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Language emergence and evolution has recently gained growing attention through multi-
agent models and mathematical frameworks to study their behavior. Here we investigate
further the Naming Game, a model able to account for the emergence of a shared vocabu-
lary of form-meaning associations through social/cultural learning. Due to the simplicity
of both the structure of the agents and their interaction rules, the dynamics of this
model can be analyzed in great detail using numerical simulations and analytical argu-
ments. This paper first reviews some existing results and then presents a new overall
understanding.
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1. Introduction

Language is based on a set of cultural conventions socially shared by a group. But

how are these conventions established without a central coordinator and without
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telepathy? The problem has been addressed by several disciplines, but it is only in

the last decade that there has been a growing effort to tackle it scientifically using

multi-agent models and mathematical approaches (cfr.1,2,3 for a review). Initially

these models focused on the emergence of a shared vocabulary, but increasingly

attempts are made to tackle grammar 1,4,5,6,7.

The proposed models can be classified as defending a sociobiological or a socio-

cultural explanation. The sociobiological approach 8, which includes the evolution-

ary language game 1, is based on the assumption that successful communicators,

enjoying a selective advantage, are more likely to reproduce than worse communi-

cators. If communication strategies are innate, then more successful strategies will

displace rivals. The term strategy acquires its precise meaning in the context of a

particular model. For instance, it can be a strategy for acquiring the lexicon of a

language, i.e., a function from samplings of observed behaviors to acquired commu-

nicative behavior patterns 8,9,10, or it can simply coincide with the lexicon of the

parents 1 or with some strong disposition to acquire a particular kind of syntax,

usually called innate Universal Grammar 11.

In this paper we discuss a model, first proposed in 12, that belongs to the so-

ciocultural family 13,14,15. Here, good strategies do not necessarily provide higher

reproductive success, but only higher communicative success and greater expres-

sive power, and hence greater success in reaching cooperative goals, with less effort.

Agents select better strategies exploiting cultural choices, feedback from communi-

cation, and a sense of effort. Agents have not only the ability to acquire an existing

system but to expand their rules to deal with new communicative challenges and

to adjust their rules based on observing the behavior of others. Global coordi-

nation emerges over cultural timescales, and language is seen as an evolving and

self-organized system 16. While the sociobiological approach emphasizes language

transmission following a vertical, genetic or generational line, the sociocultural ap-

proach emphasizes peer-to-peer interaction 17.

A second, fundamental distinction among the different models concerns the

adopted mechanisms of social learning describing how stable dispositions are ex-

changed and coordinated between individuals 18. The two main approaches are

the so called observational learning model and the reinforcement model 19. In the

first approach 8,9,10,1, observation is the main ingredient of learning and statistical

sampling of observed behaviors determines their acquisition 8,9,10,1. The second

emphasizes the functional and inferential nature of conventional communication,

the scaffolding role of the speaker, the restrictive power of the joint attention frame

set up in the shared context, and the importance of pragmatic feedback in language

interaction. Here we adopt the reinforcement learning approach as in 13,14,15.

In this paper we shall discuss a recently introduced model 12, inspired by one

of the first language game models known as the Naming Game 14. It is able to

account for the emergence of a shared set of conventions in a population of agents.

Central control or co-ordination are absent, and agents perform only pairwise in-

teractions following straightforward rules. Indeed, due to the simplicity of the in-
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teraction scheme, the dynamics of the model can be studied both with massive

simulations and analytical approaches. By doing so we import a pre-existing model

into the statistical mechanics context (as opposed to the reverse which is often the

case).

In past work, sociocultural investigations largely focused on computational is-

sues and the application for emergent communication in software agents or physical

robots 20, resulting in a lack of quantitative investigations. For instance, we shall

discuss in detail later how the main features of the process leading the population

to a final convergence state scale with the population size, whereas earlier work has

concentrated on studying very small populations 21. The price to pay for quanti-

tative comprehension is a reduction in the number of aspects of the phenomena we

can treat. Thus, the agent architectures we shall describe are indeed very basic and

stylized, and are much too simple compared to the cognitive mechanisms humans

employ, but on the other hand they allow us to study much more clearly what is

crucial to obtain the desired global co-ordination based on only local interaction.

The present paper shows that the crucial features are in fact simple and we consider

this to be one of our major contributions. Despite simplifying the original Naming

Game 14, we retained however its most important properties so that the interaction

scheme could still be ported to real world robots or be used to explain the behavior

of biological agents.

The paper is organized as follows. In Sec. 2.1 we present the Naming Game

model and discuss its basic phenomenology. Sec. 3 is devoted to the study of the

role of population size. We investigate the scaling relations of some important quan-

tities and provide analytical arguments to derive the relevant exponents. In Sec. 4

we look in more detail at the mechanisms that give rise to convergence, deepening

the analysis presented in 12. In particular, we identify and explain the presence

of a hidden timescale that governs the transition to the final consensus state. In

Sec. 5 we focus on the relation between single simulation runs and averaged quan-

tities, while in Sec. 6 we investigate the properties of the consensus word. We then

analyze, in Sec. 7, a controlled case that sheds light on the nature of the symme-

try breaking process leading to lexical convergence. Finally, in Sec. 8, we discuss

the most relevant features of the model and present some conclusions concerning

particularly its connections with the fields of Opinion Dynamics on one hand and

Artificial Intelligence on the other.

2. The model

2.1. Naming Game

We present here the version of the Naming Game introduced in 12 (see also 22 for

a comprehensive analysis of the model). The game is played by a population of N

agents in pairwise interactions. As a side effect of a game, agents negotiate conven-

tions, i.e., associations between forms (names) and meanings (for example individ-

uals in the world), and it is obviously desirable that a global consensus emerges.
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Because different agents can each independently invent a different name for the

same meaning, synonymy (one meaning many words) is unavoidable. However we

do not consider here the possibility of homonymy (one word many meanings). In the

invention process, in fact, we consider the situation where the number of possibly

invented words is so huge that the probability that two players will ever invent the

same word at two different times for two different meanings is practically negligible.

This means that the dynamics of the inventories associated to different meanings

are completely independent and the number of meanngs becomes a trivial param-

eter of the model. As a consequence we can reduce, without loss of generality, the

environment as composed by one single meaning and focus on how a population can

establish a convention for expressing that meaning. In a generalized Naming Game,

homonymy is not always an unstable feature and its survival depends in general on

the size of the meaning and signal spaces 23. Homonymy becomes crucial if, during

a conversation, agents do not get precise feedback about the meaning. If there is

more than one possible meaning compatible with the current situation (for example

if the word expresses a category but we do not know which one) then homonymy

would be unavoidable. This is not the case for the Naming Game while it becomes

crucial for the so-called Guessing 2 and Category Game 6.

The model definition can be summarized as follows. We consider an environment

composed by one single object to be named, the extension to many different objects

being trivial if one neglects homonymy. Each individual is described by its inventory,

i.e., a set of form-meaning pairs (in this case only names competing to name the

unique object)) which is empty at the beginning of the game (t = 0) and evolves

dynamically in time. At each time step (t = 1, 2, ..) two agents are randomly selected

and interact: one of them plays the role of speaker, the other one that of hearer.

The interactions obey the following rules (Fig. 1):

• The speaker transmits a name to the hearer. If its inventory is empty, the

speaker invents a new name, otherwise it selects randomly one of the names

it knows;

• If the hearer has the uttered name in his inventory, the game is a success,

and both agents delete all their names, but the winning one;

• If the hearer does not know the uttered name, the game is a failure, and

the hearer inserts the name in its inventory.

Another important assumption of the model is that two agents are randomly

selected at each time step. This means that each agent in principle can talk to any-

body else, i.e., that the population is completely unstructured (homogeneous mixing

assumption). The role of different agent topologies has been discussed extensively

elsewhere 24,25,26,27,28,29,22. A generalized model of the Naming Game has also

been proposed, in which agents do not update their inventories deterministically

after a success, but rather do that according to a certain probability 30. General-

ized models exhibit interesting phenomenologies, including a non-equilibrium phase

transition, but we do not consider them here.
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Fig. 1. Naming game interaction rules. The speaker selects randomly one of its names,
or invents a new name if its inventory is empty (i.e., we are at the beginning of the game).
If the hearer does not know the uttered name, it simply adds it to its inventory, and
the interaction is a failure. If, on the other hand, the hearer recognizes the name, the
interaction is a success, and both agents delete from their inventories all their names but
the winning one.

Finally, it is worth stressing that the random selection rule adopted by the

speaker to select the word to be transmitted, and the absence of weights to be asso-

ciated with words, expressly violate the fundamental ingredients of earlier models 2.

Indeed, as we are going to show, they turn out to be unnecessary.

2.2. Basic phenomenology

The most basic quantities describing the state of the population at a given time t

are: the total number of names present in the system, Nw(t), the number of different

names known by agents, Nd(t), and the success rate, i.e. the probability of observing

a successful interaction at a given time, S(t). In Figure 2 we report data concerning

a population of N = 103 agents. The process starts with a trivial transient in

which agents invent new names. It follows a longer period of time where the N/2

(on average) different names are exchanged after unsuccessful interactions. The

probability of a success taking place at this time is indeed very small (S(t) ≃ 0) since

each agent knows only a few different names. As a consequence, the total number

of names grows, while the number of different names remains constant. However,

agents keep correlating their inventories so that at a certain point the probability of

a successful interaction ceases to be negligible. As fruitful interactions become more
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Fig. 2. Basic global quantities. a) Total Number of names present in the system, Nw(t);
b) Number of different names, Nd(t); c) Success rate S(t), i.e., probability of observing a
successful interaction at a time t. The inset shows the linear behavior of S(t) at small times.

All curves concern a population of N = 103 agents. The system reaches the final absorbing
state, described by Nw(t) = N, Nd(t) = 1 and S(t) = 1, in which a global agreement on
the form (name) to assign to the meaning (individual object) has been reached.

frequent the total number of names at first reduces its growth and then starts to

decrease, so that the Nw(t) curve presents a well identified peak. Moreover, after a

while, some names start disappearing from the system. The process evolves with an

abrupt increase in the success rate, with a curve S(t) which exhibits a characteristic

S-shaped behavior, and a further reduction in the numbers of both total and different

names. Finally, the dynamics ends when all agents have the same unique name and

the system is in the desired convergence state. It is worth noting that the developed

communication system is not only effective (each agent understands all the others),

but also efficient (no memory is wasted in the final state).

From the inset of Figure 2 it is also clear that the S(t) curve exhibits a linear

behavior at the beginning of the process: S(t) ∼ t/N2. This can be understood
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noting that, at early stages, most successful interactions involve agents which have

already met in previous games. Thus the probability of success is proportional to the

ratio between the number of couples that have interacted before time t, whose order

is O(t), and the total number of possible pairs, N(N −1)/2. The linear growth ends

in correspondence with the peak of the Nw curve, where it holds S(t) ∼ 1/N0.5,

and the success rate curve exhibits a bending afterward, slowing down its growth

till a sudden burst that corresponds to convergence.

3. The role of system size

3.1. Scaling relations

A crucial question concerns the role played by the system size N . In particular, two

fundamental aspects depend on N . The first is the time needed by the population

to reach the final state, which we shall call the convergence time tconv. The second

concerns the cognitive effort in terms of memory required by each agent in achieving

this dynamics. This reaches its maximum in correspondence of the peak of the Nw(t)

curve. Figure 3 shows scaling of the convergence time tconv, and the time and height

of the peak of Nw(t), namely tmax and Nmax
w

.
= Nw(tmax). The difference time

(tconv − tmax) is also plotted. It turns out that all these quantities follow power law

behaviors: tmax ∼ Nα, tconv ∼ Nβ , Nmax
w ∼ Nγ and tdiff = (tconv − tmax) ∼ N δ,

with exponents α ≈ β ≈ γ ≈ δ ≈ 1.5.

The values for α and γ can be understood through simple analytical arguments.

Indeed, assume that, when the total number of words is close to the maximum, each

agent has on average cNa words, so that it holds α = a + 1. If we assume also that

the distribution of different words in the inventories is uniform, the probability for

the speaker to play a given word is 1/(cNa), while the probability that the hearer

knows that word is 2cNa/N (where N/2 is the number of different words present

in the system). The equation for the evolution of the number of words then reads:

dNw(t)

dt
∝ 1

cNa

(

1 − 2cNa

N

)

− 1

cNa

2cNa

N
2cNa (1)

where the first term is related to unsuccessful interactions (which increase Nw by

one unit), while the second one to successful ones (which decrease Nw by 2cNa).

At the maximum dNw(tmax)/dt = 0, so that, in the thermodynamic limit N → ∞,

the only possible value for the exponent is a = 1/2 which implies α = 3/2 in perfect

agreement with data from simulations.

For the exponent γ the procedure is analogous, but we have to use the linear

behavior of the success rate and the relation a = 1/2 we have just obtained. The

equation for Nw(t) now can be written as:

dNw(t)

dt
∝ 1

cN1/2

(

1 − ct

N2

)

− 1

cN1/2

ct

N2
2cN1/2 . (2)

If we impose dNw(t)/dt = 0, we find that the time of the maximum has to scale

with the right exponent γ = 3/2 in the thermodynamic limit.
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Fig. 3. Scaling with the population size N . In the upper graph the scaling of the
peak and convergence time, tmax and tconv, is reported, along with their difference, tdiff .

All curves scale with the power law N1.5. Note that tconv and tdiff scaling curves present
characteristic log-periodic oscillations (see Sec. 3.2). The lower curve shows that the max-
imum number of words (peak height, Nmax

w = Nw(tmax)) obeys the same power law
scaling.

The exponent for the convergence time, β, deserves a more articulate discussion,

and we can only provide a more naive argument, even though well supported by

evidence from numerical simulations. We concentrate on the scaling of the interval of

time separating the peak of Nw(t) and the convergence, i.e., tdiff = (tconv−tmax) ∼
tδ ∼ N1.5, since we already have an argument for the time of the peak of the total

number of words tmax. tdiff is the time span required by the system to get rid of

all the words but the one which survives in the final state. The problem cast in

such a way, we argue that a crucial parameter is the maximum number of words

the system stores at the beginning of the elimination phase.

If we adopt the mean field assumption that at t = tmax each agent has on

average Nmax
w /N ∼

√
N words (see 28 for a detailed discussion of such a mean field

approximation), we see that, by definition, in the interval tdiff , each agent must

have won at least once. This is a necessary condition to have convergence, and it is

interesting to investigate the timescale over which this happens. Assuming that N

is the number of agents who did not yet have a successful interaction at time t, we

have:

N = N(1 − pspw)t (3)
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Fig. 4. Evidences supporting the argument for the β exponent. Top: v(t) is the
(non normalized) histogram of the times at which agents play their first successful in-
teraction, while V (t) is the cumulative curve. It is clear that up to a time very close to
convergence there are still agents that have never won. Thus, the investigation of the first
time in which V (t) = 1 provides a good estimate of tconv. Data refer to a single run for

a population of N = 105 agents. The Nd(t) curve is also plotted, for reference, while the
vertical dashed grey line indicates convergence time. Bottom: scaling of tdiff with N for
a system in which, at the beginning of the process, half of the population knows word A
and the other half word B. Thus, Nd(t = 0) = 2 and invention is eliminated. Experimental
points are well fitted by tdiff ∼ N log N , as predicted by our argument (see text). A fit of

the form tdiff ∼ Nδ , on the other hand, turns out to be less accurate (data not shown).

where ps = 1/N is the probability to randomly select an agent and pw = S(t) is

the probability of a success. The latter is O(1/N0.5) at tmax, and stays around that

value for a quite long time span afterward. Indeed, as we have seen, the success

rate S(t) grows linearly till the peak, where S(t) = ctmax/N2 ∼ 1/N0.5, and ex-

hibits a bending afterward, before the final jump to S(t) = 1 (Fig. 2). If we insert

the estimates of ps and pw in eq. (3), and we require the number of agents who

have not yet had a successful interaction to be finite just before the convergence,

i.e., N(tconv) ∼ O(1), we obtain tdiff ∼ N3/2 log N . Thus, the leading term of

the difference time tdiff ∼ N1.5 is correctly recovered, and the necessary condition

N(tconv) ∼ O(1) turns out to be also sufficient. The possible presence of the log-

arithmic correction, on the other hand, cannot be appreciated in simulations due

also to logarithmic oscillations in the tdiff curve (see following Sec. 3.2). Finally, it

is worth noting that the S(t) ∼ 1/N0.5 behavior can be understood also assuming

that at the peak of Nw(t) each agent has O(N0.5) words (mean field assumption),

and that the average number of words in common between two inventories is O(1)
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Fig. 5. Log-periodic oscillations for convergence times. Rescaled values of tconv

and tmax are plotted along with their ratio. The rescaled convergence times exhibit global
oscillations that are well fitted by the function t ∝ sin(c + c′ ln(N)), where c and c′ are
constants whose values are c ≈ 1.0 and c′ ≈ 0.4.

(as confirmed by numerical simulations shown in Fig. 12).

We can test the hypothesis behind the above argument in two ways. First of all

we can investigate the distribution v(t) of the times at which agents perform their

first successful interaction. Remarkably, Fig. 4 (top) shows that this distribution

extends approximately up to tconv, so that the time t∗, at which V (t) ≡
∫ t∗

0
v(t) = 1,

turns out to provide a good estimate for tconv. Then, we can validate our approach

studying a controlled case. Consider a simplified situation in which each agent starts

the usual Naming Game knowing one of only two possible words, say A and B.

Invention is then prevented, and for the peak of Nw(t) it holds Nmax
w ∼ N . Noting

that in this case we have S(tmax) ∼ O(1), and substituting this value in eq. (3), we

obtain that tdiff ∼ N log N . Indeed, this prediction is confirmed by simulations also

for what concerns the logarithmic correction (Fig. 4 (bottom)), and our approach

is supported by a second validation.

3.2. Rescaling curves

Since we know that the characteristic time required by the system to reach con-

vergence scales as N1.5 we would expect a transformation of the form t → t/N3/2

to yield a collapse of the global-quantity curves, such as S(t) or Nw(t), relative to

systems of different sizes. However this does not happen.

The first reason is that the curve of the scaling of the convergence time with N
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Fig. 6. Rescaling of the success rate curves. Curves relative to different system sizes
show different qualitative behavior if time is rescaled as t → t/tS(t)=0.5 − 1, where

tS(t)=0.5 ∼ N3/2. Indeed, on this timescale, the transition between the initial disordered

state and the final ordered one where S(t) ≈ 1 (i.e., the disorder-order transition) becomes
steeper and steeper as N grows.

does follow a N3/2 trend, but presents a peculiar, seemingly oscillatory, behavior in

logarithmic scale. This is already visible from Figure 3, but is clearer in Figure 5,

where it is shown that the curve tconv/N
3/2 is well fitted by a function of the type

t ∝ sin(c+ c′ ln(N)), where c and c′ are constantsa. The same figure also shows that

such oscillations are absent, or at are least very reduced, in the curve of peak times,

tmax.

The deviations of the convergence time scaling curve from a pure power law

have the effect of scattering rescaled curves, thus preventing any possible collapse.

An easy solution to this problem is that of rescaling according to intrinsic features

of each curve. In Figure 6, we have rescaled success rate S(t) curves following the

transformation t → t/tS(t)=0.5−1, where tS(t)=0.5 is the time in which the considered

curve reaches the value 0.5 (with tS(t)=0.5 ∼ N1.5, not shown). Interestingly we

note that the curves still do not collapse. In particular, the transition between a

disordered state in which there is almost no communication between agents (S(t) ≈
0), to the final ordered state in which most interactions are successful (S(t) ≈ 1)

aIt must be noted that, since the supposed oscillations should happen on logarithmic scale, it is
hard to obtain data able to confirm their actual oscillatory behavior. Thus, the fit proposed here
must be intended only as a possible suggestion on the true behavior of the irregularities of the
tconv scaling curve.
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Fig. 7. Collapse of the success rate curves. The time rescaling transformation t →

(t − tS(t)=0.5)/t
5/6
S(t)=0.5

makes the different S(t) curves collapse. Since the time at which

the success rate is equal to 0.5 scales as N3/2 (data not shown), the transformation is

equivalent to t → (t−αN3/2)/N5/4. The collapse shows that the disorder-order transition
between an initial disordered state in which S(t) ≈ 0 and an ordered state in which S(t) ≈ 1

happens on new timescale t ∼ Nθ with θ ≈ 5/4.

becomes steeper and steeper as N becomes larger 12. In other words, it is clear that

the shape of the curves changes when we observe them on our rescaled timescale.

Figure 6 suggests that the disorder-order transitions happen on a new timescale

t ∼ Nθ with θ < β, so that Nθ/tconv → 0 when N → ∞ and the transition becomes

instantaneous, on the rescaled timescale, in the thermodynamic limit. Indeed this is

exactly the case and, as shown in Figure 7, the value θ = 5/4 and the transformation

t → (t − αN3/2)/N5/4 produces a good collapse of the success rate curves relative to

different N . In the next section we shall show how the right value for θ can be derived

with scaling arguments after a deeper investigation of the model dynamics 12.

4. The approach to convergence

4.1. The domain of agents

We have seen that agents at first accumulate a growing number of words and then,

as their interactions become more and more successful, reduce the size of their

inventories till the point in which all of them know the same unique word. More

quantitatively, the evolution in time of the fraction of agents fn with inventory

sizes n is shown in Figure 8. The curves refer to a population of N = 103 agents
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Fig. 8. Evolution in time of inventory sizes n (n = 1 . . . 15). fn(t) is the fraction of
agents whose inventory size is n at time t. In the right part, fn(t) decreases with increasing
n. The process ends with all agents having the same unique word in their inventory, so
that f1 = 1. Curves obtained by averaging 500 simulation runs on a population of N = 103

agents.

and have been obtained averaging over several simulation runs. We see that the

process starts with a rapid decrease of f0 and a concomitant increase of the fraction

of agents with larger inventories. After a while, however, successful interactions

produce a new growth in the fraction of agents with small values of n. The process

evolves until the point in which all agents have the same unique word and f1 = 1.

Some of the initial-time regularities of the fn curves can be easily described

analytically. For instance, it is easy to write equations for the evolution of the

number of species as long as S(t) = 0. We have:

df0/dt = −f0 (4)

dfn>1/dt = fn−1 − fn

(5)

These trivial relations allow to understand some features of the curves, like the

exponential decay of f0, or the fact that, at early times, each fn (n > 0) crosses

the correspondent fn−1 in correspondence of its maximum (as can be recovered

imposing dfn/dt = 0). However, generalizing eq. (4) is not easy, since, as the dy-

namics proceeds, one should take into account the correlations among inventories

to estimate the probability of successful interactions, and the analytical solution of

our Naming Game model is still lacking.
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Fig. 9. Distribution Pn of inventory sizes n. Curves obtained by a single simulation
run for a population of N = 104 agents, for which tmax = 6.2× 105 and tconv = 1.3× 106

time steps. Close to convergence the distribution is well described by a power law Pn ∼

n−7/6.

More quantitative insights can be obtained looking at the distribution Pn of

inventory sizes n at fixed times 12, reported in Figure 9 for the case N = 104

(see 28 for a detailed discussion of the Pn behavior in different temporal regions

and different topologies). We see that in early stages most agents tend to have

large inventories, thus determining a peak in the distribution. When agents start

to understand each other, however, the peak disappears and large n values keep

decreasing. Interestingly, in correspondence with the jump of the success rate that

leads to convergence, the histogram can be described by a power law distribution:

Pn ∼ n−σg(n/
√

N) (6)

with the cut-off function g(x) = 1 for x << 1 and g(x) = 0 for x >> 1. Numerically

it turns out that 1 < σ < 3/2. To be more precise, in Figure 9 it is shown that the

value σ ≈ 7/6 allows a good fitting of the Pn at the transition, and from simulations

it turns out that this is true irrespectively of the system size.

Finally, it is also worth mentioning that, well before the transition, the larger

number of words in the inventory of a hearer increases (linearly) the chances of

success in a interaction (data not shown). The number of words known by the

speaker, on the other hand, basically plays no role until the system is close to the

transition. Here, small inventories are likely to contain the most popular word, thus

yielding higher probability of success 28.
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Fig. 10. Distribution w(R) of words of rank R. The most popular word has rank

R = 1, the second R = 2, etc. The distribution follows a power law behavior w(R) ∼ R−ρ

with an exponent that varies in time, while for high ranks it is truncated at R ≈ N/2. Close
to the disorder-order transition, however, the most diffused word abandons the distribution
that keeps describing the less popular words. Data come from a single simulation run and
concern a population of N = 104 agents.

4.2. The domain of words

While agents negotiate with each others, words compete to survive 12. In Fig-

ure 10 the rank distribution of words at fixed times is reported. The most popular

word is given rank 1, the second one 2 and so on. The first part of the distribution

is well described by a power law function, with an exponent that decreases with

time. In proximity of the disorder-order transition, however, the most popular word

breaks the symmetry and abandons the power law behavior, which continues to

describe well the remaining words. More precisely, the global distribution for the

fraction of agents possessing the R-ranked word, w(R), can be described as:

w(R) = w(1)δR,1 +
Nw/N − w(1)

(1 − ρ)((N/2)1−ρ − 21−ρ)
R−ρg(

R

N/2
), (7)

where δ is the Kronecker delta function (δa,b = 1 iff a = b and δa,b = 0 if a 6= b)

and the normalization factors are derived imposing that
∫

∞

1 w(R)dR = Nw/N b.

On the other hand from equation (6) one gets, by a simple integration, the

bWe use integrals instead of discrete sums, an approximation valid in the limit of large systems.
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relation Nw/N ∼ N1−σ/2 which, substituted into eq. (7), gives:

w(R)|R>1 ∼ 1

Nσ/2−ρ
R−ρf(

R

N/2
). (8)

It follows that w(R)|R>1 → 0 as N → ∞, so that, in the thermodynamic limit

w(1) ∼ O(1), i.e., the number of players with the most popular word, is a finite

fraction of the whole population.

4.3. Network view - The disorder-order transition

We now need a more precise description of the convergence process 12. A profitable

approach consists in mapping the agents in the nodes of a network (see Figure 11).

Two agents are connected by a link each time that they both know the same word,

so that multiple links are allowed. For example, if m out of the n words known by

agent A are present also in the inventory of agent B, they will be connected by m

links. In the network, a word is represented by a fully connected sub-graph, i.e.,

by a clique, and the final coherent state corresponds to a fully connected network

with all pairs connected by only one link. When two players interact, a failure

determines the propagation of a word, while a success can result in the elimination

of a certain number of words competing with the one used. In the network view, as

shown in Figure 11, this translates into a clique that grows when one of its nodes

is represented by a speaker that takes part in a failure, and is diminished when one

(or two) of its nodes are involved in a successful interaction with a competing word.

To understand why the disorder-order transition becomes steeper and steeper,

if observed on the right timescale, we must investigate the dynamics that leads

to convergence. If we make the hypothesis that, when N is large, just before the

transition all the agents have the word that will dominate, the problem reduces to

the study of the rate at which competing words disappear. In different words, the

crucial information is how the number of deleted links in the network, Md, scales

with N . It holds:

Md =
Nw

N

∫

∞

2

w2(R)NdR ∼ N3− 3

2
σ (9)

where Nw

N is the average number of words known by each agent, w(R) is the prob-

ability of having a word of rank R, and w(R)N is the number of agents that have

that word (i.e., the size of the clique). On the other hand, considering the network

structure, eq. 9 is the product of the average number of cliques involved in each

deletion process [Nw

N ], multiplied by an integral stating, in probability, which clique

is involved [w(R)] and which is its size [w(R)N ]. The integral on R starts from the

first deletable word, i.e., the second most popular, because of the assumption that

all the successes are due to the use of the most popular word.

In our case, for σ ≈ 7/6, we obtain that Md ∼ N5/4. Thus, from equation (9),

we have that the ratio Md/N
3/2 ∼ N−

3

2
(σ−1) goes to zero for large systems (since

σ ≈ 7/6, and in general σ > 1), and this explains the greater slope, on the system

timescale, of the success rate curves for large populations (Figure 7).
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Fig. 11. Agents network dynamics. Top Left: a link between two agents (i.e., nodes)
exists every time they have a word in common in their inventories, so that multiple links are
allowed. In this representation, a word corresponds to a fully connected (sub)set of agents,
i.e., a clique; in Figure, the two cliques corresponding to words WABAKU and VALEM
are highlighted. Top Right: the two highlighted agents have just failed to communicate,
so that the word VALEM has been transmitted to the agent placed in the top of the
graphical representation. It therefore enters into the enlarged clique corresponding to the
transmitted word VALEM. Bottom: the two highlighted agents have just succeeded using
word VALEM. The clique corresponding to the used word does not change in any respect,
but the competing cliques (here that of WABAKU) are reduced.
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4.4. The overlap functional

We have looked at all the timescales involved in the process leading the population

to the final agreement state. Yet, we have not investigated whether this convergence

state is always reached. Actually, this is the case, and trivial considerations allow to

clarify this point. First of all, it must be noticed that, according to the interaction

rules of the agents, the agreement condition constitutes the only possible absorbing

state of our model. The proof that convergence is always reached is then straight-

forward. Indeed, from any possible state there is always a non-zero probability to

reach an absorbing state in, for instance, 2(N −1) interactions. For example, a pos-

sible sequence is as follows. A given agent speaks twice with all the other (N − 1)

agents using always the same word A. After these 2(N − 1) interactions all the

agents have only the word A. Denoting with p the probability of the sequence of

2(N − 1) steps, the probability that the system has not reached an absorbing state

after 2(N − 1) iterations is smaller or equal to (1− p). Therefore, iterating this pro-

cedure, the probability that, starting from any state, the system has not reached an

absorbing state after 2k(N − 1) iterations, is smaller than (1 − p)k which vanishes

exponentially with k. The above argument, though being very simple and general, is

exact. However, another perspective to address the problem of convergence consists

in monitoring the lexical coherence of the system. To this purpose, we introduce

the overlap functional O:

O(t) =
2

N(N − 1)

∑

i>j

|ai ∩ aj |
kikj

, (10)

where ai is the ith agent’s inventory, whose size is ki, and |ai ∩ aj | is the number

of words in common between ai and aj . The overlap functional is a measure of the

lexical coherence in the system and it is bounded, O(t) ≤ 1. A the beginning of

the process it is equal to zero, O(t = 0) = 0, while at convergence it reaches its

maximum, O(t = tconv) = 1.

From extensive numerical investigations it turns out that, averaged over several

runs, the functional always grows, i.e., 〈O(t+1)〉 > 〈O(t)〉 (see Figure 12). Moreover,

looking at the single realization, this function grows almost always, i.e., 〈O(t+1)〉 >

O(t), except for a set a very rare configurations whose statistical weight appears to

be negligible (data not shown). Even if it is not a proof in a rigorous sense, this

monotonicity, combined with the fact that the functional is bounded, gives a strong

indication that the system will indeed converge 12.

It is also interesting to note that eq. (10) is very similar to the expression for

the success rate S(t), which can formally be written as:

S(t) =
1

N(N − 1)

∑

i>j

( |ai ∩ aj |
ki

+
|ai ∩ aj |

kj
,

)

(11)

where the intersection between two inventories are divided only by the inventory

size of the speaker. Figure 12 shows that these two quantities exhibit a very similar



March 4, 2008 10:11 WSPC/INSTRUCTION FILE ng˙long˙ijmpc˙last3

In-depth analysis of the Naming Game dynamics: the homogeneous mixing case 19

0

0.2

0.4

0.6

0.8

1

<O(t)>
S(t)
I(t)

0 20000 40000 60000
t

0

5000

10000

N
w

(t
)

Fig. 12. Overlap functional O(t). Top: it is shown the evolution in time of the overlap

functional averaged on 1000 simulation runs (for a population of N = 103 agents). Curves
for the success rate, S(t), and the average intersection between inventories, I(t), are also
included. By definition, O(t) ≤ 1. It is evident that it holds 〈O(t + 1)〉 > 〈O(t)〉, which,
along with the stronger 〈O(t + 1)〉 > O(t) valid for almost all configurations (not shown),
indicate that the system will reach the final state of convergence where O(t) = 1. Bottom:
The total number of words Nw(t) is plotted for reference.

behavior. However, while the overlap functional is equal to 1 only at convergence,

this is not true for the success rate: if all agents had identical inventories of size

n > 1 we would have S(t) = 1 and O(t) = 1/n. For this reason the success rate is

not a suitable functional to prove convergence.

Finally, in Fig. 12 we have plotted also the average intersection between inven-

tories, i.e.

I(t) =
2

N(N − 1)

∑

i>j

|ai ∩ aj|. (12)

Remarkably, it turns out that I(t) < 1 during all the process, even if in principle

this quantity is not bounded.

5. Single games

We know that single realizations have a quite irregular behavior and can deviate

significantly from average curves (Fig. 2). It is therefore interesting to investigate to

what extent average times and curves provide a good description of single processes.

In Figure 13(top) we have plotted the distribution of peak times for a population

of N = 103 agents. It is clear that data cannot be fitted by a Gaussian distribution.
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Fig. 13. Peak and convergence time distributions. Top: the distribution of the peak
times tmax clearly deviates from Gauss behavior. Bottom: the cumulative distribution of

the convergence times tconv is well fitted by a Weibull distribution D(t) = (exp ( t−g0

g1
))g2 ,

with fit parameters g0 ≈ 4.9 × 104, g1 ≈ 7.9 × 100 and g2 ≈ 9.6 × 104. The same function
describes well also the peak time distribution (data not shown). Data refers to a population

of N = 103 agents and are the result of 106 simulation runs.

The same peculiar behavior is shown also by the distribution of the convergence

times (Fig 13(bottom)) and by that of the intervals between the time of the max-

imum number of words and the time of convergence (data not shown). Thus, the

non-Gaussian behavior appears to be an intrinsic feature of the model. In fact, as

shown in Figure 13(bottom) for the convergence times, all these distributions turn

out to be well fitted (in their cumulative form) by an extreme value distribution:

D(t) = exp (
t − g0

g1
)g2 (13)

where g0, g1 and g2 are fit parameters 31,32.

Extreme value distributions originated from the study of the distribution of the

maximum (or minimum) in a large set of independent and identically distributed

set of variables 31,32. It turns out, however, that a generalization of these functions

including a continuous shape parameter a, known as Gumbel distribution Ga(x),

has been observed in many models ranging from turbulence and equilibrium critical

systems 33 to non-equilibrium models related to self-organized criticality 34, to 1/f

noise 35 and many others systems (see 36 and references therein). The Naming

Game model provides another example.

It must be noted, however, that there is no obvious theoretical explanation of

the fact that extreme-value like distributions are found also in the study of the
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Fig. 14. Single agents convergence time distribution. We define the convergence
time of a single agent the last time in which it had to delete words after a successful
interactions; fconv(t) is the fraction of agents who reach convergence at time t. Top:
distributions coming from 10 simulation runs are plotted. It is clear that distributions
coming from different runs can be non-overlapping, i.e., that the distance between the
peaks of single curves can be much larger than the average width of the same curves (that
does not exhibit any strong dependence on the single run). Bottom: a single distribution
is analyzed, showing that it can not be described by a Gauss distribution. The last agent
to converge determines the global convergence time. Curves are relative to a population
of N = 105 agents.

fluctuations of global quantities. Yet, in many cases, these distributions are used

simply like convenient fitting functions. Interestingly, it was recently shown that

there is a connection between Gumbel functions and the statistics of global quan-

tities expressed as sums of non identically distributed random variables, without

the need of invoking extremal processes 36. We can therefore argue that there is

not necessarily a hidden extreme value problem in our model. In any case, a more

rigorous explanation of the presence of Gumbel like distribution is left for future

work.

In Figure 14(top) we show 10 single-run distributions of convergence times. Each

curve illustrates the fraction of agents that converged at a given time in that run,

fconv(t). We consider the single agent convergence time as the last time in which it

had to delete words after a successful interaction. From Figure it is clear that the

separation between the peaks of two different distributions can be much larger than

the average width of a single curve. In other words, we see that the first moment

of the distributions strongly depends on the single realization, while the second one

does not. This information is crucial to interpret the curves shown in Figure 13

correctly. In fact, we now know that they are indeed representative of fluctuations
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Fig. 15. Correlation between peak and convergence times (τmax τconv, respec-
tively). Each run is represented by a point in the scatter plot. The dashed line is
τconv = τmax and therefore no points can lay below it. The average times tconv and tmax

are also shown with a clearer (yellow) point at the center of the distribution (statistical
errors are not visible on the scale of the graph).

occurring among different runs, and do not describe simply the behavior of the last

converging agent in a scenario in which most agents always converge, on average,

at the same run-independent time. In Figure 14(bottom) it is shown that single run

curves also deviate from Gauss behavior showing long tails for large times.

Given these distributions of convergence and peak times, and also that their

difference tdiff , behaves in the same way, it is interesting to investigate whether

there is any correlation between these two times. In Figure 15 we present a scatter

plot in which the axis indicate τconv and τmax, respectively the convergence and

peak times for a single run (so that tmax = 〈τmax〉 and tconv = 〈τconv〉). It is clear

that the correlation between this two times is very feeble. Indeed, the knowledge

of τmax does not allow to make any sharp predictions on when the population will

reach convergence in the considered run.

Finally, Figure 16 shows that the relative standard deviation of all the relevant

global quantities (tmax, tdiff , tconv and Nmax
w ) decreases slowly as the system size

N grows. In general, if the ratio σ(x)/〈x〉 goes to zero as N increases, the system is

said to exhibit self-averaging, and this seems to be the case for the Naming Game.

However, it is difficult to draw a definitive conclusion, due to the large amount of

time needed to perform a significant number of simulation runs for large values of
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Fig. 16. Scaling of the relative standard deviation σ(x)/〈x〉. The ratio between the
standard deviation σ and the corresponding (average) quantity is plotted as a function of
the system size. In all cases the ratio decreases slightly, or stays constant, as the population
size N grows. In particular, the decrease is more evident for Nmax

w and tmax, while tconv

and tdiff curves are almost constant for large N . However, data from our simulations are
not sufficient to conclude whether the Naming Game exhibits self-averaging. The standard

deviation of x is defined as σ(x) =
q

1
Nruns−1

PNruns

i=1 (xi − 〈x〉)2, xi is the ith measured

value, 〈x〉 is the average value, and Nruns is the number of simulation runs (here, Nruns =
1000).

N . Seemingly, the system seems to show self-averaging for what concerns the peak

height and time, but this does not seem the case for the time of convergence. In any

case, it is worth mentioning that Lu, Korniss and Szymanski 37 conclude that a

slightly modified version of the Naming Game model does not display self-averaging

when the population is embedded in random geometric networks.

6. Convergence Word

As we have seen, the negotiation process leading agents to convergence can be seen

as a competition process among different words. Only one of them will survive in

the final state of the system. It is therefore interesting to ask whether it is possible

to predict, at some extent, which word is going to dominate.

According to the Naming Game dynamical rules, the only parameter that makes

single words distinguishable is their creation time. Thus, it seems natural investi-

gating whether the moment in which a word is invented can affect its chances of

surviving. It turns out that this is indeed the case, as it is shown in Figure 17. The



March 4, 2008 10:11 WSPC/INSTRUCTION FILE ng˙long˙ijmpc˙last3

24 Andrea Baronchelli, Vittorio Loreto and Luc Steels

0.2 0.4 0.6 0.8 1
invention position (normalized)

10
-4

10
-3

10
-2

W

10
-4

10
-3

10
-2

0 500 1000 1500 2000
invention time

10
-6

10
-4

10
-2

W

simulation
W ~ (1/τ) exp(-t/τ)

Fig. 17. Word survival probability. Top: The probability that a given word becomes
the dominating one (i.e., the only one to survive when the system reaches the convergence
state) is plotted as a function of its normalized invention position (see text for details).
Early invention is clearly an advantageous factor. Bottom: the survival probability is now
plotted in function of the invention time of words. The experimental distribution can be
fitted by an exponential of the form W ∼ (1/τ ) exp(−t/τ ), with τ ≈ 150. In both graphs,

data have been obtained by 105 simulation runs of a population made of N = 103 agents.

upper graph plots the probability for a word to become the dominating one as a

function of its normalized creation position. This means that each word is identified

by its creation order: the first invented word is labeled as 1, the second as 2 and so

on. To normalize the labels, they are then divided by the last invented word. From

Figure it is clear that early invented words have higher chances of survival. The

supremacy can be better quantified if we plot the winning probability of a word

as a function of its invention time, as it is done in the bottom graph of Figure 17.

We find that data from simulations are well fitted by an exponential distribution of

the form W = (1/τ)exp(−t/τ), indicating that the advantage of early invention is

indeed quite strong.

Finally, an interesting question concerns the behavior of the winning probability

distribution as a function of the system size N . In Figure 18 we show the distribu-

tions as a function of normalized labels described above for three different system

sizes, N = 102, N = 103 and N = 104. The advantage of earlier creation increases

with the system size, but our data do not allow clear predictions about the behavior

of the distribution in the thermodynamic, N → ∞, limit. We might speculate that

the distribution collapses into a Dirac’s delta of the first invented word 38.
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Fig. 18. Role of the system size on the distribution of the winning word. The
advantage of early invention increases in larger populations.

7. Symmetry Breaking - A controlled case

In the previous sections we have seen that the winning word is chosen by a symmetry

breaking process (section 4.2). This is true even if, as we have seen in section 6,

early invention increases the probability for a word to impose itself. Indeed, if we

start with an artificial configuration in which each agent has a different word in its

inventory, i.e., if we remove the influences of the invention process, the process still

ends up in the usual agreement state (data not shown).

In particular, we can concentrate on the case in which there are only two words

at the beginning of the process 30, say A and B, so that the population can be

divided into three classes: the fraction of agents with only A, nA, the fraction of

those with only the word B, nB, and finally the fraction of agents with both words,

nAB (see also 39 for a similar model). Describing the time evolution of the three

species is straightforward:

dnA/dt = −nAnB + n2
AB + nAnAB (14)

dnB/dt = −nAnB + n2
AB + nBnAB

dnAB/dt = +2nAnB − 2n2
AB − (nA + nB)nAB

The meaning of the different terms of the equations is clear. For instance, for

dnA/dt we have that −nAnB considers the case in which an agent with the word B

transmits it to an agent with the word A, n2
AB takes into account the probability
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Fig. 19. Resistance against invasion. Two populations that converged separately on
conventions A and B merge. In Figure it is plotted the probability S(nA) that convention A
becomes the final accepted convention of the new population, versus the normalized size nA
(where nA+nB = 1) of the original population of A spreaders. As the total population size
increases, the probability for the initially less diffused convention to impose itself decreases,
as predicted by equations (14).

that two more agents with only the A word are created if two agents with both

words happen to have a success with A, and nAnAB is due to the probability that

an agent with only A has a success speaking to an agent with both A and B.

The system of differential equations (14) is deterministic. It has three fixed

points in which the system can collapse depending on initial conditions. If nA(t =

0) > nB(t = 0) [nB(t = 0) > nA(t = 0)] then at the end of the evolution we

will have the stable fixed point nA = 1 [nB = 1] and, obviously, nB = nAB = 0

[nA = nAB = 0]. If, on the other hand, we start from nA(t = 0) = nB(t = 0), then

the equations lead to nA = nB = 2nAB = b, with b ≃ 0.18. 30 The latter situation

is clearly unstable, since any external perturbation would make the system fall into

one of the two stable fixed points. Indeed, it is never observed in simulations due

to stochastic fluctuations that in all cases determine a symmetry breaking forcing

a single word to prevail.

Equations (14), however, are not only a useful example to clarify the nature of

the symmetry breaking process. In fact, they also describe the interaction among

two different populations that converged separately on two distinct conventions. In

this perspective, eq. (14) predicts that the population whose size is larger will impose

its conventions. In the absence of fluctuations, this is true even if the difference is

very small: B will dominate if nB(t = 0) = 0.5+ǫ and nA(t = 0) = 0.5−ǫ , for any



March 4, 2008 10:11 WSPC/INSTRUCTION FILE ng˙long˙ijmpc˙last3

In-depth analysis of the Naming Game dynamics: the homogeneous mixing case 27

0 < ǫ ≤ 0.5 (we consider nAB(t = 0) = 0). Figure 19 reports data from simulations

in which the probability of success of the convention of the minority group nA,

S(nA), was monitored as a function of the fraction nA (where nA + nB = 1). The

absence of fluctuations is partly recovered as the total number of agents grows,

and in fact it turns out that, for any given nA < 0.5, the probability of success

decreases as the system size is increased. Following eq. (14), in the thermodynamic

limit (N → ∞) this probability goes to zero.

8. Discussion and Conclusions

The Naming Game is the simplest model able to account for the emergence of

a shared set of conventions in a population of agents. The main characteristics

are 12,22:

• The negotiation dynamics between individuals: the interaction rules are

asymmetric and feedback is an essential ingredient to reach consensus;

• The memory of the agents: individuals can accumulate words, and only

after many interactions they have to decide on the final word chosen;

• The absence of bounds to the inventory size: the number of words is neither

fixed nor limited.

All these aspects derive from issues in Artifical Intelligence, namely to under-

stand how an open population of physically embodied autonomous robots could

self-organize communication systems grounded in the world 20. The model is also

relevant for all cases in which a distributed group of agents have to tacitly negotiate

decisions, as in opinion spreading or market decisions 3. Nevertheless the ingredients

listed above are absent from most of the well known opinion-dynamics models. In

the Axelrod model 40, for instance, each agent is endowed with a fixed-size vector of

opinions, while in the Sznajd model 41 or the Voter model 42,43,44, the opinion can

take only two discrete values, and an agent adopts deterministically the opinion of

one of its neighbors. Deffuant et al. 45 model the opinion as a unique variable and

the evolution of two interacting agents is deterministic, while in the Hegselmann

and Krause model 46 opinions evolve as an averaging process. Most of these models

include in some way the concept of bounded confidence, according to which two in-

dividuals do not interact if their opinions are not close enough, something which is

entirely absent in the Naming Game. Interestingly, a recently proposed generalized

version of the Naming Game, in which a simple parameter rules the consolida-

tion behavior of the agents after a game, shows a non-equilibrium phase transition

in which the final state can be consensus (as in the model we have analyzed in

this paper), polarization (a finite number of conventions survives asymptotically)

or fragmentation (the final number of conventions scales with the system size) 30,

thus showing some phenomena also found for most opinion dynamics models.

Compared to earlier Semiotic Dynamics models of the Naming Game 47, this

paper has made two contributions. The effort towards the definition of simple in-
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teraction rules has helped to bring out the essential features needed to achieve a

consensus state. Remarkably, we have shown that the weights typically associated

with word-meaning pairs in all earlier Naming Game models are not crucial. The

simplification does not impinge on the ability of the model to be used on embod-

ied agents i.e., it does not introduce a global observer or other forms of global

knowledge.

Next, because of the simplicity of the presented model, we have been able to

perform a comprehensive analysis of its behavior which has never been done with

earlier models due to their complexity. We have investigated the basic features of

the process leading the population to converge, and how the crucial quantities scale

with system size. In this context, we have also revealed a hidden timescale that rules

the transition between the initial state, in which there is no communication among

agents, and the final one, in which there is global agreement. Then we have analyzed

several other aspects of the whole process, such as its properties of convergence, the

relation between single runs and averaged curves, and the different probabilities for

single words to impose themselves. We have also studied the elementary case in

which only two words are present in the system, which can be interpreted as the

merging of two converged populations, that clarifies the role of stochastic fluctu-

ations in the convergence process. Although many of these results have been seen

in numerical simulations, we have here been able to perform for the first time a

mathematical analysis. In future work, the techniques we have used will be applied

to more complex forms of communication including grammatical language for which

some Artificial Intelligence models already exist 48.
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