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Social conventions govern countless behaviors all of us engage in every day, from 
how we greet each other to the languages we speak. But how can shared conven-
tions emerge spontaneously in the absence of a central coordinating authority? 
The Naming Game model shows that networks of locally interacting individuals 
can spontaneously self-organize to produce global coordination. Here, we pro-
vide a gentle introduction to the main features of the model, from the dynamics 
observed in homogeneously mixing populations to the role played by more 
complex social networks, and to how slight modifications of the basic interaction 
rules give origin to a richer phenomenology in which more conventions can 
co-exist indefinitely.

1.	 Introduction

The Naming Game (Steels 1995, 1999; Baronchelli et al. 2006) is a multi-agent 
model in which the individuals perform pairwise interactions to negotiate the 
conventional forms to be associated with a set of meanings. No central control is 
available to coordinate the appearance of a globally accepted common lexicon, yet 
it emerges. How does this happen? Which are the microscopic details allowing for 
a population-scale agreement? What is the role of the population size? For example, 
how does it affect the amount of memory required of the agents or the time needed 
to reach the final consensus? Moreover, will a consensus even always be reached?

These (and many others) are important questions both from the theoretical 
point of view and for the applications, but answering them is not easy. Indeed by 
definition a complex system, such as a community of language users, is an assembly 
of many interacting (and often simple) units whose collective behavior is not trivial-
ly deducible from the knowledge of the rules that govern their mutual interactions. 
However, predicting the global phenomenology of such a system on the basis of 
a knowledge of the properties of its elementary constituents is a crucial problem 
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172	 Andrea Baronchelli

in many fields of research. It is so important, in fact, that there is a specific (sub)
discipline entirely devoted to it, namely statistical physics. This is the branch of 
physics whose goal is to provide the link between macroscopic and microscopic 
states. For example, it allows us to derive the pressure of an ideal gas (a macroscopic 
state) starting from the solution to Schrödinger’s equation for a particle in a box 
(the microscopic state) (Glazer et al. 2002; Huang 1987).

Developed to investigate such systems as gases, liquids and solids, statistical 
physics has proven to be a very fruitful framework also to describe phenomena 
outside the classical realm of physics (Loreto and Steels 2007). In particular, recent 
years have witnessed the (often successful) attempt to export the concepts and tools 
developed in the investigation of physical systems for the study of the collective phe-
nomena emerging in social structures (Castellano et al. 2009). Of course, in social 
phenomena the basic constituents are not particles but humans, and at first sight 
this could make things much harder. It is a legitimate concern, in fact, but luckily 
the situation is not as tragic as it might appear. The reason is that humans behave 
in a surprisingly regular manner. This is true for problems as diverse as mobility 
patterns (González et al. 2008), epidemic spreading (Pastor-Satorras and Vespignani 
2001), car traffic dynamics (Chandler et al. 1958), and language evolution (Jaeger et 
al. 2009), of course. Thus, depending on the specific issue under consideration, even 
human beings can be approximated drastically to agents obeying some simple rules.

A few words are now in order on the issue of modeling. Usually when de-
fining a multi-agent model, the choice is between endowing agents with simple 
properties, so that one can hope to fully understand what happens in simulations, 
or with more complicated and realistic structures that yet risk confusing experi-
mental outputs. The statistical physics approach follows the first possibility since it 
is more interested in the global behavior of the population. In this perspective its 
main goal consists in analyzing deeply basic models that can constitute valuable 
starting points for more sophisticated investigations. Nevertheless, as we shall see, 
also extremely transparent agents and interaction rules can give rise to very com-
plex and rich global behaviors, and the study of simple models can help to shed 
light on universal properties. Moreover, it is worth stressing that, quite often, the 
sociocultural approaches to language evolution lack quantitative investigations, 
contrary to what happens in the evolutionary approaches (Jaeger et al. 2009). Later 
I shall discuss in detail how the main features of the process leading the population 
to a final convergence state scale with the population size.

This chapter presents and discusses some aspects of the minimal Naming 
Game (Baronchelli et al. 2006) defined by distilling the fundamental ingredients 
yielding the same global phenomenology observed in robot experiments and more 
complex models (Steels 1999; Baronchelli et al. 2006; Steels 1995) and able to re-
produce experimental results on the spontaneous emergence of social conventions 
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(Centola and Baronchelli 2015). Due to its simplicity, it has attracted the attention 
of several researchers in physics, social science, computer science and linguistics. 
Its formulation is very close in spirit to that of other opinion dynamics models (Fu 
and Wang 2008; Blythe 2009) (for a detailed analysis of this point see (Castellano 
et al. 2009)). It has been studied in fully connected graphs (i.e. in mean-field or 
homogeneous mixing populations) (Steels 1995; Baronchelli et al. 2006, 2008), 
regular lattices (Baronchelli et al. 2006b; Lu et al. 2008), small world networks 
(Dall’Asta et al. 2006a; Lu et al. 2008; Liu et al. 2009), random geometric graphs 
(Lu et al. 2006, 2008) and static (Dall’Asta et al. 2006b; Dall’Asta and Baronchelli 
2006; Yang et al. 2008; Baronchelli 2011), dynamic (Nardini et al. 2008; Baronchelli 
and Diaz-Guilera 2012) and empirical (Lu et al. 2009; Trianni et al. 2016) com-
plex networks. It has been shown also that the final state of the system is always 
consensus (De Vylder and Tuyls 2006), but stable polarized states can be reached 
introducing a simple confidence/trust parameter (Baronchelli et al. 2007). The role 
of committed minorities in influencing which convention is adopted by the group 
has also been considered (Xie et al. 2011, 2012; Mistry et al. 2015)

The Naming Game as defined in (Baronchelli et al. 2006; Baronchelli 2007) 
has also been modified in several ways (Baronchelli et al. 2006a; Lu et al. 2006; 
Baronchelli et al. 2007; Wang et al. 2007; Brigatti 2008; Lipowski and Lipowska 
2008, 2009; Lu et al. 2008; Brigatti and Roditi 2009; Lu et al. 2009; Lei et al. 2010; 
Zhang and Lim 2010; Baronchelli 2011), representing the fundamental core of 
more complex models in computational cognitive sciences (Puglisi et al. 2008; 
Baronchelli et al. 2010). Furthermore, from the point of view of the applications, its 
relevance in system-design has been pointed out in the context of sensor networks 
(Akyildiz et al. 2002), in relation to such problems as autonomous key creation or 
selection for encrypted communication (Lu et al. 2008) and, more recently, as a 
tool for investigating the community structure of social networks (Lu et al. 2009; 
Zhang and Lim 2010).

The constraints of this chapter neither permit nor necessitate a detailed review 
of all of the above mentioned results. Rather, it focuses upon some key aspects of the 
model dynamics in order to illustrate which kind of benefits can be obtained from 
a statistical physics approach to the modeling of language games. We will start de-
fining the model and discussing its basic phenomenology. We will then inspect the 
role played by the population structure, looking at different cases in which the set 
of possible interactions of each individual is limited to a fixed number of neighbors. 
We shall see that the statistics of this underlying interaction patterns dramatically 
affects the global dynamics, both from the point of view of the time needed to reach 
consensus and from the memory required to the agents. We will then look at two 
slightly modified versions of the minimal NG, that will deepen our understanding 
of the convergence process and the role played by inter-agent feedback, respectively.
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174	 Andrea Baronchelli

2.	 The model

The minimal Naming Game (NG) (Baronchelli et al. 2006, 2008) is played by a 
population of N agents that engage in pairwise interactions in order to negoti-
ate conventions (i.e., associations between forms and meanings), and it is able to 
describe the emergence of a global consensus among them. For the sake of sim-
plicity the model does not take into account the possibility of homonymy, so that 
all meanings are independent and one can work with only one of them, without 
loss of generality. An example of such a game is that of a population that has to 
reach the consensus on the name (i.e., the form) to assign to an object (i.e., the 
meaning) exploiting only local interactions, and we will adopt this perspective in 
the remainder of this paper.

Each agent disposes of an internal inventory, in which an a priori unlimited 
number of words can be stored. As initial conditions we require all inventories to 
be empty. At each time step (t = 1, 2, ..), a pair of neighboring agents is chosen 
randomly, one playing as “speaker”, the other as “hearer”, and negotiate according 
to the following rules (see Figure 1):

–– the speaker randomly selects one of its words (or invents a new word if its 
inventory is empty) and conveys it to the hearer;

–– if the hearer’s inventory contains such a word, the two agents update their 
inventories so as to keep only the word involved in the interaction (success);

–– otherwise, the hearer adds the word to those already stored in its inventory 
(failure).

With this scheme of interaction, the assumption of the absence of homony-my 
simply translates into assuring that each newly invented word had never appeared 
before in the population. Thus, single objects are independent (i.e., it is impossible 
that two agents use the same word for two different objects), and their number 
becomes a trivial parameter of the model. For this reason, as we mentioned above, 
we concentrate on the presence of one single object, without loss of generality.

It is also interesting to note that the problem of homonymy has been studied 
in great detail in the context of evolutionary game theory, and it has been shown 
(Komarova and Niyogi 2004) that languages with homonymy are not evolution-
ary stable. However, it is obvious that homonymy is an essential aspect of human 
languages, while synonymy seems less relevant. The authors solve this apparent 
paradox by noting that if we think of “words in a context” homonymy almost 
disappears while synonymy acquires a much greater role. In the framework of 
the minimal NG, homonymy is not always an unstable feature (see (Puglisi et 
al. 2008) for an example), and its survival depends in general on the size of the 
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meaning and signal spaces (Gosti 2007). This observation also fits well with the 
implicitly assumed inferential model of learning, according to which we assume 
that agents are placed in a common environment and they are able to point to 
referents. Subsequently, after a failure, the speaker is able to point out the named 
object (or referent) to the hearer which in its turn can assign the new name to it.

Another important remark concerns the random extraction of the word in 
the speaker’s inventory. Many previously proposed models attempted to give a 
more detailed representation of the negotiation interaction assigning weights to 
the words in the inventories. In such models, the word with the largest weight is 
automatically chosen by the speaker and communicated to the hearer. Success and 
failures are translated into updates of the weights: the weight of a word involved in 
a successful interaction is increased to the detriment of those of the others (with 
no deletion of words); a failure leads to the decrease of the weight of the word not 
understood by the hearer. An example of a model including weights dynamics 
can be found in (Lenaerts et al. 2005) (and references therein). For the sake of 
simplicity the minimal NG described above avoids the use of weights. Indeed, 
weights are apparently more realistic form a cognitive point of view, but their 
presence is not essential for the emergence of a global collective behavior of the 
system (Baronchelli 2007).

AVLA

Speaker Hearer

ATSALLAD
AKNORAB

AVLA

TARRAB
AVLA

OTEROL
ATSALLAD

Speaker Hearer

ATSALLAD
AKNORAB

AVLA

TARRAB
AVLA

OTEROL

Speaker Hearer

ATSALLAD
AKNORAB

AVLA

TARRAB
AVLA

OTEROL

Speaker Hearer

Failure

Success

AVLA

Figure 1.  Naming Game. Examples of the dynamics of the inventories in a failed (top) 
and a successful (bottom) game. The speaker selects the highlighted word by random 
extraction. If the hearer does not possess that word he includes it in his inventory (top). 
Otherwise both agents erase their inventories, keeping only the winning word (bottom).
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176	 Andrea Baronchelli

3.	 Basic phenomenology

The non-equilibrium dynamics of the minimal NG is characterized by three tem-
poral regions: (1) initially the words are invented; (2) then they spread throughout 
the system inducing a reorganization process of the inventories; (3) this process 
eventually triggers the final convergence towards the global consensus (all agents 
possess the same unique word).

More precisely, the main quantities that describe the system’s evolution are 
(Baronchelli et al. 2006):

–– the total number Nw(t) of words in the system at the time t (i.e., the total size 
of the memory);

–– the number of different words Nd(t) in the system at the time t;
–– the average success rate S(t), i.e., the probability, computed averaging over 

many simulation runs, that the chosen agent gets involved in a successful 
interaction at a given time t.

The consensus state is obtained when Nd = 1 and Nw = N (so that S(t) = 1), and 
the temporal evolution of the three main quantities is presented in Figure 2. First, 
many disjoint pairs of agents interact, with empty initial inventories: they invent a 
large number of different words (N/2, on average) that start spreading throughout 
the system through failure events. Indeed, the number of words decreases only by 
means of successful interactions, which are limited in the early stages by a very 
low overlap between inventories. The number of different words Nd grows, rapidly 
reaching a maximum, and then saturates to a plateau where Nd = N/2, on average. 
The total number Nw of words, on the other hand, keeps growing after Nd has sat-
urated, since the words continue to propagate throughout the system even if no 
new one is introduced. In the subsequent dynamics, strong correlations between 
words and agents develop, driving the system to a final rather fast convergence to 
the absorbing state. The S-shaped curve of the success rate in Figure 2 summarizes 
the dynamics: initially, agents hardly understand each others (S(t) is very low); 
then the inventories start to present significant overlaps, so that S(t) increases until 
it reaches 1. It is worth noting that the established communication system is not 
only effective (agents can understand each others) but also efficient (no memory 
is wasted in the final state).
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Figure 2.  Time evolution of the most relevant global properties of the Naming Game. 
From up to down: the total number of words, Nw(t), the number of different words 
known by the agents, Nd(t), and the probability of a successful interaction at a give time, 
S(t). Convergence is reached with a quite abrupt disorder/order transition that starts 
approximately just after the peak of the Nw (t) curve has disappeared. Data are relative to 
a population of N = 2000 agents and averaged over 300 simulation runs.
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Figure 3.  Naming Game. (Top) scaling of the peak and convergence time, tmax and tconv 
along with their difference, tdiff. All curves scale with the power law N1.5±0.1. (Bottom) 
the maximum number of words obeys the same power law scaling.
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3.1	 Scaling relations

In the dynamical evolution described above we can point out at least two crucial 
points. The first is the time tmax at which the total number of words in the system 
Nw(t) reaches its peak. The height of this peak, Nw

max, corresponds indeed to the 
maximum amount of memory required by each agent, Nw

max/N, during the whole 
process and it is therefore important. The second relevant instant is the conver-
gence time tconv, at which the dynamics ends for all practical purposes. To these 
we can add the time span that separates these two moments, i.e. tdiff = tconv − tmax.

It would have been very easy to determine these quantities from the simula-
tions that produced the curves showed in Figure 2, concerning a population made 
of N = 2000 individuals. Yet they would have been almost meaningless numbers 
telling us how many simulation steps are needed on average for this particular 
population size. It is therefore much more interesting to focus on how the rel-
evant quantities scale with the system size, i.e. to look at how they are related to 
the number of individuals. Interesting questions are therefore of the form: what 
happens if the population size is, say, doubled? Is the convergence time, for exam-
ple, doubled too? Or rather does it become much slower? This is a typical way of 
addressing problems in statistical physics (see, for instance, (Sethna 2006)). It has 
profitably been exported to study the minimal NG, for which it has been found 
that (see Figure 3):

tconv ~ tmax ~ tdi� ~ Nα with α ≈ 1.5,            (1) 

and

Nw    ~ Nγ with γ ≈ 1.5.                (2) max

These relations can be recovered also through analytical scaling arguments (Bar-
onchelli et al. 2006, 2008), and their implications are profound. In particular, the 
scaling of Nw

max implies that the average amount of memory required to each 
agent is Nw

max/N ~ N1/2. Thus, the cognitive effort an agent has to take, in terms 
of maximum inventory size, depends on the system size and, in particular, diverges 
as the population gets larger and ideally goes to infinity (the so-called thermody-
namic limit in the language of statistical physics). Concerning the time to reach 
convergence, tconv, as well as the other convergence times, for now we can only 
acknowledge the results reported in Eq. (1).

A natural question is now what the scaling relations we have found depend on. 
Likewise, we can ask whether they can be modified. The answer is not univocal. 
On one level, of course, the behavior just described depends on many of the de-
tails of the introduced model. It is possible in principle, and it is actually the case 
(Baronchelli 2011) some of them are irrelevant in this context, but in general the 
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adopted modeling scheme matters. On another, deeper level, however, we can ask 
whether there are any features that, without changing the microscopic interaction 
rules, yield a different population-scale phenomenology. We shall see in the next 
paragraph that at least one such feature exists, and it is the interaction pattern 
underlying the pairwise communications of the individuals.

4.	 The role of topology

In the previous section we introduced the minimal NG model prescribing that, at 
each time step t = 1, 2, .., two agents are randomly selected. The assumption be-
hind this homogeneous mixing, or “mean-field”, rule is that the population is not 
structured and that any agent can in principle interact with any other. In general, 
however, this is not true, and the topology on which the population is embedded 
identifies the set of possible interactions among the individuals. Thus, the group 
of communicating individuals can be described as a network in which each node 
represents an agent and the links connecting different nodes determine the allowed 
communication channels.

The (statistical) properties of the underlying network can therefore affect the 
overall dynamics of the model. In the coming section we will see that this is ac-
tually the case.

Recent years have witnessed the birth and fast development of the field of com-
plex networks (Albert and Barabási 2002; Pastor-Satorras and Vespignani 2004; 
Caldarelli 2007; Barrat et al. 2008). First of all, it was realized that a schematization 
in terms of nodes and links representing their interactions was a powerful tool to 
describe and analyze a large set of different systems, belonging to technological 
(Internet, the web, etc.), natural (food webs, protein interaction networks, etc.) or 
social (networks of scientific collaborations, acquaintances, etc.) domains. Sur-
prisingly, it was then found that almost all the investigated systems share a certain 
number of peculiar and completely unexpected properties, which were not cap-
tured by the models known up to that moment. For example, human social net-
works are highly heterogeneous, where most people have a relatively small number 
of acquaintances and where only a few social hubs are hugely connected (Caldarelli 
2007). From our point of view, such complex networks and the artificial attempts to 
reproduce them constitute possibly the most natural interaction patterns to study 
the NG, but we will see that it is convenient to start studying the effect of simpler 
topologies first and then move to the most complex ones.

We discuss below the main findings obtained in embedding the minimal NG 
on different structured topologies of increasing complexity. The analysis in un-
avoidably somewhat technical, but the reader who is not familiar with complex 
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180	 Andrea Baronchelli

network theory need not worry. Indeed, it turns out that no matter how complex 
the underlying topology is, the properties that affect the global behavior of the 
system are essentially two, namely the finite connectivity and the small-world 
property.1 The first refers to the fact that a given agent can interact only with a fixed 
subset of the whole population. The latter describes the evidence that the average 
distance length 〈l〉 between pair of nodes is “very small”. More precisely, 〈l〉 scales 
logarithmically, or slower, with the system size. This property is of course absent 
in regular structures, where 〈l〉 ~ N1/d,d being the dimensionality of the system. 
Their impact can be summarized as follows:

1.	 Finite connectivity implies finite memory requirements to the agents, dis-
entangling the maximum inventory size from the number of individuals in 
the population.

2.	 The small-world property guarantees “fast” convergence, allowing the fast 
spreading of words created in otherwise far-apart regions of the underlying 
topology.

Table 1.  Scaling with the system size N of the maximum number of words (memory) 
and time of convergence. Networks, thanks to the small-world property and the finite 
connectivity, ensure a trade-off between the fast convergence of mean-field topology and 
the small memory requirements of lattices.

Mean-field Lattices (d ≤ 4) Networks

Maximum memory N1.5 N N

Convergence time N1.5 N1+2–
d N1.4±0.1

In Point 2, “fast” convergence means the fastest scaling of the convergence time 
observed in all the numerical experiments conducted so far. Table 1 recapitulates 
the results for a different kind of topologies. The mean-field population is of course 
small-world (the distance between any pair of agents is simply 1), but as we have 
seen before the non-finite connectivity implies a diverging memory requirement. 
Low-dimensional regular lattices assure finite connectivity but lack the small-
world property, hence the memory per agent is finite (since the global memory 
requirement scales just as the population size N), but convergence is extremely slow 
(tconv ~ N3 for d = 1). Finally, complex networks exhibit both properties and are 
therefore the most advantageous arrangement (as well as the more natural one), 
assuring at the same time finite memory and “fast” convergence. We analyze below 
the different scenarios in more detail.

1.	 We do not consider here the effect of such features as strong clustering or community struc-
tures, concerning which we refer the interested reader to (Dall’Asta et al. 2006b).
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Low dimensional lattices

Before looking at the effects of an underlying complex topology it seems reasona-
ble, as mentioned above, to look at the the effects of simpler situations, namely low 
dimensional regular lattices (Baronchelli et al. 2006c) . Moreover, d—dimensional 
lattices have traditionally been used as underlying topologies of many classical 
models of statistical physics, and there are well established methods to tackle them 
(Marro and Dickman 1999). Here, the number of neighbors is finite, the structure 
is regular, and there is a complete homogeneity among the agents. In the minimal 
NG, low dimension grids induce a coarsening dynamics, so that the time required 
by the system to converge is much slower. On the other hand, finite connectivity 
keeps the memory required to each agent finite.

On low-dimensional lattices each agent can rapidly interact two or more times 
with its neighbors, favoring the establishment of a local consensus with a high 
success rate (Figure 4, red squares for 1D and blue triangles for 2D), namely of 
small sets of neighboring agents sharing a common unique word. Later on these 
“clusters” of neighboring agents with a common unique word undergo a coarsen-
ing phenomenon (Baronchelli et al. 2006c) with a competition among them driven 
by the fluctuations of the interfaces. The coarsening picture can be extended to 
higher dimensions, and the scaling of the convergence time has been conjectured 
as being O(N1+1/d)where d ≤ 4 is the dimensionality of the space. This prediction 
has been checked numerically. On the other hand the maximum total number of 
words in the system (maximal memory capacity) scales linearly with the system 
size, i.e., each agent needs only a finite memory.

Small-world networks

Results concerning the mean field case, on the one hand, and regular structures, 
on the other, act as fundamental references to understand the role of the different 
properties of complex networks. We start by addressing the role of the small-
world property (short average distance between any pair of nodes), which is one 
of the most characteristic features of many different networks. In particular we 
focus on a model, proposed by Watts and Strogatz (Watts and Strogatz 1998; Watts 
1999), which allows to pass progressively from regular structures to random graphs 
by tuning the p parameter describing the probability that a link of the regular 
structure is rewired to a random destination. The main result is that the presence 
of shortcuts, linking agents otherwise far from each other, allows to recover the 
fast convergence typical of the mean-field case (Dall’Asta et al. 2006a). The finite 
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connectivity, on the other hand, keeps the demanded amount of memory finite, 
as in regular structures.

Studying the dynamics of the minimal NG in small-world lattices, two differ-
ent regimes are observed. For times shorter than a cross-over time, tcross = O(N/p2), 
one observes the usual coarsening phenomena as long as the clusters are typically 
one-dimensional, i.e., as long as the typical cluster size is smaller than 1/p. For 
times much larger than tcross, the dynamics is dominated by the existence of short-
cuts and enters a mean-field like behavior. The convergence time scales therefore 
as N3/2 and not as N1+1/d(as in low-dimensional lattices). As anticipated above, 
small-world topology allows thus to combine advantages from both finite-dimen-
sional lattices and mean-field networks: on the one hand, only a finite memory per 
node is needed, in opposition to the O(N1/2) in mean-field; on the other hand the 
convergence time turns out to be much shorter than in finite dimensions.
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Figure 4.  Evolution of the total number of words Nw (top), of the number of different 
words Nd (middle), and of the average success rate S(t) (bottom), for a fully connected 
graph (mean-field, MF) (black circles) and low dimensional lattices (1D, red squares and 
2D, blue triangles) with N = 1024 agents, averaged over 103 realizations. The inset in the 
top graph shows the very slow convergence for low-dimensional systems.
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Complex networks

In (Dall’Asta et al. 2006b) most of the relevant features exhibited by complex net-
works have been explored systematically, mainly by means of computer simu-
lations. It must also be noted that the (minimal) NG as described above is not 
well-defined on general networks. When the degree distribution is heterogeneous, 
it does matter if the first randomly chosen agent is selected as a speaker and one 
of its the neighbor as the hearer or vice versa: high-degree nodes are in fact more 
easily chosen as neighbors than low-degree vertices. Several variants of the Naming 
Game on generic networks can be defined. In the direct Naming Game (reverse 
Naming Game) a randomly chosen speaker (hearer) selects, again randomly, a 
hearer (speaker) among its neighbors. In a neutral strategy one selects an edge 
and assigns the role of speaker and hearer with equal probability to one of the two 
nodes (Dall’Asta et al. 2006b).
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Figure 5.  Top: scaling behavior with the system size N for the time of the memory 
peak (tmax) and the convergence time (tconv) for ER random graphs (left) and BA 
scale-free networks (right) with average degree 〈k〉 = 4. In both cases, the maximal 
memory is needed after a time proportional to the system size, while the time needed 
for convergence grows as Nβ with β ≃ 1.4±0.1. Bottom: In both networks the necessary 
memory capacity (i.e. the maximal value Nw

max reached by Nw) scales linearly with the 
system size.
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Here we only report on the global behaviour of the system (direct NG), and we 
refer to (Dall’Asta et al. 2006b) for an extensive discussion. Figure 5 shows that 
the convergence time tconv scales as Nβ with (β ≃ 1.4 ± 0.1, for both Erdös-Renyi 
(ER) (Erdös and Rényi 1959, 1960) random graphs (where the degree distribu-
tion is peaked and all the nodes have very similar connectivity patterns) and 
Barabasi-Albert (BA) (Barabási and Albert 1999) networks (that have a power 
law degree distribution given by P(k) ~ k−3, so that the vast majority of the nodes 
is poorly connected while few hubs have large degrees). The scaling laws observed 
for the convergence time is a general robust feature that is not affected by further 
topological details, such as the average degree, the clustering or the particular form 
of the degree distribution. The value of the exponent β has been checked for various 
〈k〉, clustering, and exponents γ of the degree distribution P(k) ~ k−γ for scale-free 
networks constructed with the uncorrelated configuration model (UCM) (Molloy 
and Reed 1995; Catanzaro et al. 2005).

4.1	 Microscopic dynamics
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Figure 6.  Temporal series of the inventory size of a single agent in different topologies. 
Top: Series from a Barabási-Albert (BA) network with N = 104 nodes and average degree 
〈k〉 = 10, for nodes of high degree (e.g. k = 414) and low degree (e.g. k = 10). Bottom: 
Series for nodes in Erdös-Rényi random graph (N = 104, (k) = 50) and  
in a one-dimensional ring (k = 2).
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Along with the global quantities we have studied so far, it is also interesting to 
investigate the microscopic activity patterns of single agents, and to study how 
they are affected by the underlying topology (Dall’Asta and Baronchelli 2006). 
In particular, in complex networks, simple properties of the degree distribution 
(namely the first two moments) turn out to dramatically affect the memory re-
quirements of the agents, in a way that depends both on the general features of 
the considered network and on the connectivity of the single agents. Without en-
tering in the mathematical details that allow for precisely quantifying the impact 
of topology on agents activity (Dall’Asta and Baronchelli 2006), a simple look 
at Figure 6 permits a qualitative idea of the relevance of the phenomenon to be 
gained. Here the time evolution of the inventory size of single agents is presented, 
and the role of connectivity patterns is evident. Top panels refers to a highly con-
nected node (i.e an “hub”) (left) and a less connected node (right) belonging to the 
same Barabási-Albert network (Barabási and Albert 1999). The bottom left panel, 
on the other hand, concerns the activity of an average node on a homogeneous 
Erdös-Rényi random graph (Erdös and Rényi 1959). Finally, the bottom right 
square presents the activity of an agent belonging to a population arranged on the 
nodes of a linear chain, whose inventory never exceeds the size of two words. In 
summary, the microscopic point of view not only supports and complements the 
study of global quantities, but also allows deeper connections between the learning 
process of the agents (i.e., the dynamics of acquisition and deletion of words of a 
single agent) and the topological properties of the system to be pointed out.

5.	 Lessons from slightly modified NGs

As mentioned above, each detail of the microscopic rules of a multi-agent model 
has a potentially dramatic effect on the observed macroscopic, population-scale 
dynamics. In this section, we survey two examples in which slight changes in the 
minimal NG rules yield interesting results. In both cases the rule under inspec-
tion is the one defining the update scheme that the agents have to follow after a 
successful interaction. In the first setting, the introduction of a simple parameter 
allows final states to be obtained, in which different words coexist forever in the 
system (Baronchelli et al. 2007). In the second scenario, on the other hand, testing 
the details of the post-success updating determine it is possible to show that the 
same global phenomenology produced by the NG and the minimal NG can be 
obtained with even simpler rules (Baronchelli 2011). In the coming section we 
analyze the main points of these variants to show the importance and the potential 
of a detailed scrutiny of all aspects of the rules defining a model, even though when 
might appear to be already very simple.
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Figure 7.  Time tx required to a population on a fully-connected graph to reach a 
(fragmented) active stationary state with x different opinions. For every stable number of 
surving words m > 2, the time tm diverges at some critical value βc(m) < βc.

A consensus-polarization transition in the minimal NG

In the minimal NG, after a successful interaction the agents delete all the words 
except the one they have just agreed upon. In (Baronchelli et al. 2007) a parameter 
was introduced, β, stating the probability of this update. All the remaining rules 
remain unchanged, and the usual model is recovered for (= 1. Thus, β mimics an 
irresolute attitude of the agents to make decisions. Interestingly, the new negotia-
tion process displays a non-equilibrium phase transition from an absorbing state, 
in which all agents reach a consensus, to an active stationary state characterized 
either by polarization or fragmentation in clusters of agents with different opinions. 
Single agents keep negotiating, and they update their inventories accordingly, but 
the statistical abundances of the surviving words are stable.

Without entering into the details, it is worth stressing that it is possible to 
identify the critical value βc analytically, for which if β > βc the final state is always 
consensus, while if β < βc two different words will survive (Baronchelli et al. 2007). 
Moreover, it can be proven, and has been observed, that the transition occurs also 
when the population is embedded in complex networks, which is remarkable since 
in many other cases disordered topologies wipe out similar transitions (Castel-
lano et al. 2009). Finally, it is interesting to note that the consensus-to-two-words 
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transition is just the first of a series of similar discontinuities. Figure 7 shows 
indeed that lowering β it is possible to tune the number of words that will survive 
asymptotically in the system.

The role of feedback

This section also takes the success rule as its focus, but a different aspect is ana-
lyzed. The fact that both agents undergo the very same operation (i.e. shrink their 
inventories to the same unique word) underlies the existence of a feedback between 
the two. In the original formulation the feedback occurs through an outside world, 
with the hearer pointing to the object he would associate with the received word. 
The speaker would then point on its turn to the right object, and both individuals 
would immediately know whether the game was a success or a failure (Steels 1995). 
In the minimal NG, however, the feedback simply consists in the hearer informing 
the speaker that he or she too has the transmitted word. In case of failure, on the 
other hand, no feedback is needed.

In (Baronchelli 2011) we have investigated what happens when only one of 
the agents updates his inventory after a successful interaction. The result is that 
the situation changes dramatically depending on whether the update is performed 
by the hearer or the speaker only, which are cases referred to as Hearer Only NG 
(ho-NG) and Speaker-Only NG (so-NG) respectively. In particular, the ho-NG 
yields a scaling of the convergence time with the population size that is the same 
as the one observed in the usual NG. The so-NG, on the other hand, is significantly 
slower. The reason beyond this difference can be understood analytically in the 
light of the generalized βmodel discussed above, showing that it spontaneously 
falls in the critical regime of the generalized model, i.e. that, for the so-NG, βc = 1.

The result concerning the ho-NG is interesting, too. Indeed, the fact that the 
ho-NG behaves substantially in the same way as the usual NG implies that the 
hearer’s feedback to the speaker is not crucial, and opens the way to the implemen-
tation of straightforward broadcasting protocols on networks, in which a speaker 
can speak at the same time to all of his neighbors without having to bother about 
receiving any feedback. Crucially this strategy allows for a faster convergence of 
the dynamics (Baronchelli 2011). It must be noted, however, that the fact that the 
ho-NG and the NG behave in the same way as far as the scaling with the system 
size of the relevant quantities is concerned holds in the framework of the minimal 
NG only. It is indeed likely to be a consequence of the fact that homonymy is not 
taken into account. In fact, feedback remains a fundamental ingredient of any 
language game, as devised by Wittgenstein (Wittgenstein 1953).
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6.	 Conclusion

The Naming Game is a fundamental model in semiotic dynamics, addressing pos-
sibly the most basic issue in the tremendously tough problem of language evolu-
tion. The minimal Naming Game that we have partially reviewed in this chapter 
is the result of a further simplification effort put forth to favor more systematic 
and deep investigations of its dynamics. Thanks to particularly transparent rules, 
that yet are able to reproduce qualitatively the same overall dynamics observed 
in the NG, the minimal version can indeed be studied in great detail resorting in 
the conceptual and technical tools developed in statistical physics and complex 
systems science. Moreover, remarkably, the minimal model has been shown to 
correctly describe experimental results on the spontaneous emergence of social 
conventions (Centola and Baronchelli 2015).

We have discussed the population-scale dynamics of the minimal NG in un-
structured as well as structured populations, pointing out the role played by the 
underlying topology. We have seen that finite connectivity implies a finite memory 
requirement for the agents, while the small-world property yields a faster con-
vergence. Finally we have looked at two slightly modified versions of the model 
bearing a consensus-to-polarization transition and some interesting insights on 
the role of feedback, respectively.

The examples we have analyzed represent only a subset of the studies trig-
gered by the definition of the minimal NG, but hopefully they give an idea of the 
potentiality of the fruitful exchange between the fields of semiotic dynamics and 
the statistical physics approach to complex systems. This method has also been 
profitably applied to more complex issues, such as categorization. In this context, 
the Category Game model (Puglisi et al. 2008), which is literally built on top of the 
minimal NG, has proven to be able to reproduce experimental data concerning 
color naming systems (Baronchelli et al. 2010; Loreto et al. 2012; Baronchelli et 
al. 2015). Different research avenues remain open for the future, ranging from 
addressing more complex problems such as the emergence compositionality (Tria 
et al. 2012; Roberts et al. 2015) to understanding the nature of language change 
(Cuskley et al. 2014; Colaiori et al. 2015), and there is consensus among the re-
searches in different disciplines on the substantial contribution that the complex 
systems approach will continue to provide (Jaeger et al. 2009).
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