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Abstract

What processes can explain how very large populations are &bto converge on the
use of a particular word or grammatical construction without global coordination?
Answering this question helps to understand why new languag constructs usually
propagate along an S-shaped curve with a rather sudden trarison towards global
agreement. It also helps to analyze and design new technoleg that support or or-
chestrate self-organizing communication systems, such ascent social tagging sys-
tems for the web. The article introduces and studies a micrapic model of commu-
nicating autonomous agents performing language games witlut any central control.

We show that the system undergoes a disorder/order transitn, going trough a sharp
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symmetry breaking process to reach a shared set of conventie. Before the transition,
the system builds up non-trivial scale-invariant correlaions, for instance in the distri-
bution of competing synonyms, which display a Zipf-like law These correlations make
the system ready for the transition towards shared conventins, which, observed on
the time-scale of collective behaviors, becomes sharper @isharper with system size.
This surprising result not only explains why human languagecan scale up to very

large populations but also suggests ways to optimize artifigl semiotic dynamics.

1 Introduction

Bluetooth, blogosphere, ginormous, greenwash, folksgnaexicographers have to add thou-
sands of new words to dictionaries every year and revise shgaiof many more. Although
precise data is hard to come by, lexicographers agree tbet th a period in which novelty
spreads and different words compete, followed by a rathemdtic transition after which al-
most everyone uses the same word or construction [1]. Thimigic dynamics’ has lately
become of technological interest because of the suddengrdgwf new web-tools (such as
del.icio.us or www.flickr.com) which enable human web-gderself-organize a system of tags
and that way build up and maintain social networks and shdioemation. Tracking the emer-
gence of new tags shows similar phenomena of slow spreadilogved by sudden transitions
in which one tag overtakes all others. There is currently algrowing number of experiments
where artificial software agents or robots bootstrap a shigsdécon without human interven-
tion [2,[3]. These applications may revolutionize searghaar-to-peer information systems [4]
by orchestrating emergent semantics [5] as opposed togebn designer-defined ontologies
such as in the semantic web [6]. They will be needed when we gesups of robots to deal
autonomously with unforeseeable tasks in largely unknawirenments, such as in the explo-
ration of distant planets or deep seas, hostile envirorsnetd. By definition it will not be pos-
sible to define all the needed communication conventionsatwlogies in advance and robots

will have to build up and negotiate their own communicatigstems, situated and grounded in
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their ongoing activities [7]. Designers of emergent comioation systems want to know what
kind of mechanisms need to be implemented so that the atiigents effectively converge
towards a shared communication system and they want to kmewdaling laws to see how far

the technology will carry.

2 The Naming Game

Some of the earlier work on studying the emergence of comeatinn conventions has adopted
an evolutionary approach![8, 9]. Vocabularies are assumbéd genetically inherited. The de-
gree in which an agent’s vocabulary is similar to that of aéhe considered to determine his
fitness and so natural selection drives successive gemesdtwards convergence due to gene
spreading. A variant of this model assumes learning by aildrom their parent(s) instead of
genetic transmission [10,11], yielding a very similar dymnes. Here we are interested however
in phenomena that happen on a much more rapid time-scaiagdte life-span of agents and
without the need for successive generations. All agentsheiconsidered peers that have the
right to invent and negotiate language use. We introducestundly a microscopic model of
communicating agents, inspired by the so-called Naming &4y, in which agents have only
local peer-to-peer interactions without central contia fitness-based selection, but neverthe-
less manage to reach a global consensus. There can be a fliexpopulation, but generation
change is not necessary for reaching coherence. Peeet@pergent linguistic coherence has
also been studied in [L3] focusing on how a population sekationg a set of possible grammars
already known to each agent, whereas here we investigatetioventions may develop from
scratch as a side effect of situated and grounded commionsafl he Naming Game model to
be studied here uses as little processing power as possithlthas establishes a lower-bound
on cognitive complexity and performance. In contrast witheo models of language self-
organization, agents do not maintain information aboustleess rate of individual words and
do not use any intelligent heuristics like choice of bestdvaw far or cross-situational learning.

We want to understand how the microscopic dynamics of thetag&eractions can nevertheless

3
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give rise to global coherence without external intervamtio

The Naming Game is played by a population/éfagents trying to bootstrap a common
vocabulary for a certain numba@r of individual objects present in their environment, so that
one agent can draw the attention of another one to an objgctoeobtain it or converse further
about it. The objects can be people, physical objects joekstweb sites, pictures, music files,
or any other kind of entity for which a population aims at f@ag a consensus as far their
naming is concerned. Each player is characterized by henitovy, i.e. the word-object pairs
he knows. All the agents have empty inventories at tiree0. At each time stept(= 1,2, ..)
two players are picked at random and one of them plays as espaakl the other as hearer.

Their interaction obeys the following rules (see Eig. 1):

e The speaker selects an object from the current context;

e The speaker retrieves a word from its inventory associaiddtive chosen object, or, if

its inventory is empty, invents a new word;
e The speaker transmits the selected word to the hearer;

¢ Ifthe hearer has the word named by the speaker in its inweatat that word is associated
to the object chosen by the speaker, the interaction is @&ss@nd both players maintain

in their inventories only the winning word, deletiad the others;

¢ If the hearer does not have the word named by the speakeimwétstory, the interaction
is a failure and the hearer updates its inventory by addirgsanciation between the new

word and the object.

This model makes a number of assumptions. Each player camuzigde play with all the other
players, i.e. there is no specific underlying topology fer structure of the interaction network.
So the game can be viewed as an infinite dimension (or “meati)fidaming Game (an almost
realistic situation thanks to the modern communicatiomoéeks). Second, we assume that the

number of possible words is so huge that the probabilitytthaiplayers invent the same word at

4



Preprint Baronchelli et al.

two different times for two different objects is practigatiegligible (this means that homonymy
is not taken into account here) and so the choice dynamicagithe possible words associated
with a specific object are completely independent. As a aumesece, we can reduce, without
loss of generality, the environment as consisting of onlg simgle object {/ = 1). Third,

we assume that speaker and hearer are able to establishewtiettgame was successful by
subsequent action. For example, the speaker may refer tigj@ct i the environment he wants
to obtain and the hearer then hands the right object. If timeega a failure, the speaker may

point or get the object himself so that it is clear to the heas@ch object was intended.

3 Phenomenology

The first property of interest is the time evolution of theatotumber of words owned by the
populationN,(t), of the number of different wordd/,(¢), and of the success ratgt). In
Figure [2) we report these curves averaged &@®) runs for a population ofV = 1000
agents, along with two examples of single run curves. It idew that single runs originate
quite irregular curves. We assume in these simulationsahigttwo agents interact at each
time step, but the model is perfectly applicable to the caseravany number of agents interact
simultaneously.

Clearly, the system undergoes spontaneously a disorder/tnansition to an asymptotic
state where global coherence emerges, i.e. every agenrtdaarme word for the same object.
It is remarkable that this happens starting from complegehypty inventories for each agent.
The asymptotic state is one where a word invented duringithe ¢volution took over with
respect to the other competing words and imposed itself @¢etding word. In this sense
the system spontaneously selects one of the many possiiideerd asymptotic states and the
transition can thus be seen as a symmetry breaking tramsitio

The key question now is whether one can prove that this tianswill always take place
and on what time-scale. We also want to know whether the syt scale with respect to

population size. To address the first question, we define ¥hdap state function asO =
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2 la;Naj| i “th e i ia ;
T disi el whereaq; is thei** agent’s inventory, whose size fis;|, and|a; N a;| is

the number of words in common betweenanda;. The overlap function monitors the level

of lexical coherence in the system. Averaged over sevena, litlalways grows with time, i.e.
(O(t+ 1)) > (O(t)). On the other hand, looking at the single realization, thigfion grows
almost always, i.e{(O(t+1)) > O(t) except for a set a very rare configurations whose statistical
weight is negligible. So this monotonicity combined wittetfact that the overlap function is
bounded, i.e.O(t) < 1, strongly supports that the system will indeed reach a finhecent
state. This is consistent with the fact that the coherené s¢athe only state stable under the
dynamical rules of the model. The more challenging questien concerns under what scaling
conditions convergence is reached.

We can distinguish three phases in the behavior of the systampatible with the S-shaped
curve typically observed in the spreading of new languageeations in human populations [1,
14,[15]. Very early, pairs of agents play almost uncorrelatames and the number of words
hence increases over time a5,(t) = 2t, while the number of different words increases as
Ny4(t) = t. In this phase one can look at the system as a random graple whis of agents
are connected if they have a word in common. Because twoglayeays have the same word
after a failed game, each failure at this stage correspanddding an edge to the graph. This
fixes a time scale of ordér~ N to establish a giant component in the network [16] and foe sur
after a time of the order of ~ N log N there will be, in the thermodynamic limit\ — o0),
only the giant component surviving [17].

Then the system enters a second stage in which it startarimyiddrrelations (i.e. multiple
links connecting agents who have more than one word in commod collective behavior
emerges. We see in the simulations (see inset of fig.1c)ltbabte of succes$(t) in this stage
increases a$(t) ~ 3t/N? and we have been able to show analytically why this is the tase

In this article, we focus on the third stage, when the disdodéer transition takes place. It

occurs close to the time whe¥i, (¢) reaches its maximum. Although one might assume intu-

!Details will be reported elsewhere.
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itively that the transition towards global coherence igiged, we see in fact a sudden transition
towards a consensus, and, even more remarkably, the toangéts steeper and steeper as the
population size increases. This is important because wslhioat the system scales up to large

populations.

Time-scales In order to better see this phenomenon and then understandt whthe case,
we first look more carefully at the time scales involved in grecess, specifically how the
observables of the system scale with the $vzef the population. Figurd]3a) shows the scaling
of the peak and convergence times of the total number of wwitths/V. Both curves exhibit a
power law behavidrwith an exponeng/2. The distributions for peak and convergence times,
for a given sizeV, are not Gaussian but fit well with the Weibull extreme valistrtbution [18]
(data shown in the supplementary material).

The scaling of the maximum number of word¥g (¢,,....) is clearly governed by a power law
distribution N, (t,.az) ~ N3/2 as well, as shown in Figur&l(3b). Here is how the exponent can
be analytically derived. Assume that, at the maximum, tlezaye number of words per agent

scales asV®, with o unknown. Then one should impose:

dN,(t) 1 (1_20]\70‘)_ 1 2cN“
dt > cNe N cNe N

Whered\l,a is the probability for the speaker to play a specific word %}%ﬂ is the probability

2c¢N“, (1)

that the hearer possesses the word played by the speakée Smtterms are the gain term (in

case of a failed game) and a loss term (in case of a successhd)gespectively.

Imposing%ﬂ” = 0 one getsy = 1/2. Exploiting the relationS(t) ~ 3t/N? pointed out
earlier and valid also at the moment the peak is reached,ampredict the scaling of the time
of the peak as,,,, ~ N2.

Based on these observations, we have one time scale of tke Bravhere the system

performs uncorrelated language games. Next, there is ttod more interesting time scale

2Slight deviation from a pure power-law behavior are obseéifee the scaling of the convergence time. These

deviations exhibit a log-periodic behavior and deservéhirrinvestigations.
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N2, which is the time-scale for collective behaviors in theteys i.e. the time scale over which
the multi-agent system collectively builds correlationd @erforms the spontaneous symmetry
breaking transition. Figur€l(3c) reports success rateesyfi(t), for different population sizes,
all rescaled according to a transformation equivalent te t/N3/? (see Figure caption for
details on the rescaling). It is immediately clear that thledvior of these curves, when observed
on the collective time-scal&//2, changes with system siz&¥. In particular the transition
between a regime of scarce or absent communicafi¢t), ~ 0, and a situation of efficient
communicationS(t) ~ 1, i.e. the disorder/order transition, tends to become stesmd steeper
when the population size increases. In order to explairpthesmiomenon we need to look at what

happens slightly before the transition.

4 Network Analysis

We first investigate the behavior of agent inventories anglsiwords at the microscopic level.
Since each agent is characterized by its inventory, a fitsresting aspect to investigate is
the time evolution of the fraction of players having an inwew of a given size. A nontrivial
phenomena (data shown in the supplementary material) @serghe fraction of players with
only one word. At the beginning, this fraction grows sincelealayer has only one word
after his first interaction, then it decreases, becausersterfteractions are usually failures and
agents store the new word they encounter, and eventuallpuwsgyagain until the moment of
convergence when all the players have the same unique woydhé&histogram of the number
of agents versus their inventory sizess a precious description of the system at a given time.
In particular, slightly before the convergence, the noireal distributionp(k) deviates from a

relatively flat structure to exhibit a power-law:

p(k) ~ kP f(k/VN) (2)

with the cut-off functionf (z) = 1 for z << v/N and f(x) = 0 for  >> +/N. Numerically it



Preprint Baronchelli et al.

turns out that? ~ 7/6.

We now turn to an analysis of the single words themselvesigarE [4) the different words
are ordered according to their popularity so that the rapkirthe most common single word is
1. During the first two stages, the distribution of the words ba described with a power law.
However, approaching the transition, the first ranked singbrd starts to become more and
more popular, while all the other words are power-law distied with an exponent which
changes over time (reminiscent of Zipf's law [19] and cotegiswith Polya’s urn model$[20]).
Concretely, the global distribution for the fraction of atge possessing th&-ranked word,

n(R), can be described as:

(1 —a)((N/2)1me = 2172) N/2
where the normalization factors have been obtained impdbat [, n(R)dR = N,,/N 3. On
the other hand from equatiolll (2) one gets, by a simple intiegraV,,/N ~ N'~%/2 which

n(R) = n(1)0r1 + R f(75)s 3)

givesn(R)|gs1 ~ WR‘af(Ni/z). This implies that in the thermodynamic limi(1), i.e.
the number of players with the most popular word, is a finiéetion of the whole population
(a feature reminiscent of the Bose-Einstein condensgR]).

To explain why the disorder/order transition becomes steapd steeper in the thermody-
namic limit, we must investigate the dynamics that lead$i¢ostate where all agents have the
same unique word. In other words, we need to understand hewetwork of agents, where
each word is represented by a fully connected clitjueaches its final state of fully connected
graph with only single links. A successful interaction detmes the removal of a node from
all the cliques corresponding to the deleted words of theagents while a failure causes the
increment of an element of the clique corresponding to ttexed word. Combining this view
of the population as a network with the fact that the spregadfrihe most popular word exceeds
that of less common ones, we see that evolution towards ogewee proceeds in a multiplica-

tive fashion, pushing further the popularity of the most comm word while decreasing that of

3We substituted the discrete sums with integrals, an appration valid in the limit of large systems.
4i.e. a subset of three or more nodes, with all possible limksgnt.
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the others. An interaction in which the most common word &yt will more likely lead to
success, and hence the cligue corresponding to the most@omward will tend to increase,
while other cliques will lose nodes. To put this argument daraal footing, we have to de-
termine how the number of deleted linkd,;, in a successful interaction, scales with so that

we can estimate the rate at which the smaller cliques disaypen the network. It holds:

N, [N? 5
My = Ww / n?(R)NdR ~ N3 2° (4)
2

where the product between the average number of words ofagmhts,%, the probability
of having a word of rankk, n(R), and the number of agents that have that ward?) N, is
integrated between the first deletable word (the second puogstlar) and the last onéV(/2).

In our case, fo3 ~ 7/6, My ~ N°*. From equation[{4), we have that the ratify/N3/? ~
N—2(-1) goes to zero for large systems (sin¢e~ 7/6), and this explains the greater slope,
on the system timescale, of the success rate curves for pagelations (Figure[{3c)). In
Figure [3d) the time is rescaled as— (¢t — constN?/2)/N®°/* (see Figure caption for more

details on the precise scaling), and the differgft) curves collapse indeed well.

5 Discussion and conclusions

In this article we have introduced and studied the semiatitachics of a model of commu-
nication which does not rely on generational transmissganétic or cultural) for reaching
linguistic coherence but on self-organization. The moainds the microscopic behavior of
the agents and is therefore directly implementable and aippsicable for building emergent
communication systems in artificial multi-agent systems aNowed that the model exhibits
the same phenomena as observed in human semiotic dynaameslyna period of preparation
followed by a rather sharp disorder/order transition. Wiehdentified the different time-scales
involved in the process, both for individual and collectbhehaviors. We have explained this

dynamics by observing a build up of non trivial dynamicalretations in the agents’ invento-
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ries, which display a Zipf-like distribution for competisgnonyms, until the moment where a
specific word breaks the symmetry and imposes itself venglam the whole system.

The Naming Game model studied here is as simple as possilsie.c@n imagine more
intelligent and hence more realistic strategies and thenitiwon and learning may involve much
more complex forms of language, but that would make the ptékeoretical analysis less clear.
By focusing on few and simple rules, we have been able to iigethie main ingredients to
describe how the population develops a shared and efficbenitruinication system. The good
news, from the viewpoint of applications, like emergent camnication systems in populations
of software agents, is that a well-chosen microscopic hehallows a scale-up to very large
populations. This is particularly important for expering@about emergent communication
systems of software agents.
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Failure

Speaker Hearer Speaker Hearer

ITOILGAC AKNORAB ITOILGAC AKNORAB

VALEM ICILEF mdl VALEM ICILEF

SLEETS SLEET OTEROL
OTEROL S AL

success

Speaker Hearer Speaker
ITOILGAC  AKNORAB VALEM

VALEM
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Figure 1:Inventory dynamics: Examples of the dynamics of the inventories in a failed and a
successful game, respectively. The speaker selects tliehigitlighted in yellow. It the hearer
does not possess that word he includes it in his inventop).(t®therwise both agents erase
their inventories only keeping the winning word.
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Figure 2: Temporal evolution: we report here time evolution curves of a Naming Game played
by N = 1000 agents. Without loss of generality (see text) we consides 1 objects. Bold
curves are obtained averagigg00 runs, while the light ones are obtained by a single run.
(a) Total number of words in the system,(¢) vs. ¢ (¢ here denotes the number of games
played) ;(b) Number of different words in the systeiV),(¢), whose average maximumi¢/2;

(c) Success raté(t), calculated by assigning to a successful interaction ardto a failure
and averaging over many realizations. In the inset it is shtvat, up to the disorder/order
transition, the success rate is well described by the osl&tit) = 3¢/N2.
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Figure 3:Scaling relations: (a)scaling of the time where the total number of words reaches a
maximum (,,....) as well as of the convergence times,(,) with the population sizeV. Both
curves exhibit a power law behavior with expongy2. Statistical error bars are not visible on
the scale of the graph. An interesting feature emerges fhennatio between convergence and
maximum times, which exhibits a peculiar oscillating tremdthe logarithmic scale (mainly
due to convergence times oscillationf)) scaling of the maximum number of words that the
system stores during its evolution with the population sizeThe curve exhibits a power law
behavior with exponerit/2. Statistical error bars are not visible on the scale of tlaplgr It
must be noted that the values represent the average pedit fegigach sizéV, and this value

is larger than the peak of the average cur@@. Curves of the success ratét) are reported
for various systems size. The time is rescaled as (¢/ts)-05) SO that the crossing of all
the lines at/ts)—05 = 1 is an artifact. The increase of the slope with system sizeideet,
showing that the disorder/order transition becomes famterfaster for large systems, when
the dynamics is observed on the system time sp&ié. The form of the rescaling has been
chosen in order to take into account the deviations from tire power-law behaviour in the
scaling oft.,,,, rescaling each curve with a self consistent quantity;(,5). (d) Bottom
right: Success rat8(t) for various systems size. The curves collapse well aftee tiescaling

t— (t — tsw=-0s)/(tye_,)*", indicating that the characteristic time of the disordetéo

transition scales a&>/4.
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Figure 4:Single words ranking: The ranking of single words is presented for different times
The histograms are well described by a power law functiom tiftes close to convergence the
most popular word (i.e. that ranked as 1st) is no more pahepower law trend and the whole

distribution should be described with eg. (3).
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