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Abstract

How do communities establish shared communication systems? The Common Knowledge view
assumes that symbolic conventions develop through the accumulation of common knowledge regarding
communication practices among the members of a community. In contrast with this view, it is proposed
that coordinated communication emerges a by-product of local interactions among dyads. A set of
multi-agent computer simulations show that a population of “egocentric” agents can establish and
maintain symbolic conventions without common knowledge. In the simulations, convergence to a single
conventional system was most likely and most efficient when agents updated their behavior on the basis
of local rather than global, system-level information. The massive feedback and parallelism present in the
simulations gave rise to phenomena that are often assumed to result from complex strategic processing
on the part of individual agents. The implications of these findings for the development of theories of
language use are discussed.
© 2004 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

A critical prerequisite for successful language use is shared knowledge of conventions. Sym-
bolic conventions are arbitrary by their very nature, and human languages are vast collections
of such conventions. Even the simplest utterance takes for granted a large amount of knowledge
about the phonological, syntactic, semantic, and discourse conventions of a language. It is an
impressive feat that despite differences in input, members of a language community acquire
semantic representations that are similar enough so that any two arbitrarily chosen individuals
can successfully communicate with one another. Where do these shared representations come
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from? What guarantees that the members of a language community will acquire the same
conventions and use them in similar ways? Given the absence of some benevolent designer,
what is needed is a theory that relates macro-level effects—the establishment and maintenance
of symbolic conventions in the language community—to micro-level causes—language users
and their behavior in conversational exchanges.

One such theory is the theory of signaling that DavidLewis (1969)developed as part of
a more general theory of social conventions. In Lewis’ view, conventions evolve out of the
recurring coordination problems communities face. For example, the lexicon of a language
grows out of the recurring problem of communicating about certain entities or states of affairs.
By characterizing communication as a coordination problem, Lewis situated his analysis within
the framework of classical game theory (Schelling, 1960; von Neumann & Morgenstern, 1944).
Coordination problems are problems of interdependent decision making in which individual
agents select an action from a set of possible actions, seeking to align their selections with those
of other agents. In itself, the selection of any particular action is arbitrary, and no agent has
any prior preference for choosing any one action over another. Participants in a coordination
game reason strategically about the behavior of other agents in order to reach equilibrium,
a state in which no single agent would prefer to change its decision given the decisions of
its co-participants. Because of the interdependent nature of decision making in coordination
problems, Lewis assumed that agents should base their decisions upon mutual expectations:
that is, they should consider what other agents will do, what other agents will expect them to
do, what other agents will expect them to expect others to do, and so on, ad infinitum.

In Lewis’ proposal, when coordination problems recur among the members of a community,
the community develops regular patterns of solving these problems. These regular patterns
become conventional through the accumulation of common knowledge. Common knowledge is
important because it provides agents with a basis for generating the mutual expectations that are
necessary for solving coordination problems. Assume that individuals from some community
C believe that a coordination problem,P, and its solution,S, are common knowledge in the
community. When two individualsA andB who are members ofC meet and face a specific
instance ofP, they can mutually expect adherence toSrather than to some other solution,S′.
This is by virtue of their mutual belief in their joint membership inC, where the practice is
common knowledge.

How do individuals develop common knowledge of conventions? Although there can be
various bases for common knowledge of social conventions, in the case of language, the
critical basis is provided by communicative interaction. Each member’s interactions with a
sample of individuals from the community enable them to generalize to the entire community,
even if the sample is relatively small. “If one has often encountered cases in which coordination
was achieved in a certain problem by conforming to a certain regularity and rarely or never
encountered cases in which it was not, he is entitled to expect his neighbors to have had the
same experience” (Lewis, 1969, p. 40).

In sum, Lewis’ theory, which I refer to as the Common Knowledge theory of conventions,
assumes that the use of conventions relies upon strategic reasoning and global representations;
that is, representations about the community. Lewis’ theory and its attendant assumptions
have wielded an important influence on theories of language use, exemplified in the work of
Clark (1992, 1996). This influence can seen in the idea that language use can be characterized
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as a special kind of coordination problem, in which interlocutors strive to achieve shared
understanding by developing mutual beliefs. Thus,Clark and Marshall (1981)argued that
determining the referent of a definite expression such asthe movie playing at the Roxyrequires
interlocutors to coordinate their beliefs. Specifically, they suggested that definite references
are only guaranteed to succeed if speakers and listeners produce and interpret them against
the background of a special kind of shared knowledge, known as “common ground,” which
consists of the set of mutually held beliefs, assumptions, and suppositions. A critical part of
common ground is common knowledge of conventions.

Clark and Carlson (1981)proposed that the context against which people process lan-
guage can be reduced to common ground. However, recent experimental studies of referential
communication indicate that people violate common ground in their processing of referential
expressions (Horton & Keysar, 1996; Keysar, 1994; Keysar, Barr, Balin, & Brauner, 2000;
Keysar, Barr, Balin, & Paek, 1998; Keysar, Lin, & Barr, 2003), including in their processing of
conventions (Barr, 1999; Barr & Keysar, 2002). Keysar et al. (2003)found that when listeners
interpreted a speaker’s referring expressions, they considered objects not known to the speaker
in spite of clear evidence of the speaker’s ignorance of these objects. Surprisingly, they did so
even when they thought that the speaker had a false belief about the identities of these hid-
den objects. Although other studies find that the task-relevant common ground may at times
partially constrain production and comprehension (Arnold, Trueswell, & Lawentmann, 1999;
Hanna, Trueswell, Tanenhaus, & Novick, 1997; Nadig & Sedivy, 2002), it is clear that even
when a language user has the proper beliefs about common ground there is no guarantee that
they will use it at all during processing (Keysar et al., 2000, 2003).

Against the background of the common knowledge theory, the non-normative, egocentric
behavior of language users uncovered in the laboratory presents something of a paradox.
Common ground and common knowledge are both forms of mutual knowledge: knowledge that
is shared and known to be shared. If successful use of conventions relies upon representations
of mutual knowledge, and language users do not reliably consult such representations, then
how is possible for communication to be routinely successful? In other words, if we remove
mutual knowledge’s guarantee of successful communication, why don’t people constantly
misunderstand one another?

Clearly, the egocentric use of language will only succeed to the degree to which speakers and
listeners can typically count on overlapping perspectives. To the extent to which they typically
diverge, interlocutors will have to rely on their common ground. However, currently very little
is known about what causes the semantic representations of language users to converge or
diverge. This leads us back to the original question of how communities of language users
establish and maintain symbolic conventions. The critical question is, can such conventions
emerge without the benefit of common knowledge?

In what follows, I argue that common knowledge is not necessary for the emergence of sym-
bolic conventions, proposing instead that semantic representations are coordinated through use;
that is, as a by-product of individual attempts at coordination among speakers and listeners
which are distributed over time and across the language community. I begin by reviewing pre-
vious work on conventions which suggests that high-level common knowledge and strategic
reasoning may not be necessary for community-level convergence. In particular, past research
on language evolution provides some compelling arguments against the common knowledge
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theory. However, because these studies specifically target questions regarding language evo-
lution rather than common knowledge, they do not test many important assumptions about
the extent of global knowledge necessary for convergence. The current work seeks to advance
these models by systematically exploring the minimal agent microtheory necessary for the
emergence of conventions. Using multi-agent simulation, I show that convergence is a possi-
ble by-product of interaction even when agents have extremely limited abilities and sample
narrowly from the community. The finding that coordinated semantic representations can oc-
cur without global representations of common knowledge casts doubt upon the claim that
language users must routinely call upon such representations when producing and interpreting
utterances.

1.1. Prior work

Previous research has challenged the view that the emergence of social conventions requires
rational agents who strategically reason about common knowledge.Young (1998)argued that
“social feedback mechanisms can substitute for high levels of knowledge and deductive powers
on the part of individuals” (p. 662). Using analytical techniques,Young (1993)showed that
social conventions can emerge even in populations in which agents lack complete knowledge
or sometimes make irrational choices. In a similar vein,Shoham and Tennenholtz (1997)
used computer simulations to show that a community of agents can adopt social conventions
without common knowledge. However, neither of these studies addressed the problem of the
emergence of symbolic conventions. Symbolic conventions might present a different case,
since as some have forcefully argued, the inherent ambiguity of language would seem to make
routine assessments of mutual knowledge necessary (Clark & Carlson, 1981; Clark & Marshall,
1981; Gerrig, 1986).

Studies of human discourse by Garrod and colleagues have shown that people can adapt
existing symbolic conventions to suit their needs (Garrod & Anderson, 1987; Garrod &
Doherty, 1994). Garrod and Anderson (1987)found that dyads who worked together to move
a marker around in a maze converged upon a set of temporary conventions for producing and
interpreting utterances pertaining to locations in the maze.Garrod and Doherty (1994)formed
virtual communities in the laboratory wherein each member interacted dyadically with other
members of the community. As a by-product of these individual dyadic episodes, certain re-
ferring conventions appeared and eventually generalized to nearly the entire community, even
though each individual participant was uninformed that the series of partners he or she ex-
perienced were drawn from a larger community of players. Thus, it seems possible that the
conventions in these studies emerged without common knowledge, although it is possible that
participants inferred their membership in a community based on the commonality of behavior
they observed across partners.

Few other laboratory studies of the emergence of symbolic conventions exist, in part be-
cause of the clear logistical challenges posed by observing the behavior of a large population
of language users over a relatively long period of time. Furthermore, attempting to study pop-
ulations of individual agents poses analytical problems, because the complexity of large scale
social aggregates often makes it extremely difficult, and sometimes impossible, to predict the
behavior of the system over time (Holland, 1998). For these reasons, a technique commonly
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used to study social dynamics is multi-agent computer simulation. In multi-agent computer
simulation, the researcher attempts to simulate community-level patterns of behavior as emer-
gent products of the actions of individual community members, or agents. The researcher can
independently manipulate various parameters, including population size, community structure,
and agent implementation, and then observe how the system behaves.

A common use of multi-agent simulation is in the study of the evolution of language.
Much of this research is directed primarily at questions that are specifically linguistic in nature
(e.g., explaining universals of language or the emergence of structural regularities) rather than
examining the necessity of common knowledge for conventions. Nonetheless, this work can
offer some insight into the conditions under which conventions emerge more generally.

1.1.1. Multi-generational theories of conventions: linguistic conventions are invented and
re-invented by each generation of language learners

The multigenerational approach to language evolution suggests that certain non-genetic
selectional pressures cause languages to evolve to fit human minds. These pressures can arise
from non-linguistic information processing limitations in the cognitive system (Christiansen &
Ellefson, 2002). More commonly, however, work in this tradition takes up the thesis put forth
by Lightfoot and others (Lightfoot, 1991, cited in Niyogi & Berwick, 1997), that language
acquisition is a motor for language change. A few models combine cultural with genetic
evolution (e.g.,Cangelosi, 2001; Cangelosi & Parisi, 1998), although other work has found that
cultural learning mechanisms alone are sufficient to produce community-level coordination. A
common assumption in these models is that the forces that shape language have their impact
over multiple generations of language users.

In these multi-generational models, the language of a population of agents evolves over
the course of many generations through observational learning. In a typical model, at each
generation new agents enter the population and are trained on a sample of form-meaning pairs
produced by adults. After this learning phase, the now-adult agents remain in the population
to transmit their knowledge to the next generation. Agents are often implemented in the form
of neural networks that operate under error-driven learning.Oliphant (1999)has shown that
given an appropriate learning algorithm, the iterated process of cultural transmission can yield a
stable set of form-meaning mappings in the population. Using similar techniques, Livingstone
and Fyfe (1999; see alsoLivingstone, 2002) found that dialects emerged in a spatially organized
populations of agents.1 In Kirby and Hurford’s Iterated Learning Model (Kirby & Hurford,
2001) language acquisition imposes a bottleneck on transmission that regularizes language.
Because each learner could not possibly be exposed to all possible form-meaning mappings in
the language of the adult population, those mappings that can be captured by generalizations
have a better chance of propagating from one generation to the next (Hurford, 2000). Such
iterated learning can give rise to structural hallmarks of human language such as recursive
compositionality and regular versus irregular morphology (Kirby, 2000, 2001).

Multigenerational models demonstrate that certain kinds of conventions can arise in a com-
munity without the benefit of common knowledge. But because these models operate on a
generational time scale, they are perhaps best suited to explain processes of grammaticaliza-
tion, which tend to be slow in nature, sometimes requiring centuries before innovations become
fully general (Aitchinson, 2001). However, these models are less well-suited to explain lexical
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innovations, where generalization can take place considerably more rapidly. Within a single
generation, new coinages can take root and spread throughout a relatively stable community
of language users (e.g., the emergence and generalization of Internet-related terms such as
websitein the last decade). Therefore, mechanisms beyond cross-generational learning must
be invoked to fully explain lexical conventions.

1.1.2. Emergence-through-use models: linguistic conventions are established and
sustained through use

The “emergence-through-use” approach poses a more direct challenge to Common Knowl-
edge theory, suggesting that the conventions of language can emerge as a by-product of the
individual communicative actions of agents. According to this view, the origin of symbolic
conventions lies in the act of communication itself—in the efforts of individual agents to un-
derstand, and to be understood by, their interlocutors. Unlike the common knowledge theory,
however, agents have no explicit global representation of community behavior. Instead, each
agent has a lexicon which they update on the basis of individual successes or failures to com-
municate. Learning continues throughout the agent’s lifetime, in contrast to multi-generational
models where learning only occurs when an agent enters the community.

In a typical model, agents play a communication game that is similar in logic to the referential
communication tasks used by psychologists (e.g.,Krauss & Weinheimer, 1964, 1966). In each
round of the game, a speaker agent encodes an intended meaning for one or more listener
agents, who in turn attempt to decode the intended meaning. The lexicon is updated based on
the success or failure of the exchange. Studies have shown that these systems can spontaneously
give rise to phonological (de Boer, 2002) and syntactic or semantic conventions (Batali, 1998;
Hazlehurst & Hutchins, 1998; Hutchins & Hazlehurst, 1995; Steels, 1996, 1998, 2002b), merely
as a by-product of the interactions themselves.

The behavior of systems of interacting agents is often clarified by analogy to the processes of
self-organization that are found in insect or non-human animal societies. For instance,Reynolds
(1987)demonstrated that the flocking behavior of birds can be simulated by assuming that in-
dividual birds make local adjustments based on the velocity and bearing of neighboring birds.
Thus, despite appearances, such complex flocking behavior need not be generated by indi-
vidual birds following a leader bird. Likewise, individual language users adapt their language
use locally to match that of their individual conversational partners, instead of to the global
standards in their community. These local coordination processes serve to maintain cohesion
in semantic space for the language community, just as local processes maintain cohesion in
physical space for a flock of birds.

Emergence-through-use models have a powerful appeal because they require no specialized
mechanisms beyond simple learning mechanisms and the feedback mechanisms involved in
communicative interactions. Furthermore, the basic assumptions of the models are consistent
with a growing body of psycholinguistic data which finds that coordination processes in the
dyad serve to align the conceptual and linguistic representations of language users (Barr, 1999;
Barr & Keysar, 2002; Branigan, Pickering, & Cleland, 2000; Brennan & Clark, 1996; Garrod
& Anderson, 1987; Garrod & Doherty, 1994; Markman & Makin, 1998; Pickering & Garrod,
in press). The idea that processes in the language dyad could be responsible for coordination
at the community-level is appealing because of its parsimony and strong empirical motivation.
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However, because current models were designed to investigate aspects of language evolution,
they do not directly address a central problem addressed by the common knowledge theory of
conventions: The generalization of a regularity on the basis of limited knowledge. In Lewis’
theory, it is common knowledge that allows agents to generalize a behavior beyond their own
experiences, and individuals can perform this generalization even when their experience with
other agents is limited to a small sample. Thus, common knowledge serves as a surrogate for
direct interaction. But in previous models, agents were provided with ample opportunities for
direct interaction. Agents sampled indiscriminately from the entire population, unlike in human
populations, where the range of sampling is strongly constrained by individual preferences and
the structure of the community. Furthermore, many of the simulations used small population
sizes (e.g., 5–15 agents inHutchins & Hazlehurst, 1995and 30 agents inBatali, 1998). Given
the long run times in these simulations, every agent would have had multiple opportunities
to interact directly with every other agent. Thus, they do not really test whether common
knowledge is necessary for convergence to occur in situations where repeated direct interaction
is not possible. Similarly, in Steels’ simulations of the self-organization of the lexicon (Steels,
1996, 1998, 2002b) each agent had an unlimited memory that tracked the performance of a
word–meaning association over that agent’s entire interactional history. Because each agent
sampled uniformly from the population, these unlimited memories might effectively track
frequency of use in the population, a kind of global information. In summary, while findings
such as these provide important insights into aspects of language evolution, these models
cannot speak to whether common knowledge would be necessary for generalization to occur
in cases where agents’ abilities are more limited and their knowledge is more local in nature.
Thus, the question that the current study explores is, What is the minimal amount of knowledge
necessary for coordinated communication to emerge in a community of game-playing agents?

1.2. The present study

To address this question, I conducted a set of multi-agent simulations in which I manipulated
agents’ opportunities to gain global knowledge about conventional practices. Specifically,
in this study the following variables are manipulated: (1) agent learning regime; (2) agent
memory size; (3) population size; and (4) community structure (a variable pertaining to how
agents sample partners from the community). Two sets of simulations were conducted to
demonstrate the robustness of the emergence-through-use phenomenon over broad ranges of
these variables. In the first set, population size and agent learning regime were varied, with
agents randomly sampling partners from the entire population. Convergence was observed
with short run times even when agents’ memories were extremely limited. In fact, it was
observed that larger memories produced inferior convergence, challenging the idea that more
global knowledge leads to more efficient convergence. In the second set of simulations, the
population was spatially organized on a two-dimensional plane, with each agent sampling
partners according to a Gaussian function that related the probability of interaction inversely
to the distance between the two agents. In these simulations, each agent’s “neighborhood size”
was manipulated by changing the breadth of this function. While convergence to a single
symbolic scheme was a less likely outcome than in the previous simulations, the populations
developed spatially organized ‘dialects.’ Counterintuitively, convergence was sometimes better
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when neighborhood sizes were small; i.e., when agents played the game repeatedly with the
same players instead of with different players every time.

2. The signaling game

This section describes the signaling game used in the simulations. The formalism adopted
here is based on Lewis’ analysis of signaling games (cf.Lewis, 1969, chapter IV). Agents
played the game in pairs, with one agent, the “speaker,” encoding a message for the second
agent, the “addressee,” to decode.

The game consists of a population of agents,P; a set of four meanings,M: {m1,m2,m3,m4};
and a set of four forms,F: {f1, f2, f3, f4}. Every individual agentAK from P has a “lexicon,”
or mapping function,Gk , that maps meanings onto forms. Any act in whichAK usesGk to
produce a form corresponds to an act of “production.” The mapping function is bi-directional
or Saussurean (cf.Hurford, 1989); that is, the function’s inverse can be used to produce a
meaning given a form, corresponding to the process of “comprehension.”

We say that a population hasconvergedwhen all agents use the same mapping function,Gt.
This target function is not pre-ordained in any way, but is defined circularly as the function that
everyone ends up using. In game-theoretic approaches, agents strive toward this equilibrium
by adapting their behavior to mutual expectations. In other words, they choose the function
that they expect others to choose based on common knowledge (Lewis, 1969). However, in the
emergence-through-use approach, this goal itself isnot programmed into the agents; all they
are programmed to do is to update their mappings based on observed feedback from specific
partners.

It is assumed in these simulations that agents have a rudimentary ability to evaluate the
success or failure of their communication. This evaluation is reflected in a reinforcement signal
b indicating success or failure (activation of the same or different meanings) that is provided
to the agents. Such a reinforcement signal is the minimum necessary for learning. However,
unlike simulations where observational learning is used, agents are not directly trained on the
specific meaning activated by the other party.

At each epoch, dyads are formed through a stochastic process. Each agentAK has a selection
function,DK, that determines the probability that it will speak to any other particular agent in
the community. For instance,DK(AG) is the probability that agentAK will attempt to speak
to with agentAG. In the simulations below, we explore two different selection functions. To
simplify matters, we will use symmetric functions such thatDK(AG) = DG(AK).

Training was organized into a series of epochs. The algorithm for a single epoch is:

1. Choose a speaker,AS, at random from the population.
2. Use that agent’s selection function,DS, to select a listener,AL. Agents are sampled

without replacement such that once an agent is selected as either speaker or listener, it
is removed from the pool of eligible agents for that epoch.

3. Randomly permute setM to create a sequence of meanings to be communicated,M′.
4. For eachmi in M′:

(a) AS passes meaningmi through its mapping functionGS to obtain formfj.
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(b) AL passes the observed formfj through its mapping functionG−1
L to obtain meaning

mp.
(c) Comparemi tomp to obtain success or failureb.
(d) Apply update functions based on outcomeb to obtainG′

S andG′
L.

5. Repeat steps 1–4 until all (or nearly all; see Simulation Set 2) agents have been assigned
to dyads.

Clearly, the dynamics of a given simulation will depend upon the nature of the agents’
update functions. In the current simulations, the effects of two different update functions on
system dynamics are explored. These functions are called Reinforcement Learning and the
Stay–Switch algorithm.

2.1. The Reinforcement Learning model

In multi-agent simulations of language evolution it is common to instantiate agent learning in
the form of connectionist networks (e.g.,Batali, 1998; Hutchins & Hazlehurst, 1995; Oliphant,
1999). Such a practice is adopted here to provide comparability with previous work. Under
the Reinforcement Learning regime used in these simulations, the mapping function for each
agent is implemented by a one-layer neural network of weights,W. The network consists of
two input, or meaning nodes,C = {c1, c2}, and four output, or form nodesF = {f1, f2, f3, f4}.
Meanings are represented as distributed patterns of activation along the input nodes.2 Thus:

M = {{0, −1}, {−1, 0}, {1, 0}, {0, 1}}.
Forms have a localist representation on the output nodes. Each network begins life with its

weights set to small, random real values. The weights are normalized before any learning and
after every update.

During “production,” a given pattern of activationmp from M is clamped onto the speaker
agent’s input nodes. Activation is passed through the weights to the form nodes, according to
the function:

fi =
∑

j
wij m

p

j

Then, the most strongly activated output node,fw, is selected as the “winner.” During “com-
prehension,” the listener agent observesfw, activation is clamped to the corresponding output
node, and is passed to the input nodes, the result of which is represented by vectorC:

ci = fwWwc

A vector,mw, is selected from setM as the “winner,” wheremw is defined as the vector that
is closest in Euclidean space toC.

The networks update their weights according to a competitive reinforcement learning al-
gorithm. The algorithm depends upon the observed success of the communication. There are
two learning parameters,δ andη, which correspond, respectively, to the learning rate for a
correct and an incorrect response. The parameterη also is used to implement the principle of
mutual exclusivity(Markman & Wachtel, 1988). This principle, which is assumed to govern
word learning, asserts that learners strive to maintain one-to-one mappings between symbols
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and meanings. In observance of this principle, when an agent successfully uses a particular
form to convey a meaning, it will not only strengthen the link between that meaning and form
but will also weaken the link between the same meaning and other forms. Likewise, if an agent
fails to communicate a meaning with a particular form, it will weaken the corresponding link
and strengthen the links between that meaning and other forms.

The Reinforcement Learning update rule is as follows:

If mw = mp: (correct response)
wherei = fw:
∀j wij = wij + δ (mp

j − wij); (move weights closer to the meaning vector)
wherei �= fw:
∀j wij = wij − η(mp

j − wij). (move weights away from meaning vector)
If mw �= mp: (incorrect response)
wherei = fw:
∀j wij = wij − η(mp

j − wij); (move weights away from meaning vector)
wherei �= fw:
∀j wij = wij + η(mp

j − wij). (move weights closer to the meaning vector)

2.2. The Stay–Switch model

Given the goals of the current study, two objections could be made to the use of neural
networks. First, agent lexicons as implemented in the networks can occupy certain “ill-formed”
states, in which more than one form is mapped to the same meaning. This is different from
human lexicons, where perfect synonymy is avoided and mappings tend to follow a “one form,
one meaning” principle of contrast (Clark, 1987). A second possible objection to using neural
networks is that the learning in such networks is cumulative. It might be argued that such
cumulative learning is akin to maintaining community-level statistics, and therefore that these
agents implement a rudimentary kind of common knowledge. In any case, this kind of learning
makes it difficult to directly quantify the amount of “social information” agents use in encoding
and decoding. The Stay–Switch model was developed to counter these objections, as well as
to show the generality of the self-organization phenomenon.

The Stay–Switch model, which is a form of “best-response” model (Young, 1998), imple-
ments discrete, memory-dependent learning. The model is somewhat similar to that used by
Steels (1996), in that each agent has a lexicon with discrete mappings and a basic memory that
tracks the performance of each of these mappings. However, the mapping update procedure
differs, and the size of the agent memory was varied. The memory size parameter allows for
the exploration of the issue of whether coordination is best achieved when agents adjust their
behavior based on local versus global information.

The update algorithm implemented by these agents is as follows. When an agent successfully
uses a form to communicate a meaning, it simply tallies its success and retains its current set
of mappings (stay). On the other hand, when an agent miscommunicates it will, with some
probability, seek to exchange the unsuccessful mapping that produced the error with the least
reliable mapping in its lexicon (switch). The probability of a switch is given by the proportion
of previous uses of the mapping within the agent’s stored history that led to failure.3 Thus,
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agents are conservative in the sense that they are reluctant to switch a mapping that has worked
well in the past even though it may have failed in the current interaction. In implementing a
switch, the agent consults its memory and ranks the forms from best to worst according to their
success, and switches the meaning of the offending form with that of the worst performing
form from that set. If there is no clear worst mapping, the agent will select randomly among the
mappings with the lowest rank. Upon switching, the memory for each of the swapped forms
is cleared.

3. Simulation set 1: conventions in unstructured populations

The first set of simulations investigates the following three questions: (1) Can a population
converge to a common set of symbolic conventions even when the population size is large
enough to preclude repeated direct interaction between all members? (2) Does this convergence
depend upon learning regime? (3) How much “social information” must each agent have access
to for this convergence to take place? In this set of simulations, unstructured communities were
used in which each agent had an equal probability of interacting with every other agent in the
population.

First, results for the Reinforcement Learning model are considered. Before running the main
simulations, a parameter search was conducted to determine optimal parameter settings for the
update algorithm as well as to explore the robustness of convergence. Ten runs of 100 agents
each were conducted at each .02 interval for each parameter (including only cases whereδ was
greater thanη). If a given run failed to converge after 10,000 epochs, the run was terminated.
In the parameter search, convergence was observed at least once per 10 runs in 28% of all of
the settings explored, over a large range ofδ andη. However, it was observed that convergence
was most robust at settings in which the ratio ofδ to η was between 3 and 10. The values ofδ

andη that yielded the best performance were .76 and .16, respectively. The results presented
in this section are based on these parameters.

At each population size setting, 100 runs were conducted.Fig. 1 presents the mean effi-
ciency of convergence for Reinforcement Learning populations by population size.4 Without
exception, all populations eventually converged to a single signaling system before the 10,000
epoch criterion. The efficiency of convergence had a non-linear relationship with population
size. At the largest tested population size of 10,000, a single signaling system was reached
after only 178 interactions, only 86 epochs later than for a population of 100. At 178 epochs in
a population of 10,000 agents, each agent could only have interacted with a maximum of 2%
of possible partners. This shows that convergence can take place under conditions of partial
knowledge where direct interaction is not possible.

The dynamics of Reinforcement Learning populations were explored by examining the
proportion of agents in each epoch that spoke the target language that eventually won out.
This variable is plotted inFig. 2. The sigmoidal shape of the function is similar to a class of
critical mass or “dying seminar” models identified bySchelling (1978)wherein agents have a
preference to conform to some course of action contingent upon the number of other agents
conforming to the same action. This characteristic pattern of behavior has been assumed to
arise through the game-theoretic preferences and strategic reasoning of agents who base their
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Fig. 1. Mean epochs to converge, Reinforcement Learning model.

Fig. 2. Percentage of agents speaking target language by epoch and population size, RL model.
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decisions on the expected global behavior of the community. However, the simulations show
that this pattern of behavior can emerge as a product of local interaction.

Because the reinforcement learning agents engage in a form of cumulative learning, it is not
clear how to quantify the breadth of social information encoded by the agent. In contrast, the
Stay–Switch agents allow the direct quantification of this variable through the memory size
parameter. This makes it possible to determine what extent of local versus global knowledge
leads to most efficient convergence.

One-hundred runs were conducted at each of the four population sizes and each of the
following memory settings: 1–10, 500, and 1000. For small populations of 100 agents, con-
vergence was most efficient at small values of the memory parameter (Fig. 3). The optimal
setting of this parameter was two. In other words, populations of 100 agents arrived at a set
of semantic conventions most quickly when each agent updated its weights considering only
the current and the previous two interactions. However, when the memory size was larger than
10, full convergence never occurred before the criterion—and did not do so even when the
memory was large enough to accommodate an agent’s entire history of interaction. Thus, not
only does this set of simulations show that convergence can occur without global knowledge,
but it actually suggests that there are circumstances in which attempts to use global knowledge
actually wouldimpair community-level coordination.

However, in contrast to the Reinforcement Learning simulations, convergence was rarely
observed in Stay–Switch populations larger than 100 agents. For populations of 500 agents,
convergence was only observed at a memory setting of two, with a mean convergence epoch

Fig. 3. Efficiency of convergence in the Stay–Switch model by memory size, with a population of 100 agents. Error
bars represent the standard error of the mean.
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Fig. 4. Mean epochs to converge, Stay–Switch model.

of 867 (SD= 73). Finally, convergence was never observed at any of the memory settings in
the two larger populations (1000 and 10,000) (Fig. 4).

The source of these differences in performance between the two learning regimes is not
entirely clear. One possibility is that the superior performance of Reinforcement Learning is due
to the continuous nature of the semantic representation. While Stay–Switch agents are always
in 1 of 24 possible states, corresponding to a well-formed set of form-meaning mappings,
Reinforcement Learning agents can be in any infinite number of intermediate states. Thus,
each agent can be a more sensitive barometer of changes going on in the system.

To summarize, it has been shown that under some circumstances, a population of “egocen-
tric” agents can develop and sustain coordinated signaling systems as a by-product of the par-
allel dyadic coordination efforts that are distributed across the community. This convergence
can occur even when the population size is large enough so that repeated direct interaction
among all members is not possible. The simulations also show that it is not always the case that
the more social information each agent has access to, the better the convergence. In smaller
populations, performance was best when each agent based its decisions on strictly local infor-
mation. Thus, limitations on memory can be adaptive for community-level coordination (for a
similar result, seeShoham & Tennenholtz, 1997). A reason for this “less is more” phenomenon
is that populations of agents are shooting at a moving target. Thus, for convergence to obtain
in memory-dependent learning, there needs to be some congruence between the size of the
agent memory and the rate of change of the population. When the rate of change is rapid,
previous communicative episodes quickly lose their predictive value, because the system may
have already moved into a different region of the state space.
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In the current simulations, agents were equally likely to interact with any other member
of the population. This means that each agent obtained a random sample of partners from
the population, and such random sampling could be optimal for the generalization process.
However, in human societies the selection of interactional partners is biased by geographical
and social factors such as the existence of social networks. This biased sampling provides
yet another constraint on an individual’s ability to gain knowledge about the practices of the
community. Intuitively, it would seem that communities in which agents samples narrowly
(the same few interactional partners again and again) would be less likely to converge than
communities in which agents sample indiscriminately (e.g., new partners every time).

Alternatively, it is possible that this additional constraint might actually improve conver-
gence. Note that in the simulations above, Stay–Switch populations of 1000 agents or more
never converged. This performance indicates that under this discrete-learning regime some
amount of repeated interaction among individuals might be necessary for a target convention
to gain a foothold in the community. In a very large population, such repeated interactions
would be extremely unlikely, and thus a critical mass of agents using the same conventional
system could never develop. It is possible that limiting each agent’s interactions to a small sur-
rounding “neighborhood” of agents might enable a conventional system to become established
even in very large populations, and once established, to eventually spread to other agents.

4. Simulation set 2: conventions in structured communities

In this set of simulations, agents inhabited a two-dimensional plane and interacted with other
agents depending upon their proximity. Each agent had a selection function that determined
the probability that it would interact with another agent.5 The selection function was Gaussian,
such that the probability that an agentSwould interact with agentL dropped off exponentially
as a function of distance:

exp(−||S − L||/2σ2)∑
k exp(−||S − K||/2σ2)

The term||S− L|| represents the Euclidean distance between speaker and listener. The
parameterσ represents the “spread” or “coverage” of the function, determining its relative
steepness or flatness. Effectively, this parameter sets theneighborhood sizeof each agent, with
smaller values ofσ yielding smaller, more peaked neighborhoods, and larger values, larger and
flatter ones. The denominator of the equation normalizes the values such that the probability of
interacting with other agents in the population will sum to 1. Note that the spatial organization
of agents need not be construed literally as organization in physical space, but could also be
considered as representing agents’ preferences for social affiliation.

Agents were placed at random locations in a 1024× 768 grid (with each agent occupying
an 18× 18 pixel square). Performance of the models was examined under six settings ofσ:
10, 15, 20, 25, 30, and 35 pixels. Neighborhood size was defined as the average number of
distinct agents that a typical agent will interact with over 100 epochs. At each of these settings,
the neighborhood sizes were effectively: 3, 5, 9, 14, 20, and 27. For simplicity, the population
size was fixed at 1000, and the update function parameters from Set 1 were used.
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As in the previous simulations, the results presented here are averaged over 100 runs for each
learning model at each population size. If a population had not yet converged by 1000 epochs,
training was terminated.Fig. 5 presents the efficiency of convergence by population size,
including only those populations that converged by 1000 epochs. Recall that in Simulation
Set 1, where populations were unstructured, Stay–Switch populations including more than
500 agents never converged to a single system. In this case, Stay–Switch showed improved
performance, even though the population size was 1000. This suggests that Stay–Switch is
most effective under circumstances where agents limit their interactions to a small portion of
the entire population. Of the settings tested, Stay–Switch was optimal at a neighborhood size
of nine agents. At this setting, 85% of the runs converged to a single signaling system, at an
average of 280 epochs. In contrast, at larger neighborhood sizes, convergence was slower and
less likely. For instance, at a neighborhood size of 27 convergence was observed in only 44%
of the runs, on average at 526 epochs.

The opposite was the case for Reinforcement Learning—convergence was worst at smaller
and best at larger neighborhood sizes. At the smallest setting of 3, populations never achieved
perfectly coordinated signaling. At the largest setting of 27, only 40% of the populations
converged before 1000 epochs, with an average efficiency of 302 epochs. In contrast to
Stay–Switch, performance degrades when interaction is limited to small neighborhoods.

In sum, discrete, memory-dependent learning worked best in small, unstructured populations
and in larger populations that were socially structured. What these two circumstances have in
common is that they provide agents the greatest opportunity to interact repeatedly with a set of
other agents. As suggested above, this repeated interaction may be necessary for the population
to establish a critical mass of agents speaking a single target language. Once this critical mass
has been established, a positive feedback loop between success and use will drive the population
toward convergence.

Even when communities did not converge to a single system, as was often the case, they
still exhibited some degree of self-organization.Fig. 6 shows the number of signaling sys-
tems used by more than 1% of the population (10 agents) by learning model, neighborhood
size, and epoch.6 Both models showed increasingly greater organization by epoch regard-
less of neighborhood size, though there were vast differences in efficiency both within and
between the learning models. Stay–Switch exhibited most efficient performance at settings
of 5 and 9, while larger settings yielded ever-worse performance overall. At a setting of 27,
Stay–Switch populations cut down the number of signaling systems to 12 by epoch 1000,
and the slope of the graph suggests that performance would continue improving with further
training.

An interesting phenomenon observed in the simulations was that even when populations
failed to converge to a single target language, they inevitably exhibited spatially organized
“dialects.” Two examples are provided inFig. 7. As one might expect, the number and size
of dialects was inversely proportional to neighborhood size. Agents that inhabited regions
near the corners of the plane tended to form more stable dialects than did agents located
toward the center, because the former agents were somewhat insulated from the influences
of other subcommunities. Subcommunities that formed in the middle of the plane tended to
eventually become swallowed up by these subcommunities at the borders. Furthermore, the
dialect of a subcommunity typically exhibited similarities to the dialects spoken by other, nearby
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Fig. 5. Efficiency of convergence (top panel) and percent convergence to a single system (bottom panel) by neigh-
borhood size and learning model.
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Fig. 6. Average number of languages spoken by over 1% of the population by neighborhood size, for the Stay–Switch
(top) and Reinforcement Learning (bottom) models.
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Fig. 7. Emergence of dialects.
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subcommunities. Because of these similarities, even when there was no single communication
system, the overall coordination of the population was quite high.

The current study is not the first to show that dialects can arise through processes of cultural
learning (seeLivingstone, 2002for a review). However, previous studies showing dialectical
organization of semantic conventions found that they emerged over multiple generations (e.g.,
Kirby, 1998; Livingstone & Fyfe, 1999). In contrast, the semantic conventions in the current
study emerged in a closed population of agents, as a by-product of interaction.Livingstone
(2002)reports similar findings for phonological conventions. In his study, which used a mod-
eling framework established byde Boer (2002), a closed population of 20 spatially orga-
nized agents learned vowel sounds from one another through imitation. A “dialect continuum”
emerged, wherein the vowel systems of neighboring agents were more similar than those of
more distant agents.

To summarize, the second set of simulations shows that convergence is likely even when
agents’ sampling of partners from the community is not representative but biased to a small
number of partners in the agent’s neighborhood. Although this biased sampling imposed an-
other limitation on each agent’s ability to acquire global knowledge regarding community
practices, convergence took place even in large populations. The performance of populations
of agents using memory-dependent learning improved markedly from the last set of simula-
tions, even though their opportunities for social interaction were more strongly constrained.
Reinforcement Learning populations showed a different trend: as social connectivity increased,
convergence became more likely. Taken together, these results demonstrate that more knowl-
edge is not always better. Under certain circumstances, limitations on agents’ social knowledge
may actually be adaptive for community-level coordination. Lastly, even when convergence
to a single system was not achieved, self-organization of communication was still observed in
the form of dialects.

5. General discussion

Supporting the emergence-through-use view, it was found that large populations of agents
can establish and sustain conventional signaling systems without common knowledge. The
agents in the simulations were “egocentric” in how they produced and interpreted signals, in
the sense that they were indifferent to the identity of their conversational partners. In fact, the
agents even lacked a concept of community. Nonetheless, in most cases convergence to a single
language or to a set of spatially organized dialects was an extremely likely outcome. Unlike
previous studies, in which repeated, direct interaction among individuals could have rendered
common knowledge unnecessary, in the current simulations convergence was observed when
agents had limited opportunities to gather global information, either due to repeated interactions
with the same individuals or to memory limitations.

The efficiency and likelihood of convergence seemed to depend upon learning regime. A
continuous, neural-network style of learning produced optimal convergence in broadly inter-
connected populations, but failed to reliably converge when agents were organized into very
small neighborhoods. In contrast, Stay–Switch populations performed best when agents up-
dated their lexicons based only on highly local information. Specifically, performance was
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optimal when agents considered only their current and last two interactions. As agents’ abili-
ties to track global properties of the system were improved through larger memories or broader
social connectivity, convergence was impaired. Since common knowledge is a kind of global
knowledge, this suggests that at least under some circumstances, agents’ attempts to acquire
and use common knowledge might actually workagainstthe establishment of conventions.

In the current study, agents have things in common such as the same learning rate, a fixed
number of forms and meanings, and so on. Can they be said to have common knowledge?
Although agents have things in common, they do not have common knowledge because they
do not represent what other agents believe, or what is generally accepted in the community
of agents. This distinction between knowledge and meta-knowledge (knowledge about knowl-
edge) is crucial. In Lewis’ theory, agents will encode or interpret a signal in a certain way
because they know that it is shared. For example, imagine that you believe that it is common
knowledge in your community that people solve a problem by conforming to some regularity
R, but you happen to have just interacted repeatedly with an individual who did not conform
to R but toS instead. In spite of this experience, you would have little reason to expect the
next person in your community to conform toSoverR, even though this option has just been
made salient. In other words, common knowledge of a convention will override the salience
of another alternative (Lewis, 1969). However, the agents in this simulation would go on con-
forming toSwith the next person because they just do what is salient. According to game
theory, that kind of behavior is non-optimal.

The theory of games was first developed as a theory of single interactions among dyads
or groups and was only later generalized byLewis (1969)to repeated interactions at the
community level. The goal here is not to question the appropriateness of mutual expectations
theory for the situation in which a player encounters a series of isolated partners who do not
form a community or share information with each other. In that case, coordination on the basis
of mutual expectations seems optimal. Yet what is optimal or rational for agents to do at the level
of the individual dyad and at the level of the community need not coincide. For example, Lewis
asserted that individuals base their judgments on what is conventional because “the salience
of an equilibrium is not a very strong indication that everyone will choose it” (Lewis, 1969, p.
57). However, the simulations demonstrate that salience can be a valid heuristic for individuals
organized into a community because interactional processes can cause representations in the
community to converge. In many cases, the similarity of these representations would obviate the
need for strategic reasoning. Against this background of common representation, the routinely
egocentric behavior observed in actual language users (e.g.,Keysar et al., 2000) makes sense.

Although meta-level knowledge about community practices is not necessary for a shared
communication system to emerge, this doesnot mean that meta-knowledge of conventions
does not exist, nor that this kind of knowledge does not playany role in language use. As
Gilbert (1995)observed, one possibly unique characteristic of dynamical systems that are
composed of human agents is that humans can learn about emergent properties of the systems
they inhabit and strategically exploit this knowledge. In support of this view, research finds that
people are in fact quite good at estimating what other people in their community know, though
these estimates are systematically biased toward the estimator’s own knowledge (Fussell &
Krauss, 1991; Krauss & Fussell, 1991). For people to make such assessments, they must have
some concept of belonging to a community. However, note that the perception of belonging
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to a community might be aconsequenceof the establishment and recognition of common
practices, rather than apre-conditionfor their emergence.

The simulations presented here provide a demonstration that certain communication systems
analyzed by Lewis as requiring common knowledge (Lewis, 1969, cf. chapter IV) can be
explained by principles of self-organization. Still, the communication games presented here
are vastly simpler than the kinds of coordination problems humans face in using language.
In contrast to human languages, which are open-ended, the agents live in a fixed linguistic
universe where there are only four forms and four meanings. Steels and colleagues (seeSteels,
2002afor a review) have attempted to tackle the open-ended nature of lexical forms by using
more sophisticated language games, and endowing agents with a secondary, non-verbal channel
of communication as well as primitive sensorimotor abilities through which they can ground
symbolic meanings. In these so-called “Talking Heads” experiments, pairs of agents view a
visual scene through a camera and must communicate about a target object. The agents have
no prior conceptual repertoire, and can invent new forms when necessary to communicate a
distinction. In these models, conceptual structure and the lexicon co-evolve as a by-product of
interaction among agents. However, in these simulations, everyone talks to everyone else with
equal probability, and each agent tallies the success of each form every time that is used. The
results of the current study suggest that limiting agents’ access to social information through
smaller memories and spatial organization might actually improve the overall performance of
these models.

Important advances in the study of the evolution of language could be achieved by greater
integration of these efforts with others both within the same area and from other fields. First,
modelers have studied the emergence of syntax and the lexicon through multi-generational
approaches as well as via emergence-through-use. These two approaches are clearly not mu-
tually exclusive, and both are probably at work in promoting stability and change in human
languages. For example, it is possible that multi-generational iterated learning shapes structural
aspects of signaling systems, while processes at the interactional level promote conformity in
lexical representations. An important avenue for future research is to understand how these
approaches might be combined to account for phenomena of linguistic change.

Second, it would be useful for computational work to be more closely integrated with the
growing body of psycholinguistic work investigating negotiation and alignment in dyads (Barr
& Keysar, 2002; Brennan & Clark, 1996; Clark & Brennan, 1991; Garrod & Anderson, 1987;
Markman & Makin, 1998; Pickering & Garrod, in press; Schober & Brennan, 2003). As more
sophisticated models of coordination in dialogue arise, these models can be directly embedded
in agent systems. This would help empirically ground many of the assumptions about learning
and communication implemented in multi-agent models. In turn, multi-agent modeling will
provide researchers in the area of language use with better insight into the broader informa-
tional environment in which their models must operate, and can serve as a testbed for these
theories.

To date, theories of language use have developed under an acute preoccupation with the
difficulties of achieving shared understanding in the face of the ambiguity of language. This
preoccupation has led theorists to posit specialized cognitive mechanisms for dealing with
this ambiguity. However, the development of theories of language use should also be guided
by an appreciation for how distributed acts of coordination can promote a commonality of
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representation in the language community. Armed with such knowledge, we will be in a better
position to assess the degree of ambiguity that language users actually face and the strategies
that enable them to overcome it.

Notes

1. Although agents were trained on one another’s communicative behavior both across gen-
erations and within generations, within-generation training was found to be unnecessary
for convergence (Livingstone, 2002).

2. For diagnostic purposes, two instead of four input units were used, enabling the weights
to be visualized as projections onto a 2D space. A set of runs using four meaning nodes
was conducted for Set 1, and yielded qualitatively similar results, with a faster time to
converge.

3. For the first epoch, in which the agents’ memories are empty, the probability of a switch
was set to .75.

4. The standard error for each of these means is approximately 2 epochs.
5. One side effect of this function is that a few agents are left without a partner in a given

epoch because all potential nearby partners are already taken.
6. The plots in the Reinforcement Learning chart (bottom of Fig. 5) do not begin at 24 at

epoch one because the random initialization of agents’ weights causes some agents to
inhabit intermediate states that do not correspond to any of the 24 conventional signaling
systems.

Acknowledgement

This research was conducted while the author was a postdoctoral fellow at the Beckman Insti-
tute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign.
The author thanks the Beckman Institute for their support during the development of this
project, and Gary Dell, Boaz Keysar, and Terry Regier for their valuable feedback.

References

Aitchinson, J. (2001).Language change: Progress or decay?Cambridge: Cambridge University Press.
Arnold, J. E., Trueswell, J. C., & Lawentmann, S. M. (1999). Using common ground to resolve referential ambiguity.

Paper presented at the 40th Annual Meeting of the Psychonomic Society, Los Angeles, CA.
Barr, D. J. (1999).A theory of dynamic coordination for conversational interaction. Unpublished Ph.D. thesis, The

University of Chicago.
Barr, D. J., & Keysar, B. (2002). Anchoring comprehension in linguistic precedents.Journal of Memory and

Language, 46, 391–418.
Batali, J. (1998). Computational simulations of the emergence of grammar. In J. R. Hurford, M. Studdert-Kennedy, &

C. Knight (Eds.),Approaches to theevolutionof language:Social and cognitive bases(pp. 405–426). Cambridge:
Cambridge University Press.



960 D.J. Barr / Cognitive Science 28 (2004) 937–962

Branigan, H. P., Pickering, M. J., & Cleland, A. A. (2000). Syntactic co-ordination in dialogue.Cognition, 75,
B13–B25.

Brennan, S. E., & Clark, H. H. (1996). Conceptual pacts and lexical choice in conversation.Journal of Experimental
Psychology: Learning, Memory,& Cognition, 22, 1482–1493.

Cangelosi, A. (2001). Evolution of communication and language using signals, symbols and words.IEEE Trans-
actions in Evolutionary Computation, 5, 93–101.

Cangelosi, A., & Parisi, D. (1998). The emergence of a ‘language’ in an evolving population of neural networks.
Connection Science, 10, 83–97.

Christiansen, M. H., & Ellefson, M. R. (2002). Linguistic adaptation without linguistic constraints: The role of se-
quential learning in language evolution. In A. Wray (Ed.),The transition to language. Oxford: Oxford University
Press.

Clark, E. (1987). The principle of contrast: A constraint on acquisition. In B. MacWhinney (Ed.),Mechanisms of
language acquisition(pp. 1–33). Hillsdale, NJ: Erlbaum.

Clark, H. H. (1992).Arenas of language use. Chicago, IL, USA: University of Chicago Press.
Clark, H. H. (1996).Using language. Cambridge, England, UK: Cambridge University Press.
Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D.

Teasley (Eds.),Perspectives on socially shared cognition(pp. 127–149). Washington, DC, USA: American
Psychological Association.

Clark, H. H., & Carlson, T. B. (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.),Attention and
performance IX(pp. 313–330). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

Clark, H. H., & Marshall, C. R. (1981). Definite reference and mutual knowledge. In A. K. Joshe, B. L. Webber, &
I. A. Sag (Eds.),Elements of discourse understanding(pp. 10–63). Cambridge: Cambridge University Press.

de Boer, B. (2002). Evolving sound systems. In A. Cangelosi & D. Parisi (Eds.),Simulating the evolution of language
(pp. 79–97). London: Springer.

Fussell, S. R., & Krauss, R. M. (1991). Accuracy and bias in estimates of others’ knowledge.European Journal of
Social Psychology, 21, 445–454.

Garrod, S., & Anderson, A. (1987). Saying what you mean in dialogue: A study in conceptual and semantic
co-ordination.Cognition, 27, 181–218.

Garrod, S., & Doherty, G. (1994). Conversation, co-ordination and convention: An empirical investigation of how
groups establish linguistic conventions.Cognition, 53, 181–215.

Gerrig, R. J. (1986). Process models and pragmatics. In N. E. Sharkey (Ed.),Advances in cognitive science: Vol. 1
(pp. 23–42). New York: Wiley.

Gilbert, N. (1995). Emergence in social simulation. In N. Gilbert (Ed.),Artificial societies: The computer simulation
of social life(pp. 144–155). London: UCL Press.

Hanna, J. E., Trueswell, J. C., Tanenhaus, M. K., & Novick, J. M. (1997). Consulting common ground during
referential interpretation. Paper presented at the 38th Annual Meeting of the Psychonomic Society, Philadelphia,
PA.

Hazlehurst, B., & Hutchins, E. (1998). The emergence of propositions from the co-ordination of talk and action in
a shared world.Language and Cognitive Processes, 13, 373–424.

Holland, J. H. (1998).Emergence: From chaos to order. Reading, MA: Perseus Books.
Horton, W. S., & Keysar, B. (1996). When do speakers take into account common ground?Cognition, 59, 91–

117.
Hurford, J. R. (1989). Biological evolution of the Saussurean sign as a component of the language acquisition

device.Lingua, 77, 187–222.
Hurford, J. R. (2000). Social transmission favours linguistic generalization. In C. Knight, M. Studdert-Kennedy,

& J. R. Hurford (Eds.),The evolutionary emergence of language: Social function and the origins of linguistic
form. Cambridge: Cambridge University Press.

Hutchins, E., & Hazlehurst, B. (1995). How to invent a lexicon: The development of shared symbols in interaction.
In N. Gilbert & R. Conte (Eds.),Artificial societies: The computer simulation of social life(pp. 157–189).
London: UCL Press.

Keysar, B. (1994). The illusory transparency of intention: Linguistic perspective taking in text.CognitivePsychology,
26, 165–208.



D.J. Barr / Cognitive Science 28 (2004) 937–962 961

Keysar, B., Barr, D. J., Balin, J. A., & Brauner, J. S. (2000). Taking perspective in conversation: The role of mutual
knowledge in comprehension.Psychological Science, 11, 32–38.

Keysar, B., Barr, D. J., Balin, J. A., & Paek, T. S. (1998). Definite reference and mutual knowledge: Process models
of common ground in comprehension.Journal of Memory and Language, 39, 1–20.

Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of mind use in adults.Cognition, 89, 25–41.
Kirby, S. (1998). Fitness and the selective adaptation of language. In J. R. Hurford, M. Studdert-Kennedy, & C.

Knight (Eds.),Approaches to the evolution of language(pp. 359–383). Cambridge: Cambridge University Press.
Kirby, S. (2000). Syntax without natural selection: How compositionality emerges from vocabulary in a population

of learners. In C. Knight, J. R. Hurford, & M. Studdert-Kennedy (Eds.),Theevolutionary emergenceof language:
Social function and the origins of linguistic form. Cambridge: Cambridge University Press.

Kirby, S. (2001). Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of
regularity and irregularity.IEEE Transactions in Evolutionary Computation, 5, 102–110.

Kirby, S., & Hurford, J. R. (2001). The emergence of linguistic structure: An overview of the iterated learning
model. In A. Cangelosi & D. Parisi (Eds.),Simulating the evolution of language. London: Springer.

Krauss, R. M., & Fussell, S. R. (1991). Perspective-taking in communication: Representations of others’ knowledge
in reference.Social Cognition, 9, 2–24.

Krauss, R. M., & Weinheimer, S. (1964). Changes in reference phrases as a function of frequency of usage in social
interaction: A preliminary study.Psychonomic Science, 1, 113–114.

Krauss, R. M., & Weinheimer, S. (1966). Concurrent feedback, confirmation, and the encoding of referents in verbal
communication.Journal of Personality& Social Psychology, 4, 343–346.

Lewis, D. (1969).Convention: A philosophical study. Cambridge, MA: Harvard University Press.
Lightfoot, D. (1991).How to set parameters. Cambridge, MA: MIT Press.
Livingstone, D. (2002). The evolution of dialect diversity. In A. Cangelosi & D. Parisi (Eds.),Simulating the

evolution of language(pp. 99–117). London: Springer.
Livingstone, D., & Fyfe, C. (1999). Modeling the evolution of linguistic diversity. In D. Floreano, J. D. Nicoud, &

F. Mondada (Eds.),Proceedings of the Fifth European Converence on Artifical Life (Lecture Notes on Artificial
Intelligence, Vol. 1674)(pp. 704–708). Berlin: Springer-Verlag.

Markman, A. B., & Makin, V. S. (1998). Referential communication and category acquisition.Journal of Experi-
mental Psychology: General, 127, 331–354.

Markman, E., & Wachtel, G. (1988). Children’s use of mutual exclusivity to constrain the meanings of words.
Cognitive Psychology, 20, 121–157.

Nadig, A. S., & Sedivy, J. C. (2002). Evidence of perspective taking constraints in children’s on-line reference
resolution.Psychological Science, 13, 329–336.

Niyogi, P., & Berwick, R. C. (1997). A dynamical systems model for language change.Complex Systems, 11,
161–204.

Oliphant, M. (1999). The learning barrier: Moving from innate to learned systems of communication.Adaptive
Behavior, 7, 371–384.

Pickering, M. J., & Garrod, S. (in press). Toward a mechanistic psychology of dialogue.Behavioral& Brain
Sciences.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model.ComputerGraphics,21, 25–34.
Schelling, T. C. (1960).The strategy of conflict. Cambridge, MA: Harvard University Press.
Schelling, T. C. (1978).Micromotives and macrobehavior. New York: Norton & Co.
Schober, M. F., & Brennan, S. E. (2003). Processes of spoken interactive discourse: The role of the partner. In A.

C. Graesser & M. A. Gernsbacher (Eds.),Handbook of discourse processes(pp. 123–164). Mahwah, NJ, USA:
Erlbaum.

Shoham, Y., & Tennenholtz, M. (1997). On the emergence of social conventions: Modeling, analysis, and simula-
tions.Artificial Intelligence, 94, 139–166.

Steels, L. (1996). Self-organizaing vocabularies. In C. G. Langton & T. Shimohara (Eds.),Artificial life V: Pro-
ceedings of the Fifth International Workshop. Cambridge, MA: MIT Press.

Steels, L. (1998). Synthesizing the origins of language and meaning using coevolution, self-organization and level
formation. In J. R. Hurford, M. Studdert-Kennedy, & C. Knight (Eds.),Approaches to the evolution of language:
Social and cognitive bases(pp. 384–404). Cambridge: Cambridge University Press.



962 D.J. Barr / Cognitive Science 28 (2004) 937–962

Steels, L. (2002a). Crucial factors in the origins of word-meaning. In A. Wray (Ed.),The transition to language.
New York: Oxford University Press.

Steels, L. (2002b). Grounding symbols through evolutionary language games. In A. Cangelosi & D. Parisi (Eds.),
Simulating the evolution of language(pp. 211–226). London: Springer.

von Neumann, J., & Morgenstern, O. (1944).Theory of games and economic behavior. Princeton: Princeton Uni-
versity Press.

Young, H. P. (1993). The evolution of conventions.Econometrica, 61, 57–84.
Young, H. P. (1998). Individual learning and social rationality.European Economic Review, 42, 651–663.


	Establishing conventional communication systems: Is common knowledge necessary?
	Introduction
	Prior work
	Multi-generational theories of conventions: linguistic conventions are invented and re-invented by each generation of language learners
	Emergence-through-use models: linguistic conventions are established and sustained through use

	The present study

	The signaling game
	The Reinforcement Learning model
	The Stay-Switch model

	Simulation set 1: conventions in unstructured populations
	Simulation set 2: conventions in structured communities
	General discussion
	Acknowledgement
	References


