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We review the behavior of a recently introduced model of agreement dynamics, called the “Naming
Game.” This model describes the self-organized emergence of linguistic conventions and the es-
tablishment of simple communication systems in a population of agents with pairwise local inter-
actions. The mechanisms of convergence towards agreement strongly depend on the network of
possible interactions between the agents. In particular, the mean-field case in which all agents
communicate with all the others is not efficient, since a large temporary memory is requested for
the agents. On the other hand, regular lattice topologies lead to a fast local convergence but to a
slow global dynamics similar to coarsening phenomena. The embedding of the agents in a small-
world network represents an interesting tradeoff: a local consensus is easily reached, while the
long-range links allow to bypass coarsening-like convergence. We also consider alternative adaptive
strategies which can lead to faster global convergence. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2734403�

Numerous statistical physics models have been developed
or adapted for the description and study of social behav-
ior and social phenomena, such as opinion dynamics and
consensus formation. The Voter model is a well-known
example. Each agent has one of two possible opinions; at
each time step, an agent picks at random one of his
neighbors and adopts his opinion. The possible conver-
gence to a state in which all agents share the same opin-
ion has been particularly studied for agents on the nodes
of regular lattices (or in the case of all agents interacting
with all others). This is also the case for most “sociophys-
ics” models. Recently, however, the study of complex net-
works has put in evidence the fact that social networks
are typically very heterogeneous, and in all cases, very
different from regular lattices. The consequences of the
topology of the interaction network on the dynamical be-
havior of all these models have thus become of great rel-
evance. We consider a model for the decentralized forma-
tion of a communication system among interacting
agents. The model has important differences with other
usual opinion models, such as the existence of memory.
We have studied the model’s dynamics for agents inter-
acting on various types of networks, and have shown in
particular that the formation of a common communica-
tion system is more easily obtained if the agents form a
small-world network. In fact, and maybe counterintu-
itively, the possibility for the agents to all interact with

each other allows, as well, to reach a consensus on the
communication system, but in a less efficient way. We
have also studied the convergence phenomenon for vari-
ous networks, putting in evidence the main mechanisms
and the effect of various parameters.

I. INTRODUCTION

The recent past has witnessed an important development
of the activities of statistical physicists in the area of social
sciences �for a recent collection of papers, see Ref. 1�. In-
deed, the standard methods of statistical physics are very
appropriate to study collective behaviors, neglecting details
and retaining only few general ingredients observed in real
social interactions. For this reason, physicists have put for-
ward a large number of theoretical models of social dynam-
ics, borrowing a suite of statistical methods from the theory
of interacting particle systems.2–5 In particular, many models
have been proposed for the study of opinion formation, such
as the Voter model,2,6–10 the Sznajd-Weron model,11 the
Axelrod model for the dissemination of culture,12 and their
variants �e.g., the models proposed by Deffuant et al.13 and
by Krause and Hegselmann14�.

The behavior of these models has been much studied on
regular topologies or in situations where each agent can in-
teract with all the others. Recently, however, network
science15–17 has led to a better knowledge of the topological
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properties of real social groups,18 and in particular to show
that the topology of the network on which agents interact is
not regular. Models of social dynamics have thus been recon-
sidered in order to integrate the new framework of complex
networks and to study the influence of various complex to-
pologies on the corresponding dynamical behavior.

In this article, we review the behavior of a recently pro-
posed model for the emergence of a communication system,
called the Naming Game, investigating its dynamics both on
regular topologies and complex networks.19–22

Social interactions are indeed based on the existence of a
communication system among the agents who are able to
understand each other by means of common linguistic pat-
terns or, more generally, by means of a common vocabulary
of symbols. Such a communication system is the result of a
self-organized process in which individuals select specific
symbols �words� and associate them with concepts and ideas
�objects�. The emergence of a shared lexicon inside social
groups and communities of people is very likely to be driven
by simple criteria, such as popularity, imitation, negotiation,
and agreement. When a new concept is introduced, people
refer to it using several different names or words. These
words start spreading among the population, competing one
against the other, until the choice of one of them is taken
�with a sudden transition or with a long process� and every-
one uses the same word �or symbol, etc.�.23–25 This kind of
dynamics has recently become of broad interest after the dif-
fusion of a new generation of Web tools, which enables hu-
man users to self-organize a system of tags in such a way to
ensure a shared classification of information about different
arguments �see, for instance, del.icio.us or www.flickr.com
and Refs. 26 and 27�. Another application concerns global
coordination problems in artificial intelligence, where a
group of artificial embodied agents moving in an unknown
environment has to exchange information about the objects
they gradually discover. The emergence of consensus about
the objects’ names allows to establish a communication sys-
tem. A practical example of this type of dynamics is provided
by the well-known “Talking Heads” experiment,28,29 in
which embodied software agents managed to develop their
vocabulary observing objects through digital cameras, as-
signing them randomly chosen names, and negotiating these
names with other agents.

The paper is organized as follows. In Sec. II we intro-
duce and discuss the Naming Game. In Sec. III we describe
the main phenomenology of the model in the mean-field
case, i.e., when the population is completely unstructured
and each agent can in principle interact with anybody else. In
the following sections different interaction patterns are in-
vestigated: regular lattices �Sec. IV�, small-world networks
�Sec. V�, and different kinds of complex networks �Sec. VI�.
In Sec. VII, the microscopic rules of the model are modified
in order to improve the efficiency of the model. Finally, con-
clusions are drawn in Sec. VIII.

II. MODEL DEFINITION

A minimal model of the Naming Game has been put
forward by Baronchelli et al. in Ref. 30 to reproduce the
main features of semiotic dynamics and the fundamental re-

sults of adaptive coordination observed in the Talking Heads
experiment. The minimal Naming Game model consists of a
population of N agents observing a single object, for which
they invent names that they try to communicate to one an-
other through pairwise interactions, in order to reach a global
agreement. The agents are identical and dispose of an inter-
nal inventory, in which they can store an a priori unlimited
number of names �or opinions�. All agents start with empty
inventories. At each time step, a pair of neighboring agents is
chosen randomly—one playing as “speaker,” the other as
“hearer”—and negotiate according to the following rules
�see also Fig. 1�:

• The speaker selects randomly one of its words and conveys
it to the hearer.

• If the hearer’s inventory contains such a word, the two
agents update their inventories in order to keep only the
word involved in the interaction �success�.

• If the hearer does not possess the uttered word, the latter is
added to those already stored in the hearer’s inventory
�failure�, i.e., it learns the word.

Before entering in the detailed description of the dynam-
ics, it is worth noting some visible differences of the Naming
Game with other commonly studied models of social dynam-
ics and, in particular, of opinion formation.2,11–13 First of all,
each agent can potentially be in an infinite number of pos-
sible discrete states �words, names, opinions�, and the maxi-
mum number of states depends on the dynamical evolution
itself �see Ref. 31 for a detailed analysis of this point�. The
two-steps decision process is, moreover, rather realistic: an
agent can accumulate in its memory different possible names
for the object, waiting before reaching a decision. These
points are strongly in contrast with traditional models �Voter,
Potts, etc.� in which the number of states is a fixed external
parameter taking finite �and usually small� values,40and in
which each agent has a unique, well-defined, opinion at each

FIG. 1. Agent interaction rules. Each agent is described by its inventory, i.e.,
the repertoire of known words. The speaker picks up at random a name in its
inventory and transmits it to the hearer. If the hearer does not know the
selected word the interaction is a failure �top�, and it adds the new name to
its inventory. Otherwise �bottom�, the interaction is a success and both
agents delete all their words but the winning one. Note that if the speaker
has an empty inventory �as it happens at the beginning of the game�, it
invents a new name and the interaction is a failure.

026111-2 Barrat et al. Chaos 17, 026111 �2007�

Downloaded 18 Dec 2008 to 165.124.166.150. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



time step. Each dynamical step can be seen as a negotiation
between speaker and hearer, with a certain degree of stochas-
ticity, that is absent in deterministic models such as the Voter
model. The stochastic component is, however, of a different
nature compared to that of standard Glauber dynamics used
in majority rule models,32 since here it comes from an inter-
nal selection criterion and involves only the speaker, without
affecting the �deterministic� decision process of the hearer.

An important remark also concerns the random extrac-
tion of the word in the speaker’s inventory. Most previously
proposed models of semiotic dynamics attempted to give a
more detailed representation of the negotiation interaction
assigning weights to the words in the inventories. In such
models, the word with the largest weight is automatically
chosen by the speaker and communicated to the hearer. Suc-
cesses and failures are translated into updates of the weights:
the weight of a word involved in a successful interaction is
increased to the detriment of those of the others �with no
deletion of words�; a failure leads to the decrease of the
weight of the word not understood by the hearer. An example
of a model including weights dynamics can be found in Ref.
33, and references therein. For the sake of simplicity the
minimal Naming Game avoids the use of weights. Indeed,
these are apparently more realistic, but their presence is not
essential for the emergence of a global collective behavior of
the system.34

Finally, we stress that, in the minimal Naming Game, all
agents refer to the same single object, while in the original
experiments the embodied agents could observe a set of dif-
ferent objects. This is actually possible only if we assume
that homonymy is excluded, i.e., two distinct objects cannot
have the same name. Consequently, in this model, all objects
are independent and the general problem reduces to a set of

independently evolving systems, each one described by the
minimal model. In more realistic situations, however, hom-
onymy should probably be taken into account.

III. MEAN FIELD

Many studies of social dynamics have focused on popu-
lations of agents in which all pairwise interactions are al-
lowed, i.e., the agents are placed on the vertices of a fully
connected graph. In statistical mechanics, this topological
structure is commonly referred to as “mean-field” topology.
The main quantities of interest which describe the system’s
evolution are30

• the total number Nw�t� of words in the system at the time t
�i.e., the total size of the memory�;

• the number of different words Nd�t� in the system at the
time t;

• the average success rate S�t�, i.e., the probability, com-
puted averaging over many simulation runs, that the cho-
sen agent gets involved in a successful interaction at a
given time t.

The consensus state is obtained when Nd=1 and Nw=N
�so that S=1�.

The temporal evolution of the three main quantities is
depicted in Fig. 2 �circles�. At the beginning, many disjoint
pairs of agents interact, with empty initial inventories: they
invent a large number of different words �N /2, on average�
that starts spreading throughout the system, through failure
events. Indeed, the number of words decreases only by
means of successful interactions. In the early stages of the
dynamics, the overlap between the inventories is very low
and successful interactions are limited to those pairs which

FIG. 2. Evolution of the total number
of words Nw �top�, of the number of
different words Nd �center�, and of the
average success rate S�t� �bottom�, for
a mean-field system �black circles�
and low-dimensional lattices �1D, red
squares and 2D, blue triangles� with
N=1024 agents, averaged over 103 re-
alizations. The inset in the top graph
shows the very slow convergence in
low-dimensional lattices.
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have been chosen at least twice. Since the number of pos-
sible partners of an agent is of order N, it rarely interacts
twice with the same partner, the probability of such an event
growing as t /N2. The initial trend of S�t� �black circles� is
indeed linear with a slope of order 1 /N2. In this phase of
uncorrelated proliferation of words, the number of different
words Nd invented by the agents grows, rapidly reaching a
maximum that scales as O�N�. Then Nd saturates, displaying
a plateau, during which no new word is invented anymore
�since every inventory contains at least one word�. The total
number Nw of words stored in the system has a similar be-
havior, but it keeps growing after Nd has saturated, since the
words continue to propagate throughout the system even if
no new one is introduced. The peak of Nw has been shown to
scale as O�N1.5� �Ref. 30�, meaning that each agent stores
O�N0.5� words. This peak occurs after the system has
evolved for a time tmax�O�N1.5�. In the subsequent dynam-
ics, strong correlations between words and agents develop,
driving the system to a final, rather fast, convergence to the
absorbing state in a time tconv�O�N1.5� �note that throughout
this review, we do not show data corresponding to the scal-
ing of tconv with N, except in Sec. VII, but refer the interested
reader to our previously published papers19,21,22,30�. The
S-shaped curve of the success rate in Fig. 2 summarizes the
dynamics: initially, agents hardly understand each other �S�t�
is very low�; then the inventories start to present significant
overlaps, so that S�t� increases until it reaches 1, and the
communication system is completely set in.

IV. COARSENING PHENOMENON ON LATTICES

A first study of the effects of topological embedding on
the Naming Game dynamics is reported in Ref. 19. When the
interacting agents sit on the nodes of low-dimensional lat-
tices, the long-time behavior is still characterized by the con-
vergence to a homogeneous consensus state, but the evolu-
tion of the system changes considerably. In particular, the
time required by the system to reach the global consensus
displays a different scaling with the size N, and the effective
size of the inventories is considerably diminished. Actually,
the existence of different dynamical patterns are clearly vis-
ible in Fig. 2. Since each agent can interact only with a
limited number of neighbors �2D in a D-dimensional lattice�,
at the local scale the dynamics is very fast: agents can rap-
idly interact two or more times with their neighbors, favoring
the establishment of a local consensus with a high success
rate, i.e., of small sets of neighboring agents sharing a com-
mon unique word. These “clusters” of neighboring agents
with a common unique word are separated by individuals
having a larger inventory with two or more words, playing
the role of “interfaces.” These interfaces then start a diffu-
sion process, and the clusters of unique words grow in time
with a law that is typical of coarsening phenomena:19 the
competition among the clusters is driven by the fluctuations
of the interfaces. The easily reached local consensus thus
leads to a slow dynamics, and the global consensus takes
much longer to be reached than in mean field: for example,
O�N3� in dimension 1 versus O�N1.5� in mean field. How-
ever, another important aspect of the problem concerns the

memory used by the agents. In mean field indeed, each agent
needs a memory capacity scaling as O�N1/2�, i.e., diverging
with the system size. In contrast, the consequence of the
embedding in a finite-dimensional lattice �with a finite num-
ber of neighbors�, and of the subsequent coarsening-like phe-
nomena, with rapid local consensus, is that each agent uses
only a finite capacity: the maximum total number of words in
the system �maximal memory capacity� scales linearly with
the system size N �as for the number of different words�. In
summary, low-dimensional lattice systems require more time
to reach consensus, compared to mean field, but a lower use
of memory.

V. THE TRADEOFF OF SMALL-WORLD NETWORKS

The precise knowledge of the dynamical behavior of the
Naming Game model on low-dimensional lattices, and in
particular on the one-dimensional ring, makes possible to
understand by means of simple arguments and numerical
simulations the effect of the small-world property, which is a
relevant feature of real complex networks.

In the following, indeed, we investigate the effect of
introducing long-range connections which link agents that
are far from each other on the regular lattice. In other words,
we study the Naming Game on the small-world model pro-
posed by Watts and Strogatz.35 Starting from a quasi-one-
dimensional banded network in which each node has 2m
neighbors, the edges are rewired with probability p, i.e., p
represents the density of long-range connections introduced
in the network. For p=0 the network retains a one-
dimensional topology, while the random network structure is
approached as p goes to 1. At small but finite p �1/N� p
�1�, a small-world structure with short distances between
nodes, together with a large clustering, is obtained. When
p=0, the system is one dimensional and the dynamics pro-
ceeds by slow coarsening. At small p, the typical distance
between shortcuts is O�1/ p�, so that the early dynamics is
not affected and proceeds as in one-dimensional systems. In
particular, at very short times many new words are invented
since the success rate is small. The maximum number of
different words scales as O�N�, as in the other cases, while
the average used memory per agent remains finite, since the
number of neighbors of each site is bounded �the degree
distribution decreases exponentially36�.

The typical cluster dynamics on a small-world network
is graphically represented in Fig. 3. As long as the typical
cluster size is smaller than 1/ p, the clusters are essentially
one dimensional and the system evolves by means of the
usual coarsening dynamics. However, as the average cluster
size reaches the typical distance between two shortcuts
�1/ p, a crossover phenomena toward an accelerated dynam-
ics takes place. Since the cluster size grows as �t /N, this
corresponds to a crossover time tcross=O�N / p2�. For times
much larger than this crossover, one expects that the dynam-
ics is dominated by the existence of shortcuts, entering a
mean-field-like behavior. The convergence time is thus ex-
pected to scale as N3/2 and not as N3. The condition in order
for this picture to be possible is exactly the small-world con-
dition; indeed, the crossover time N / p2 has to be much larger
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than 1 and much smaller than the consensus time for the
one-dimensional case N3, that together imply p�1/N.

Figure 4 displays the evolution of the average number of
words per agent as a function of time, for a small-world
network with average degree �k�=8, and various values of
the rewiring probability p. While Nw�t� in all cases decays to
N, after an initial peak whose height is proportional to N, the
way in which this convergence is obtained depends on the
parameters. At fixed N, for p=0 a power-law behavior
Nw /N−1�1/�t is observed due to the one-dimensional
coarsening process. As soon as p�1/N, however, we ob-
serve deviations from this power-law behavior, which get
stronger as p is increased: the decrease of Nw is first slowed

down after the peak, but leads in the end to a very fast
convergence.

As previously mentioned, a crossover phenomenon is
expected when the one-dimensional clusters reach sizes of
order 1 / p, i.e., at a time of order N / p2. Since the agents with
more than one word in memory are localized at the interfaces
between clusters, their number is O�Np�. The average excess
memory per site �with respect to global consensus� is thus of
order p, so that one expects Nw /N−1= pG�tp2 /N�. Detailed
numerical investigations have confirmed this picture,21 and
allowed to show that the convergence towards consensus is
reached on a time scale of order N�SW, with �SW	1.4±0.1
�not shown; see Refs. 21 and 22 for data�. This behavior is
close enough to the mean-field case N3/2 to consider that they
belong to the same universality class, as expected from the
above arguments and other studies of dynamical phenomena
on Watts-Strogatz networks,36 and in strong contrast with the
N3 behavior of purely one-dimensional systems. Note that
the time to converge scales as p−1.4±.1 �not shown�, which is
consistent with the fact that for p of order 1 /N one should
recover an essentially one-dimensional behavior with con-
vergence times of order N3.

In summary, the small-world topology allows to com-
bine advantages from both finite-dimensional lattices and
mean-field networks: on the one hand, only a finite memory
per node is needed, in opposition to the O�N1/2� in mean
field; on the other hand, the convergence time is expected to
be much shorter than in finite dimensions.

VI. THE NAMING GAME ON GENERAL COMPLEX
NETWORKS

A. Pair selection strategies

Before describing the behavior of the Naming Game dy-
namics on general networks, it is worth noting that the defi-
nition of the model itself has in fact to be specified. Indeed,
the two neighboring agents chosen to interact have different
roles: one �the speaker� transmits a word and is thus more
“active” than the other �the hearer�. One should therefore
specify whether, when choosing a pair, one chooses first a
speaker and then a hearer among the speaker’s neighbors, or
the reverse order. If the agents sit on a fully connected graph
or on a regular lattice, or even on a random graph with ho-
mogeneous degree distribution, they have an equivalent
neighborhood so the order is not important. In the case of
heterogeneous networks, however, the degrees of the first
and the second chosen nodes can have very different distri-
butions �respectively, P�k� and kP�k� / �k��. The asymmetry
between speaker and hearer can couple to the asymmetry
between a randomly chosen node and its randomly chosen
neighbor, leading to different dynamical properties �this is
the case, for example, in the Voter model, as studied by
Castellano37�. We therefore distinguish more possibilities for
the definition of the Naming Game on generic networks:

�i� A randomly chosen speaker selects �again randomly�
a hearer among its neighbors. This is probably the
most natural generalization of the original rule. We
call this strategy direct Naming Game. In this case,
larger degree nodes will preferentially act as hearers.

FIG. 3. A naive representation of cluster growth in the small-world model of
Watts and Strogatz. A cluster �in red� starts to expand locally by coarsening
dynamics as in the dimension one. When the size of the cluster is of the
order of the average distance between shortcuts, long-range interactions take
place. The effect of these long-range interactions is that of boosting up the
dynamics.

FIG. 4. Average number of words per agent in the system, Nw /N as a
function of the rescaled time t /N, for small-world networks with �k�=8 and
N=103 nodes, for various values of p. The curve for p=0 is shown for
reference, as well as , p=10−2, p=2�10−2, p=4�10−2, p=8�10−2, from
bottom to top on the left part of the curves.
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�ii� The opposite strategy, here called reverse Naming
Game, can also be carried out: we choose the hearer at
random and one of its neighbors as speaker. In this
case the hubs are preferentially selected as speakers.

�iii� A neutral strategy to pick up pairs of nodes is that of
considering the extremities of an edge taken uni-
formly at random. The role of speaker and hearer are
then assigned randomly with equal probability among
the two nodes.

As shown in Ref. 38 a larger memory is used for the
reverse rule, although the number of different words created
is smaller, and a faster convergence is obtained. This corre-
sponds to the fact that the hubs, playing principally as speak-
ers, can spread their words to a larger fraction of the agents
and remain more stable than when playing as hearers, en-
hancing the possibility of convergence. Depending on the
network under study, and similarly to the Voter model case,37

the scaling laws of the convergence time can even be modi-
fied. From the point of view of a realistic interaction among
individuals or computer-based agents, the direct Naming
Game in which the speaker chooses a hearer among its
neighbors seems somehow more natural than the other ones.
In the remainder of this section therefore, we will focus on
the direct Naming Game.

B. Global quantities

Figure 5 reports, for homogeneous Erdös-Renyi �ER�
networks �left� and heterogeneous Barabási-Albert �BA� net-
works �right�, the temporal evolution of the three main glo-
bal quantities: the total number Nw�t� of words in the system,
the number of different words Nd�t�, and the rate of success
S�t�. The curves for the average use of memory Nw�t� show a
rapid growth at short times, a peak, and then a plateau whose
length increases as the size of the system is increased. The
time and the height of the peak, and the height of the plateau,

are proportional to N. A systematic study of the scaling be-
havior shows that the convergence time tconv scales as N�

with �
1.4 for both ER and BA �see Ref. 22�. The apparent
plateau of Nw, on the other hand, does not correspond to a
steady state, as revealed by the continuous decrease of the
number of different words Nd in the system: in this reorga-
nization phase, the system keeps evolving by elimination of
words, although the total used memory does not change sig-
nificantly.

The observed scaling law for the convergence time is a
general robust feature, which is not affected by other topo-
logical details �average degree, clustering, etc.� and, more
surprisingly, seems to be independent of the particular form
of the degree distribution. We have indeed checked the value
of the exponent �
1.4±0.1 for various �k�, clustering, and
exponents � of the degree distribution P�k��k−� for scale-
free networks constructed with the uncorrelated configura-
tion model. These parameters have instead an effect on other
quantities such as the time and value of the maximum of
memory, as shown in Fig. 6, which displays the effects of
increasing the average degree on the behavior of the main
global quantities. In both ER �left� and BA �right� models,
increasing the average degree provokes an increase in the
memory used, while the global convergence time is de-
creased: there is a tradeoff between memory and rapidity. We
have also investigated the effect of increasing the clustering
at fixed average degree and degree distributions: the number
of different words is not changed, but the average memory
used is smaller and the convergence takes more time. It is
more probable for a node to speak to two neighbors that
share common words because they are themselves connected
and have already interacted, so it is less probable to learn
new words. At fixed average degree, i.e., global number of
links, less connections are available to transmit words from
one part of the network to the other since many links are
used in “local” triangles. The local cohesiveness is therefore

FIG. 5. ER random graph �left� and
BA scale-free network �right� with
�k�=4 and sizes N=103 ,104 ,5�104.
�Top� Evolution of the average
memory per agent Nw /N vs rescaled
time t /N. For increasing sizes a pla-
teau develops in the reorganization
phase preceding the convergence. The
height of the peak and of the plateau
collapses in this plot, showing that the
total memory used scales with N.
�Bottom� Evolution of the number of
different words Nd in the system. �Nd

−1� /N is plotted in order to emphasize
the convergence to the consensus with
Nd=1. A steady decrease is observed
even if the memory Nw displays a pla-
teau. The mean-field �MF� case is also
shown �for N=103� for comparison.

026111-6 Barrat et al. Chaos 17, 026111 �2007�

Downloaded 18 Dec 2008 to 165.124.166.150. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



in the long run an obstacle to the global convergence. This
effect is similar to the observation of an increase in the per-
colation threshold in clustered networks, due to the fact that
many links are “wasted” in redundant local connections.39

C. Cluster statistics

Further insights into the convergence mechanisms are
obtained by the investigation of the behavior of clusters of
words �recall that a cluster is any set of neighboring agents
sharing a common unique word�. In low-dimensional lattices
indeed, the dynamics of the Naming Game proceeds by for-
mation of such clusters that grow through a coarsening phe-
nomenon. As shown instead in Fig. 7 for ER networks �a
similar behavior is observed in the BA case�, the normalized
average cluster size remains very close to zero �in fact, of
order 1 /N� during the reorganization phase that follows the
peak in the number of words, and converges to one with a

sudden transition. The same behavior is shown also by the
number of clusters Ncl�t�, which decreases to one very
sharply. The emerging picture is not that of a coarsening or
growth of clusters, but that of a slow process of correlations
between inventories, followed by a multiplicative process of
cluster growth triggered by a sort of symmetry-breaking
event in the success probability of the words �in favor of the
word that will ultimately survive�.

VII. STRATEGIES FOR FASTER CONVERGENCE

In all the investigated cases, the time to convergence
grows quite fast as a function of the system size. A natural
and important question is therefore whether it is possible to
improve the performance of the system. More precisely, a
major challenge would be to improve the population-scale
performances of the process without losing the simplicity of
the microscopic rules, which is the precious ingredient that
allows for in-depth investigations of global-scale dynamics.
To investigate this issue, we come back for simplicity to the
framework of mean-field dynamics, in which all agents can
interact with all others.

Up to this point, agents, when playing as speakers, ex-
tract randomly a word in their inventories. This feature,
along with the drastic deletion rule that follows a successful
game, is the distinctive trait of the model. Other previously
proposed models use the possibility of associating a weight
to each word in each inventory:33 weights are updated at
each interaction, with rewards for winning words and penal-
ties for the others. While such sophisticated structures could
in principle lead to faster convergence, they also make the
models more complicated, compromising the possibility of a
clear global picture of the convergence process. We follow
here a different route, which maintains the simplicity of the
dynamical rules. Among the words of a given agent, two
words can be easily distinguished: the last recorded one and
the last one that gave rise to a successful game, i.e., the first
that was recorded in the new inventory generated after the
successful interaction. Natural strategies to investigate con-
sist therefore in choosing systematically one of these particu-
lar words. We shall refer to these strategies as “play-last” and
“play-first,” respectively.

A. “Play-last” strategy

When the “play-last” strategy is adopted, the peak time
and height scale, respectively, as tmax�N� with �	1.3 and
Nw

max�N� with �	1.3, i.e., the used memory is reduced,
while the convergence time scales as tconv�N� with �
	2.0 �not shown�. At the beginning of the process, playing
the last registered word creates a positive feedback that en-
hances the probability of a success. In particular, a circulat-
ing word has more probabilities of being played than with
the usual stochastic rule, thus creating a scenario in which
less circulating words are known by more agents. On the
other hand, the “last in first out” approach is highly ineffec-
tive when agents start to win, i.e., after the peak. In fact, the
scaling tconv�N� can be explained through simple analytical
arguments. Let us denote by Na the number of agents having
the word “a” as the last recorded one. This number can in-

FIG. 6. ER networks �left� and BA networks �right� with N=104 agents and
average degree �k�=4,8 ,16. The increase of average degree leads to a larger
memory used �Nw, top� but a faster convergence. The maximum in the
number of different words is not affected by the change in the average
degree �bottom�.

FIG. 7. Number of clusters Ncl and normalized average cluster size �s� /N vs
time for ER networks with N=104, �k�=4 �circles�, �k�=8 �squares�, �k�
=16 �crosses�.
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crease by one unit if one of these agents is chosen as speaker,
and one of the other agents is chosen as hearer, i.e., with
probability Na /N� �1−Na /N�; the probability to decrease Na

of one unit is equal to the probability that one of these agents
is a hearer and one of the others is a speaker, i.e.,
�1−Na /N�Na /N. These two probabilities are perfectly bal-
anced so that the resulting process for the density �a=Na /N
can be written as an unbiased random walk �with actually a
diffusion coefficient �a�1−�a� /N2�. It is then possible to
show that the time necessary for one of the �a to reach 1 is of
order N2. In summary, in this framework it is much more
difficult to bring to convergence all the agents, since each
residual competing word has a good probability of propagat-
ing to other individuals.

B. “Play-first” strategy

The “play-first” strategy, on the other hand, leads to a
faster convergence. Due to a sort of arbitrariness in the strat-
egy before the first success of the speaker, the peak-related
quantities keep scaling as in the usual model, so that tmax

�N� and Nw
max�N� with �	�	1.5. This seems natural,

since playing the first recorded word is essentially the same
as extracting it randomly when most agents have only few
words. In fact, in both cases no virtuous correlations or feed-
backs are introduced between circulating and played words.
However, playing the last word which gave rise to a success-
ful interaction strongly improves the system-scale perfor-
mances once the agents start to win. In particular, it turns out
that for the difference between the peak and convergence
times we obtain �tconv− tmax��N	 with 		1.15, so that the
behavior of the convergence time is the result of the combi-
nation of two different power-law regimes, i.e., tconv�aN�

+bN	. On the other hand, the usual stochastic rule leads to
�tconv− tmax��N1.5. This means that the “play-first” strategy is
able to reduce the time that the system has to wait before
reaching the convergence, after the peak region. This seems
the natural consequence of the fact that successful words
increase their chances to be played while suppressing the
spreading of other competitors.

C. “Play-smart,” an adaptive strategy

Compared to the usual random extraction of the played
word, the “play-last” strategy is more performing at the be-
ginning of the process, while the “play-first” one allows to
fasten the convergence of the process, even if it is effective
only after the peak of the total number of words. We there-
fore define a third alternative strategy, which results from the
combination of the two. The new prescription, called “play-
smart,” is the following:

• If the speaker has never taken part in a successful game, it
plays the last word recorded;

• else, if the speaker has won at least once, it plays the last
word it had a communicative success with.

The first rule will thus be applied mostly at the begin-
ning and, as the system evolves, the second rule will be
progressively adopted by more and more agents. Since the
change in strategy is not imposed at a given time but takes

place gradually, in a way depending of the evolution of the
system, such a strategy has also the interest of being in some
sense self-adapting to the system’s actual state. In Fig. 8, the
scaling behaviors relative to the “play-smart” strategy are
reported. Both the height and time of the maximum follow
the scaling of the “play-last” strategy: tmax�N� and Nw

max

�N� with �	�	1.3. The convergence time, on the other
hand, scales as a superposition of two power laws: tconv

�aN�+bN	 with �	1.3, 		1.0. Thus, the global behavior
determined by the “play-smart” modification is indeed less
demanding in terms of both memory and time. In particular,
while the lowering of the peak height yields in fact a slower
convergence for the “play-last” strategy, the progressive self-
driven change in strategy allows to fasten the convergence
further than for the “play-first” strategy.

Finally, in order to have an immediate feeling of what
different playing word selection strategies imply, we report
in Figs. 9 and 10 the success rate S�t� and the total number of
words, Nw�t� relative to the four strategies described previ-
ously, for two different sizes. The “play-first” and “play-
smart” curves exhibit the same “S-shaped” behavior for S�t�
as in the case of the stochastic model, while the “play-last”
rule affects qualitatively the way in which the final state is
reached. Indeed, in this case the transition between the initial
disordered state and the final ordered one is more continuous
�see the inset in the top figure of Fig. 9�. Moreover, Fig. 10
illustrates that the choice of the strategy has substantial quan-
titative consequences for both necessary memory and time
needed to reach convergence, even if the changes in scaling
behavior could at first appear rather limited �from N1.5 to
N1.3�. In particular, the “play-smart” strategy, which adapts
itself to the state of the system, leads to a drastic reduction of
the memory and time costs, and thus to a dramatic increase
in efficiency.

VIII. CONCLUSIONS

The Naming Game describes how a shared communica-
tion system may emerge in a population of agents. Here we

FIG. 8. Play-smart-strategy scaling with the population size N. �Top� For the
time of the peak tmax�N�, �	1.3, while for the convergence time we have
tconv�aN�+bN	 with 		1.3, 		1.0. �Bottom� The maximum number of
words scales as Nw

max�N� with �	1.3. The play-smart rule gives rise to a
more performing process, from the point of view of both convergence time
and memory needed.
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have reviewed some of the main aspects of the model, focus-
ing in particular on the role of different interaction patterns
on the global quantities of the model. We have also investi-
gated alternative strategies that speed up the establishment of
the final consensus state.

Different underlying topologies have the main effect of
changing the scaling with the system size N of two crucial
quantities of the model: the time required to reach a consen-
sus, tconv, and the maximum memory demanded to the agents
during the process, Nw

max. In particular, our analysis has
pointed out that �i� finite connectivity implies finite memory

requirements for the agents and �ii� the small-world property
ensures a fast convergence �see Table I�. Indeed, these prop-
erties affect the mechanism itself that leads to the final state.
On the complete graph �mean-field case�, the process starts
with an initial spreading of words �linear with time� through-
out the system followed by a longer period �O�N3/2�� in
which words are exchanged among the agents. After the peak
of the total number of words �whose height is O�N3/2��, the
total number of words decreases until a final rapid conver-
gence process leads the population to the adsorbing configu-
ration. On low-dimensional lattices, on the other hand, the
model converges very slowly �tconv/N�N2/d, where d is the
dimension of the lattice�, but the maximum number of words
scales as N, meaning that single agents require a finite
memory that does not depend on N. The reason is related to
the fast formation of many different local clusters of agents
with the same unique word that grow through a coarsening
process. A tradeoff between lattices and fully connected
graphs is offered by small-world networks, in which a finite
memory per agent comes with a fast convergence N1.4±0.1

ensured by the spreading of different words across the short-
cuts that connect otherwise far-away regions of the graph.
This picture has been confirmed also by extensive numerical
studies on different kinds of complex networks, where, in
addition, we have addressed the role of other important pa-
rameters �e.g., average connectivity, clustering coefficient�.

Finally, we have investigated whether the efficiency of
the Naming Game can be improved acting on the micro-
scopic rules of the model. Focusing on the mean-field case,
we have checked the procedure describing which word has to
be played by the speaker. We have substituted the usual ran-
dom extraction with extremely simple deterministic rules,
which exploit only the information regarding the time at
which different words are inserted in the inventory of the
agent. In particular, each agent can identify two special
words, namely, the oldest and the newest. We have shown
that simple deterministic rules can capitalize on, and some-
how tune, the correlation among the inventories, thus in-
creasing the efficiency of the Naming Game in terms of both
the individual use of memory and the convergence time.

In conclusion, we have shown that different topologies
have major effects on the global dynamics of the Naming
Game. We have also pointed out that simple modifications of
the original rules can give rise to higher performances that
allow the population to save memory and time to reach the
final state. We believe that these findings could be extremely
relevant as far as applications are concerned and, in the fu-
ture, more efforts should be made to improve the model fur-

FIG. 9. Success rate curves S�t� for the various strategies: stochastic, play-
last, play-first, and play-smart. At the beginning of the process the stochastic
and play-first strategies yield similar success rates, but then the deterministic
rule speeds up convergence. On the other hand, also the play-smart and the
play last evolve similarly at the beginning, but the latter reaches the final
state much earlier through a steep jump. It is worth noting that for three
strategies the S�t� curves present a characteristic “S-shaped” behavior, while
in the play-last one the disorder-order transition is more continuous �see
inset in the top figure�. All curves, both for N=103 and N=104, have been
generated averaging over 3�103 simulation runs.

FIG. 10. Total number of words Nw�t� for the various strategies: stochastic,
play-last, play-first, and play-smart. Due to different scaling behaviors of the
process, differences become more and more relevant for larger N �top: N
=103; bottom: N=104�. The play-smart approach combines the advantages
of play-last and play-first strategies.

TABLE I. Scaling with the system size N of the maximum number of words
�memory� and time of convergence. Networks, thanks to the small-world
property and the finite connectivity, ensure a tradeoff between the fast con-
vergence of mean-field topology and the small memory requirements of
lattices.

Mean field Lattices �d
4� Networks

Maximum memory N1.5 N N
Convergence time N1.5 N1+2/d N1.4±0.1
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ther. As we have seen, however, each new rule should be
tested on different topologies in order to understand its po-
tential consequences in real-world applications.
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