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Abstract

The article reviews computational studies of language change. Computer models
of change are helpful because of the complexity of the behavior involved: an
entire population of complex, interacting agents must be accounted for. Com-
putational studies frequently bring to light hidden implications of theories,
which make them relevant to the theoretical development of both acquisition
and change. Studies of language change have focused on discovering mathematical
properties of dynamical systems, or on simulating populations of speakers that
interact with one another and change their internal states as a result. Models
of lexical (including phonological) and syntactic change are considered. Com-
putational models of change have proved useful tools for testing theories of
language change, and will prove more useful as the field matures to include
more systematic studies of the effects of varying model parameters in complex
simulations.

This article reviews research developments in the computational studies of
language change." Computational models are important to the investigation
of language for several reasons. First, they provide quantitative results.
Assuming that a quantitative measure of success can be determined, different
models of the same phenomenon can be compared to one another objectively.
Second, models require precise theories. Implementing the assumptions of
a theory in computer code permits no sloppiness in definitions or ideas.
Thus, even the construction of a model can uncover aspects of a theory
that need to be made more explicit.

The fundamental purpose for developing a model of a phenomenon is
to increase our understanding of it. Nigg (1994) notes an apparent con-
tradiction here: while models are expected to broaden knowledge, they
consist solely of the knowledge that the modeler has encoded.” He
explains, however, that the contradiction is based on a misunderstanding
of models: the purpose of a model is not to generate novel behavior, but
rather to better understand relationships between variables in the system.
Put differently, the purpose of a model is to increase our understanding
of a particular theory. Encoding one’s assumptions into a computational

© 2008 The Author
Journal Compilation © 2008 Blackwell Publishing Ltd



290 Adam Baker

model is an excellent way to discover otherwise hidden implications of
one’s assumptions. Several examples of such discoveries will be presented
in this article.

Computational models are particularly appropriate tools for studying
language change. Observing language change is difficult, and the majority
of historical changes have occurred in cultures without written records.
Computational studies are also appropriate because they enable researchers
to observe the ‘behavior’ of many interacting individual models of speakers.
Faced with the enormously difficult problem of accounting for humans’
linguistic ability, linguists have posited that speakers perform very complex
operations (e.g. Ohala 1993, who provides evidence that speakers are able
to perceptually factor out the effects of other speakers’ co-articulation —
presumably leveraging knowledge of their own vocal tract — in order not
only to determine the intended message, but also the speaker’s intended
pronunciation). A study of language change can predict how these
complex abilities interact in a population of speakers, a task made considerably
easier with computer simulations. No model of change approaches the
level of algorithmic complexity that must exist in the language faculty, but
importantly, even when very simple assumptions are made about individual
speaker’s abilities, unexpected results can arise in the behavior of the
population. Computational studies of change have also proved relevant to
theories of acquisition, since, under the assumption that imperfect acquisition
drives change, a model of change can be used to validate a theory of
acquisition by comparing predicted to attested changes in languages.

The general approach studying language change computationally is to
model a population of individual speakers that change their internal
parameters in response to their experience. Models vary according to the
number of speakers, their organization in a social network, and the behavior
of speakers. Most frequently the state of the model is described as the
proportion of speakers who have adopted a certain variant (in the case of
lexical change), or a certain grammar (in the case of syntactic change). In
describing these models below, specific assumptions and parameters have
been noted only where they seemed important to the behavior of the
model. The reader is referred to each article for a full description of their
respective details. To organize the discussion, models of lexical change are
considered first, followed by models of syntactic change.

1 Models of Lexical Change

Models of lexical change focus either on the prevalence of two competing
lexical variants, or of the diftusion of a feature through the lexicon. The
models are generally sufficiently abstract that the precise feature being
modeled need not be specified. Competing variants could either be lexical
items (e.g. soda and pop), or different pronunciations of the same word
(e.g. libary and library).
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Nettle (1999a) presents a computation model of language change using
Social Impact Theory (Latané, 1981). He considers the general case where
two speech variants, p and ¢, are competing within a speech community.
He models a population of 400 speakers that move through a lifecycle
stage at each time increment, which represents aging. At each increment,
individuals interact with others of their age group (representing peer
interactions), and with individuals that are immediately older and younger
(representing family interactions). In the first two life stages, individuals
adopt either p or g, based on that individual’s estimation of which variant
has the greater social impact, a concept taken directly from Social Impact
Theory. (To simulate imperfect learning, with 5% probability the learner
adopts the variant with the lesser social impact.) The values i, and i,
respectively describe the social impact of p and g. i, is calcuated with the
following equation (with i, being calculated in an analogous way).

N b
=0 P& N, (1

Here, b, is a possible phonetic or cognitive bias that favors or disfavors the
p variant (for b,>1 and b,<1, respectively). N, is the number of individuals
that have p, which is raised to the a” power. This means that the impact
of the p variant increases as more people adopt it. This relationship can
easily be imagined to be non-linear, and the term a allows for this kind
of relationship. The summation is a weighted average describing the average
social standing (s) of individuals who have adopted p. d; is the distance
between the individual and the j” individual who has adopted p. Note
that scaling s; by d > means that the influence that one individual has over
another decreases in inverse proportion to the square of the social distance
between them.

In Nettle’s simulations, every speaker starts with p. As the simulation
progresses, the 5% error rate in learning guarantees that g is learned
occasionally; thereafter, other individuals have the potential to adopt ¢
through social diffusion. From multiple simulations with ¢ =1 and
without a functional bias or variation in social status, Nettle found that
the g variant never takes hold in the population. But if a is set to 0.5 or
less, which diminishes the eftect of population size in calculating i, and i,
then about half the population adopts ¢.°

In simulations where different individuals had different social status,
Nettle found that variation in social status affects simulations only if the
difference in social status is very large, such that the range of social status
is 10,000-fold. In this case, achieving language change was essentially a
matter of having a hyper-influential person adopt the g variant, which
then spread through the entire community.

When a bias was introduced in favor of or against q (respectively,
b,= 1.1 and b, = 0.9), the model becomes deterministic: a bias against
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ensured that ¢ disappeared, and a bias in favor guaranteed that it prevailed.
This was only the case, however, when a status differential was maintained:
if the status differentials were removed, then even a bias in favor of 2 was
insufficient to induce change.

Nettle (1999b) used the model to answer a few specific questions about
language change, following the findings of Nichols (1990, 1992), who
explored the variation and causes of linguistic diversity in different geo-
graphical areas. Simulations are appropriate to this kind of study, since
direct observation of historical diversification is impossible. He found that
language change proceeds more slowly with larger populations of individuals
(varying from 100 to 500). In larger populations, the inertia of the status
quo is apparently greater. He also created a model of the Norman invasion,
by adding a few ‘foreign’ individuals that have the ¢ variant and very high
social status. The effect of varying the size of the population was similar,
in that smaller communities were more susceptible to accepting borrowed
variants. He finally found that small communities (to a much greater
extent than large ones) can better maintain marked structures. A sufficiently
small population can maintain a variant with a disfavoring bias as great as
0.8, for considerably longer than a larger population.

Nettle’s model was adopted by Culicover et al. (2003), who applied
it to find an explanation for gaps in language typologies. Generative
accounts of language generally attribute such gaps to innate properties of
the language faculty, but Culicover et al. suspected that such gaps might
arise accidentally, as a result of historical change. The simulations they
performed indicate that such gaps in a typology may arise accidentally
when particular features become geographically isolated: the rarer they
are, the less likely they are to overlap with other features. Indeed, in their
simulations, it was common for only a proper subset of possible languages
to be attested, although no relationship between features of the language
was encoded into the model.

Baker (2008) created models similar to Nettle’s to investigate how
different assumptions about speakers influence the rate of sound change,
which was assumed to be uniform across the lexicon. He provides a
computational model that follows the Neogrammarians (and more recent
computational models, for example, Pierrehumbert 2002) in attributing
sound change to the phonologization of co-articulation. Multiple simulations
under this assumption invariably produce sound change, which is
counterfactual; this was a computational recapitulation of a point originally
made by Weinreich et al. (1968). Baker also performed simulations to
determine the implications of different assumptions about how speakers
decided to adopt a new variant. He found that sigmoidal progression of
change obtained when a speaker’s probability of adopting the change was
proportional to the prevalence of the change in the speech community.*
He also notes that modeling a change that requires a long time to complete
requires that the ability to acquire a new variant decreases with age (either
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gradually or abruptly); otherwise changes propagate through the community
very quickly. Thus, the presence or absence of a critical period, and the
way that plasticity decreases with time, is important to understanding the
time course of language change.

Wang et al. (2004), building on the work of Shen (1997), analyze the
gradual diffusion of a sound change through the lexicon. Their model follows
those of Niyogi and Berwick (see discussion below) in analyzing sound changes
in terms of dynamic systems, but is unlike Niyogi and Berwick’s work in that
they do not restrict themselves to a small number of independent parameters,
but instead consider the interaction of many words in the lexicon.

They represent the prevalence of a changed word variant ¢ and the
prevalence of an unchanged word variant u as:

co(t + 1) = c(t) + ac(t)u(t)ot ()
u(t + 9t) = u(t) — oc(H)u(f)ot 3)

In these equations, o represents a phonetic or social bias toward the
adoption of the changed form over a simulation increment. As a model
for a single word, the system above propagates through the population in
a sigmoidal fashion. These results are broadened to include the multiword
case below, where ¢, for instance, represents the prevalence of the changed

form for the i" word in the simulated lexicon.

c.(t+0t)=c(t)+ u(t)i o (1)0t 4)

u(t +0t) = u,(t) + u(t)i oic,(t)0t (5)

Here, a; takes on a different interpretation. For i = j, it represents the
bias toward the changed form (as with o above). For i #j, the term refers
to the influence of the ;" word on the i" word. It represents the influence
that one lexical item has over another (say, in an analogical sense).

In simulations, appropriate values of a; enable lexical diftusion: the
tendency for one lexical item to change can exert pressure on other lexical
items. Wang et al. do not provide an exhaustive analysis of the influence
of varying different model parameters. They do note, however, that the
model has some attractive properties. It captures the generalization, for
instance, that words that begin participating in a change relatively late,
change at a faster rate than those that started earlier. Wang et al’s model
provides a helpful, and fairly simple, mathematical formalism for repre-
senting the diffusion of changes through the lexicons of a population.
Clearly, much rests on the values that are chosen for o or o, which
represent the phonetic biases and cohesiveness of different lexical entries.
Since the parameters are readily interpretable, however, the model provides
a test for hypotheses about their respective values. One can imagine
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constructing a model of the changes in a particular lexicon by finding
appropriate values of a;, and using this to objectively determine how
classes of words affect one another.

Dras and Harrison (2002) and Harrison et al. (2002) report on simulations
of the rise of backness harmony in the Turkish lexicon. They modeled a
population of Turkic speakers that interacted with one another. Their
simulation began with a 1,000-word lexicon, with 50% of the words
harmonic with respect to backness. When encountering a word, each
speaker would either harmonize the word or disharmonize the word with
some probability, that is, changing the vowels of the lexical entry of the
word. In the simulations reported, the authors left the probability of
disharmonizing a word at zero, and modeled cases where words were
harmonized with non-zero probability. In these simulations, harmony
proceeded rapidly and linearly. Aiming at a sigmoidal growth curve, the
authors modified this probability so that the propensity to harmonize a
word was proportional to the number of harmonic entries in one’s
lexicon. In this schema, more sigmoidal curves arose. Although the model
accounts for the data, their treatment of speakers’ phonetic tendencies is
a bit heavy handed. Speakers in their model have a tendency to induce
harmony, but there is no account of where that tendency comes from
(particularly if only half the words of the lexicon are harmonic to begin
with), or of why such a tendency should not be present in all humans,
which would lead to backness harmony in all languages.

de Boer (1999, 2002) has conducted simulations in which populations
of agents play ‘language games’. An agent produces a vowel, has another
speaker guess the vowel, and corrects the other speaker if necessary. de
Boer originally applied the models in studying broad cross-linguistic
tendencies of vowel systems. The model has also been applied to the study
of language change, however. de Boer (2003) used the model to study the
long-term eftects of phonetic vowel reduction. In the production stage of
the model, he added a small phonetic bias toward reduction. He found
that, over time, the cumulative eftect of this reduction lead vowel systems
to collapse into a single central vowel. Since this is demonstrably not the
outcome of vowel reduction in human language, de Boer investigated
possible mechanisms that could compensate for the tendency. Two such
compensatory mechanisms were tested: first, the proposal that infants
assume reduced speech and automatically compensate by perceiving a
more expanded vowel space; second, the idea that infant-directed speech
(which has a less reduced vowel space, Kuhl et al. 1997) protects children
from learning reduced vowels.” In simulations of five-vowel systems, either
compensatory mechanism was sufficient to preserve the vowel system.
This was not true in simulations of seven-vowel systems, however; in this
case neither mechanism could prevent reduction of the vowel system. If
both mechanisms were combined, however, so that infant directed speech
was reduced in proportion to what the infant compensated for, reduction

© 2008 The Author Language and Linguistics Compass 2/2 (2008): 289-307, 10.1111/j.1749-818x.2008.00054.x
Journal Compilation © 2008 Blackwell Publishing Ltd



Computational Approaches to the Study of Language Change 295

slowed considerably. de Boer does not report on simulations with more
than seven vowels.

Pierrehumbert (2002) models phonetically gradual sound change using
an exemplar model of the lexicon. In an exemplar model, phonetic
representations are fine-grained, and categories are defined by clouds of
exemplars in phonetic parameter space. Pierrehumbert assumes that the
speaker’s production is based on a single exemplar drawn from cloud, and
that the speaker’s productions are categorized by the speaker and added to
the exemplar cloud. In the simulations reported, there is one speaker that
talks to itself. She finds that over time, the variance of a speaker’s catego-
rizations increases with time. That is, noise generated during production
accumulates, leading to a broadening of the category. The effect is mediated
somewhat if productions are based instead on the average of a small number
of randomly selected exemplars. When phonetic bias is added, the mean
value of the category shifts over time in the direction of the bias.

Wedel (2006) also studies language change with exemplar models, con-
sidering specifically how they enable linguists to understand language
change phenomena within the analytical framework of Darwinian evolution.
The assumptions of his exemplar model are similar to those of Pierrehumbert
(2002). He notes several factors that limit the influence of noise in
determining the shape of exemplar clouds, drawing from evolutionary
biology. One mechanism by which noise is reduced is clipping of lines of
descent. An exemplar’s influence on speech requires that it have descendants,
that is, exemplars that have been produced based on its settings. Wedel
notes that, due to chance elimination, most exemplars in a particular
category are likely to be descended from a single exemplar, which limits
the variation among the descendants. He also finds that competition for
contrast maintains lexical distinctions, further mediating the effect of
noise. Finally, he simulates contrast shift. This is a case in which phonetic
pressure on one contrast forces it to neutralize, but competing categories
can ‘automatically’ compensate, and broaden contrast along another
dimension. Importantly, these behaviors are obtained without an explicit
mechanism in place to produce them. Rather, they are complex behaviors
that arise as a result of simpler, local interactions.

Several researchers have studied language change by modeling populations
of artificial neural networks. Such an approach is interesting because con-
nectionists claim that a neural network could be a full model of grammar.
While other models of change often posit models of grammars and learning
acquisition that do not reflect the complexity of the theories that they
represent, it is fairly straightforward to use a state-of-the-art connectionist
acquisition model as an agent in a simulation of language change.

Hare and Elman (1995) modeled morphological change in the history
of English by modeling the acquisition of Old English morphology by a
series of neural networks. The first network was trained to learn Old
English verbal morphology, but training was cut oft after a certain point
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to model imperfect learning. The output of that network was collected,
and used as the input for the next network. This replicated the cumulative
effect of imperfect learning over generations of speakers. In the seventh
generation of networks, the verb system had simplified in much the same
way that it has in present-day English. In a subsequent simulation of the
maintenance of strong verbs in English, they found that their networks
preserved verb forms with high type or token frequency (i.e. either those
verbs from classes with many members, or simply very frequent verbs), and
those in which the affixed form was predictable from phonological cues.

Livingstone (2002, 2003) reports on a series of experiments where
populations of simple neural networks (perceptrons; Rosenblatt 1962)
were created and allowed to interact. The networks associated a phonetic
representation to a lexical representation, with a lexicon of eight words.
Learning proceeded in generations, with children learning from their
parents. Random noise was added to productions, to add variability to the
simulation. Livingstone’s primary finding was that ‘dialects’ — distinct phonetic
representations that were localized in the social structure — emerged. This
occurred even in the absence of any difference in the social standing of
the individuals, contrary to the results of Nettle (1999a).

The ability of Livingstone’s model to generate dialectal variation
independent of social factors, contra Nettle, raises questions about which
specific model parameters caused a difference in the simulation. Absent
a systematic adjustment of parameters in each model, any explanation for
the differences must be tentative. In Nettle’s (1999a) simulations, each speaker
chose to adopt one variant or another. In contrast, speakers in Livingstone’s
model were attempting to learn a phonetic representation, without having
explicit awareness of variant pronunciations. Livingstone’s model appears to
accumulate noise over time (much like Hare and Elman’s), while Nettle’s
is more the product of deliberate ‘choice’. Although there is noise in
Nettle’s model, it is introduced in quanta: the acquisition of p rather than
g, or vice versa. Nettles model, in contrast, allows for noise that can
obscure category boundaries, and subtly change pronunciations over time.
A more rigorous comparison is in order, however, to determine the
reason that the models behaved differently.

2 Models of Syntactic Change

One of the more influential computational models of language change was
initiated by Niyogi and Berwick (1995a,b, 1996, 1997), who derived fairly
simple mathematical generalizations about language change after making
some simplifying assumptions. They model an infinite, perfectly mixed
population. They also assume that each learner adopts a single grammar,
and that the grammar is learned with a simple learning algorithm. The
Triggering Learning Algorithm (TLA; Gibson and Wexler 1994) is a
memoryless learning algorithm. The learner’s guess about the appropriate
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grammar depends only on the last pertinent evidence it encountered. To
offer an extreme example, the learner might encounter 100 data that
indicate head-first phrase structure, and then just a single datum that
indicates head-final phrase structure. It will learn head-final phrase structure,
since that is the most recent evidence encountered.” These assumptions
permit the elegant mathematical formulation of the behavior of the
population. Specifically, the probability of learning a parameter setting
depends on the probability of encountering a datum that is parsable only
with that parametric value. Since the grammar is memoryless, the probability
of acquiring a certain parameter setting is identical to the probability of
encountering a datum that requires that parameter setting.

These assumptions lead to the generalization that if two grammars, G,
and G,, are competing, then the one that will be selected more often is
the one that has the fewer sentences that can be parsed by the other
grammar. Some of the sentences generated by G, are parsable only by G;;
others might also be parsable by G,, however. Likewise, a proportion of
the sentences generated by G, will also be parsable with G,. The more
sentences a grammar generates that are parsable by another grammar, the
less likely a learner is to chose the source grammar. The source grammar
is more likely to be chosen by a learner if the input data contain data that
unambiguously identify that grammar.

As an example of this kind of reasoning, Niyogi (2002b) considers the
development of English syntax from V2 to non-V2. He counts the
degree-0 sentences (i.e. those without an embedded clause) that are
generated by both grammars. It turns out that ambiguous sentences form
a greater part of the set of non-V2 sentences, while V2 sentences are less
frequently ambiguous. If it is assumed that each sentence type in a language
has an equal probability of being generated, V2 grammar is always expected
to prevail, contrary to the historical development of English. On the other
hand, if a V2 grammar that otherwise has the same parameter settings of
present-day English is compared to an otherwise identical head-final grammar,
the proportion of ambiguous sentences is identical, so that no change over
time is expected. These studies demonstrate how a theory of acquisition
can lead to unexpected results when language change is modeled. The
results are admittedly the product of simple modeling assumptions and a
simple learning algorithm: one can imagine that not all sentence types
have equal probabilities of being generated, or that children have more
robust acquisition strategies than the TLA. Such alternatives are considered
by the researchers following Niyogi and Berwick’s general approach.

Yang (2000, 2003) studies acquisition-based change in a manner similar
to Niyogi and Berwick, but he broadens their approach by modeling
speakers that can control two grammars simultaneously. Through learning
speakers determine the frequency with which each grammar will be used.
To set the frequency of different variants, each learner uses a learning
penalty algorithm. A grammar is penalized (i.e. used less frequently) if it
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encounters data that it cannot parse; this discourages the use of grammars
that are ineffective. Considering the case of competing grammars G, and
G,, Yang defines two variables: o is the proportion of G, utterances that
are incompatible with G,, and B is the proportion of G, utterances that
are incompatible with G,. These are used to formulate the ‘fundamental
theorem of language change’, that is, ‘G, overtakes G, if f>a: [that is, if]
the advantage of G, is greater than that of G, Even with the more complex
acquisition mechanism, then, Yang’s results are similar to those of Niyogi
and Berwick.

With his expanded model, Yang analyzes the loss of V2 in Old French,
a difficult case, because, as noted above, the V2 parameter is expected
to be resistant to change. In Yang’s analysis of Old French, the crucial
observation is that the Old French was a pro-drop language. He considers
the degree-0 sentences of Old French, and notes that the advantage that
V2 grammars have over SVO grammars is lost when pronominal subjects
are dropped. Specifically, two types of sentences that otherwise encourage
the acquisition of V2 become ambiguous: OVS and XVSO. Unlike Niyogi
and Berwick, Yang does not assume that all sentences of a grammar will
occur with equal frequency. He rather draws on frequency counts from
historical corpora to determine how frequently various sentence types
might be encountered. He calculates that pro-drop diminishes the advantage
of the V2 grammar to the point where a shift to SVO is inevitable. Yang
also analyzes the loss of V2 in Middle English. The analysis is parallel.
Middle English was V2, except that pronominal subjects immediately
preceded the verb as clitics, giving rise to a verb in third position (V3).
Yang follows van Kemenade (1987) in analyzing the demise of V2 as a
consequence of the elimination of subject pronominal clitics, which made
the (formerly) V3 constructions compatible only with an SVO analysis.

Mitchener (2005) generally follows the Niyogi and Berwick line of
research, while recognizing (with Yang 2000, 2003) the need to model
speakers’ ability to use more than one grammar simultaneously. He
represents competing grammars as a single fuzzy grammar that stochastically
produces discrete grammars (similarly to probabilistic OT, as discussed
above). He tests two different learning algorithms, in order to test their
relative merits in explaining language change. In the ‘learn-always’ algorithm,
a learner generates a discrete grammar, and parses an input sentence. If
the chosen grammar parses the sentence correctly, then one of the parameters
of the grammar (chosen at random) is rewarded so that it is favored by
the fuzzy grammar in subsequent parses. The ‘parameter-crucial’ algorithm
is similar except that, in a successful run, after a parameter is randomly
selected, a hypothetical grammar is constructed that has the opposite value
for that parameter, and the sentence is parsed with that grammar. If the
hypothetical parse succeeds, the parameter can be judged not to have been
crucial, and it is not rewarded. If the hypothetical parse fails, then the
parameter is judged to be crucial, and it is rewarded. His simulations
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revealed interesting patterns. The ‘learn-always’ algorithm produced
incoherent, widely varying populations. To address this, Mitchener added
a bias that encouraged the fuzzy grammars toward categorical behavior
rather than gradience. (The same bias added to the ‘parameter-crucial’
resulted in more efficient computation, and Mitchener reports that the
effect this parameter had on others was minimal). Importantly, both classes
of grammars acquired and lost the V2 parameter freely, a behavior that
was not consistently produced in other models of this sort (but cf. the
discussion of Yang’s work above).”

Models of the type discussed above have been used to study language
change for its own sake. Pearl and Weinberg (2007), however, use the
model in order to test two theories of how children acquire syntax. They
examine the proposals that children choose not to learn from ambiguous
sentences, and that they do not learn from sentences with embedded
clauses (Lightfoot 1991; Fodor 1998; inter alia). Their strategy was to
implement these learning theories in a simulation of sound change, to see
if the strategies bring about appropriate historical changes. They construct
models with and without the filters in place, and analyze the shift from Old
English OV to VO in ap 1000-1200. Along the lines of Niyogi and Berwick,
they note that outcome of acquisition depends on the distribution of the
data encountered. These distributions are modified when ambiguous
sentences are discarded by learners. For instance, they note that because
of the presence of V2 constructions in Old English, it becomes ambiguous
for an SVO sentence whether the verb was base-generated before the
object, or whether it was generated after the object, but subsequently
raised.® When all of the exceptions are taken into account, the evidence
favors acquisition of a VO grammar. In the simulation, this results in
sigmoidal shift from OV to VO grammar, over the course of about 200 years.

A point of secondary interest in Pearl and Weinberg’s simulation is the
temporal interpretation of their time increment, which advances in 2-year
intervals. (The point is secondary because the central result is the gross
outcome of their simulation, not the fact that it matches the time course
of the historical change.) A reason for the 2-year interval is not given,
which leads one to suspect that it was chosen so that the time course of
the simulation would match the time course of the historical change, and
by extension that the time course of any language change could be matched
by adjusting the temporal interpretation of a time step. This critique is
not specific to the work of Pear]l and Weinberg: Baker (2008) acknowledges
that the interpretation of the time step is crucial for the interpretation of
certain results of his model as well.

Nakamura et al. (2003) apply a similar model to the study of the formation
of creoles. Assuming that children receive input from all language com-
munities, they note that the crucial factor in determining the final state
is the mutual intelligibility of the source languages. As a simplification,
they suppose that there are three possible grammars: two source languages
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and a creole grammar. In the case where the source languages are entirely
mutually unintelligible, but are each somewhat intelligible with a creole
grammar, the rise of the creole is inevitable. This is because a speaker
attempting to parse the ambient data with the grammar of one of the
source languages would not be able to parse sentence from the other
source language, but would be able to parse some creole sentences. Parsing
the ambient data with a creole grammar allows data from all three
languages to be parsed, at least in part. This gives the creole grammar an
advantage. Beyond this simple state many results are possible, resulting
either in the rise of a creole or not and, for cases where a creole does
rise, for the creole to be dominant or non-dominant in the population.
The crucial requirement for one of the source languages to become
dominant is for it to be intelligible enough with the creole that children
can plausibly acquire the source language from the creole data.

The work of Nakamura et al. makes several simplifying assumptions:
they have a short list of potential grammars, they neglect social interactions,
and they do not account for speakers’ abilities to manage multlple
grammars simultaneously. Nevertheless their contribution is real, in
applying a model developed for other purposes to the more complex
problem of creole genesis.

The research reported in this section is based on the assumption that
the grammar that is most compatible with the input data is the one that
will be selected. If this is the case, then the question arises as to why all
languages do not have the syntax of Dyirbal, which allows free word order
(Dixon 1972). If children adopt the grammar most compatible with the
input, then it seems inevitable that they should eventually converge on
the grammar that poses fewest restrictions on the input. To pose the
problems in the formalism of Yang (2000, 2003), if one of the grammars
(say G,) allowed free word order, then B would equal 0, and G, would
always be learned. Assuming that speech errors are confined in some way,
this might not be expected to occur in a single generation, but it should
be observed over time.

This specific problem is an instance of a more general problem noted by
Briscoe (2000). If innate biases are built into an acquisition model, then
we might expect to see languages optimizing over time to conform to the
acquisition model. This predicts convergence of languages, rather than the
observed divergence of languages. Following the above example, if the
acquisition bias is to choose the most parsable grammar, we would expect
to see all grammars evolve to be inclusive of more word orders. Briscoe
(2000) proposes that this problem might be dealt with by acknowledging
multiple competing forces in language acquisition. That is, instead of
identifying a single factor as the driving force selecting grammars (such as
ability to parse many sentences), several factors might be at play, which
together could define many locally ‘ideal’ parameter settings. Conceptually,
the proposal seems to be on the right track, but the difficulty lies in
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identitying precisely what the competing motivations are, and what
happens when they are in conflict.

3 Future Directions

Studies of language change have proved fruitful in uncovering hidden
consequences of theories and facts. For instance, simulations by Niyogi
and Berwick uncovered previously unknown (often incorrect) predictions
of the Triggered Learning Algorithm. Nettle (1999a) discovered the
significance that social factors play in change, at least for cases where two
variants are in competition. These findings are valuable, because they
indicate areas that require more careful study, as indeed they already have.
For instance, the problems noted by Niyogi and Berwick (1996) in the
loss of V2 were addressed by the work of Yang (2000, 2003).

A number of researchers have noted that the elegant mathematical
formulations of language change oftered by Niyogi and Berwick (1995a,
et seq.) are lost when the model’s basic assumptions, such as infinite
population size or non-stochastic learning, are changed (Clark 1996;
Briscoe 2000; Niyogi 2002b; Livingstone 2003). If a mathematical model
of language change is unavailable, researchers must use Monte Carlo
methods, performing large number of simulations in order to determine
the effects of different model parameters. Each of the studies presented in
this article involves many model parameters, and each reported selectively
on the effect of varying these parameters. A common practice in reporting
results is to present graph of a typical run, or to comment on the
qualitative result of varying a certain parameter. While this approach can
be used to give a concise and accurate description of runs, it is not a
rigorous way to report the results of simulations. Ideally, a report on a
model would include the effect of each model parameter on the outcome
of the simulation.” The most straightforward way to do this would be a
regression analysis, with each model parameter as an independent variable,
and the pertinent outcome variable the dependent variable. Increased
availability of computing power makes sampling the entire parameter
space a practical task. Adding statistical rigor to computational studies
might go a long way in moving the discussion from dissertations, book
chapters, and conference proceedings — where it has almost exclusively
take place — into peer-reviewed journals.

One difficulty in evaluating models is that they are frequently
incommensurate. The models of Nettle (1999a) and Livingstone (2003)
differed in whether they could produce change without social variation,
but the models differed in so many respects that it is not clear which
difference (or set of differences) was crucial. Was it the presence of
multiple words in Livingstone (2003)? The use of a neural net as opposed
to Nettle’s (1999a) equation from Social Impact Theory? Closer integ-
ration between models, and more systematic studies of how variation
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in parameters produces different results, will be a substantial benefit to
the field.

Several authors have noted the importance of network structure in
simulations of language change (Lee et al. 2005; Ke et al. 2007; Magué
2007). For instance, Ke (2007) models individuals in a fully connected
network, using similar model parameters to Nettle (1999a). She finds that
if each interaction with another individual who has adopted a change carries
a certain probability of adopting the change, change propagates through
the community in a sigmoidal fashion. With a more sparsely connected
network, change proceeded as before, but at a lower rate. Different network
architectures also made a difference in the outcome of simulations (which
are more fully discussed in Ke’ article). Difterences introduced by different
network structures have not been studied systematically for most models,
but clearly the structure of the network has a bearing on the outcome of
the simulation. Future work should take this into account by either
matching the structure of a real-life network (if data are available), or by
running simulations with multiple network structures to assess the role
that the structure of the social network has in determining the outcome
of a simulation.

4 Conclusion

It is widely thought that language change is driven by imperfect acquisition.
Niyogi (2002a) claims that, ‘perfect acquisition would imply perfect
transmission.” Studies of language change indicate that, although the
situation is far more complex than this, since individual speakers do
make choices about their linguistic habits beyond childhood, language
acquisition is nevertheless important to the study of change (Labov 1994,
2001). Consequently, simulations of language change will benefit as models
of acquisition improve and provide better agents to incorporate into
models. Conversely, models of acquisition will benefit as they take into
account not only child developmental data, but also the consequences of
their acquisition models for the historical development of a language;
Pearl and Weinbergs (2007) work is an innovative beginning to these
types of studies. The beginnings of closer integration are also evident in
the neural network literature (e.g. Hare and Elman 1995). But the
possibilities have yet to be explored in other modeling efforts. A replication
of the Hare and Elman (1995) study with a probabilistic OT grammar
(e.g. Boersma 1997; Boersma and Hayes 2001) may be a reasonable
next step.

Zuidema (2003) notes that models of syntactic parameter setting never
involve a full grammar, but only the two or three parameters that are most
easily interpretable by linguists. This criticism could be made of many
models of language change as well. Studies of sound change could easily
incorporate larger lexicons, modeling more changes simultaneously, than
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currently is done. There is no reason not to expand these efforts, to test
the quality of the current ideas against more challenging data.

Understanding the role that acquisition errors play in language change
is a significant problem. Acquisition errors are the crucial seed for language
change (Nettle 1999a; Livingstone 2003), providing variability from which
subsequent changes are drawn. Models of change depend on models of
acquisition errors, then. As acquisition models become more complex,
and better able to represent children’s performance, they will offer theories
of change more specific kinds of errors, which will aid understanding of
the specific role that acquisition errors play in language change.

Computational models of language change, which have a relatively
recent advent, are quickly becoming standard tools in theorization about
the origins and causes of change. There is every reason to be optimistic about
the subsequent development of these fields. As computers become faster
and as more corpora become available, researchers will have ever-increasing
freedom to develop and test models of change.
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Notes

* Correspondence address: Adam Baker, Department of Linguistics, University of Arizona,
Douglass Building, Room 200E, Tucson, AZ 85721, USA. E-mail: tabaker@u.arizona.edu.

" The article does not review the vast literature on the application of computational methods
to the study of the origins of the language faculty itself. This is commonly called ‘language
evolution’, although using the term is often imprecise, since ‘evolution’ informally refers to any
change through time. Many authors note potential analogs between the evolution of the
language faculty and the historical changes that languages undergo (e.g. de Boer 2000; Nowak
and Komarova 2001), and some study both phenomena with similar techniques (e.g. Briscoe
2002; Livingstone 2003; Wang et al. 2004; Wang and Minett 2005). Nevertheless, the fields are
fundamentally different: models of language change begin with linguistic grammars, while
evolutionary models do not (see Cangelosi and Parisi 2002 for further discussion). See Nowak
et al. 2002, Christiansen and Kirby 2003, or Brighton et al. 2005 for recent reviews of the
language evolution literature. To these studies can be added two other classes of computational
studies, which model broad cross-linguistic tendencies without modeling specific languages (e.g.
Kirby (1996, 1997); Jager (2003) and the earlier applications of the de Boer (1999) model), and
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the relatively new work in the modeling the competition of languages for speakers to understand
language shift phenomena (Abrams and Strogatz 2003; Stauffer and Schulze 2005; de Oliveira
et al. 2006; Schulze and Stauffer 2006; Stauffer et al. 2006).

> Hence, the common criticism noted by Nettle (1999a: 103) that modelers simply insert
whatever behavior they desire into a model, run the simulation, and claim to have modeled the
phenomenon.

? Curiously, Nettle considered this to be a negative feature of the model. To the contrary, it
might rather be interpreted as the simulation of a split in the speech community, which is an
interesting result.

* Changes in language often do not proceed linearly, but are instead sigmoidal (Bailey 1973;
Kroch 1989; Labov 1994, 2001). Many modeling papers make sigmoidal propagation of a
change through a population a specific deseridatum for the model.

> de Boer and Kuhl (2003) subsequently showed that learning positions of adult vowel
categories from infant-directed speech was more successful than learning those categories from
adult-directed speech.

® Niyogi and Berwick’s model is described in several papers; Niyogi (2004) provides the most
accessible introduction.

7 For a mathematically rigorous approach, the reader may be referred to Mitchener (2003),
a dissertation in mathematics devoted to the investigation of language change from a game-
theoretic perspective.

¥ Note that this is structural ambiguity, not ambiguity as to whether the string can be parsed
by one grammar or another.

° Of the models surveyed here, Nettle (1999a) comes closest to this ideal; Choudhury et al.
(2006) might be taken as an example of an extremely complex model with no report of the
result of varying the model parameters.
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