J. L., and Parisi, D. (1990). Learning
and FEvolution in Neural Networks. CRL Technical
Report 9019. Center for Research on Language. Uni-
versity of California at San Diego.

Pinker, S. (1989). Learnability and Cognition. Cam-
bridge, MA: MIT Press.

Pollack, J. B. (1987). On Connectionist Models of Nat-
ural Language Processing. PhD Thesis, Computer
Science Department, University of Illinois, Urbana.
Available as Memorandum MCCS-87-100, Computing
Research Laboratory, New Mexico State University.

Pollack, J. B. (1990). Language acquisition via strange
automata. In Proceedings of the Twelfth Annual Con-
ference of the Cognitive Science Society.

Pollack, J. B. (1991). The induction of dynamical recog-
nizers. Machine Learning, 7, pp. 227-252.

Rumelhart, D. E.; Hinton, G. E., and Williams, R.
J. (1986). Learning internal representations by error
propagation. In Parallel Distributed Processing: FEz-
plorations in the Microstructure of Cognition, Volume
1: Foundations. David E. Rumelhart, James L. Mc-
Clelland and the PDP Research Group. Cambridge,
MA: MIT Press, pp. 318-362.

Servan-Schreiber, D., Cleeremans, A., and McClelland,
J. L. (1988). Encoding sequential structure in simple
recurrent networks. CMU Technical Report CMU-CS-
335-87). Carnegie-Mellon University, Department of
Computer Science.

Siegelmann, H. T. (1993) Foundations of Recurrent Neu-
ral Networks. PhD Dissertation. Rutgers University,
Graduate Program in Computer Science.

Sun, G. Z., Chen, H. H., Giles, G. L., Lee, Y. C., and
Chen, D. (1990). Connectionist pushdown automata
that learn context-free grammars. Proceedings of the
International Joint Conference on Neural Networks,
Vol. 1. M. Caudill (ed.) Hillsdale, NJ: Lawrence

Erlbaum.

Weckerly, J., & Elman, J.L. (1992). A PDP approach to
processing center-embedded sentences. In Proceedings
of the Fourteenth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Erlbaum.

Wexler, K., & Culicover, P. (1980). Formal Principles of
Language Acquisition. Cambridge, MA: MIT Press.



