
A Service Oriented Architecture for Advertising Games

P. Avesani, M. Cova, R. Tiella
ITC-irst

via Sommarive 18
38050 Povo, Italy

{avesani,cova,tiella}@itc.it

A. Sharma
Birla Institute of Technology

Department of Computer Science
835215 Ranchi, India

arun bit123@rediffmail.com

ABSTRACT
A critical issue of distributed systems is concerned with the
advertising task. Current solutions require an ex-ante agree-
ment on a common shared language. Although such an ap-
proach is feasible from the technological point of view, it
is not effective in practice. The process of managing this
agreement may present social implications that make the
solution difficult to achieve. Recent trends in research pro-
pose a new approach based on advertising games where the
agreement on a common language is produced at run time.
Nevertheless up to now such a model has been studied only
through simulations with standalone platforms. Our contri-
bution is the design and the development of the first web ser-
vices oriented architecture for advertising games. Therefore
we approached all the issues typical of distributed systems
neglected by the simulators like asynchronous communica-
tions, denial of services, and so on. Finally we present a real
world application where the architecture has been deployed
to support the advertising task using an advertising game
model.

1. INTRODUCTION
The development of distributed systems is a complex task

that becomes even more complex if one adopts the open
world assumption where single peers can autonomously de-
sign and deploy their own services. In such a scenario inter-
operability arises as a critical issue because of the hetero-
geneity of services specifications.

Advertising is one of the steps that is affected by hetero-
geneity. Usually advertising is concerned with two tasks:
service discovering and service semantics specification. In
the following we will focus on service semantics specifica-
tions.

When new services are published there is the need to no-
tify the specification of service contents. The lack of a shared
representation language makes this step harder. The seman-
tic web scientific community is currently working on this is-
sue. Mainly its research effort is pursuing two alternative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

strategies: promoting a reference ontology [5, 9] or support-
ing the reconciliation of different ontologies [3, 7, 11]. The
first approach, simple from the technological point of view, is
not feasible in practice due to sociological implications. The
second approach requires a significant manual effort because
a full automated reconciliation of ontologies is too complex.

More recently a new research trend proposes an alterna-
tive approach to overcome the need of ex-ante agreement in
favor of an ex-post agreement. The basic idea is to support
a run time process of negotiation that enables the conver-
gence to a common lexicon [15]. Differently from semantic
web, the advertising game model aims to shift the problem
from matching of representations to negotiation of lexicon.
Lexicon can be conceived as an association list that maps
labels to meanings, i.e. the service content specifications.
Of course a shared lexicon is not equivalent to an expressive
knowledge representation language. In fact, a lexicon sup-
ports only a common set of symbols to refer to a collection
of objects or categories.

There are other research initiatives to support the au-
tomated negotiation of mapping between two information
sources but these approaches don’t scale because they build
pairwise mapping [4, 12].

Naming games [14, 16], and more specifically advertising
game [1], have been proposed to support the negotiation of
a common lexicon independently from the number of play-
ers. Up to now the studies on advertising games have been
proved to be effective in dealing with the critical issues of
service advertising [2]. Simulations have been developed to
test hypothetical scenarios of distributed recommendation
systems.

The main drawback of these preliminary results is that
they are achieved through simulations on standalone plat-
form. No one has approached the issue of porting the model
based on advertising game into a full service oriented archi-
tecture.

The main contribution of this work is the design and the
implementation of a fully distributed, service oriented archi-
tecture to enable a real world deployment of an advertising
game model. With this approach we dealt with many is-
sues neglected by standalone platforms, like asynchronous
communications, denial of services and many others.

The proposed architecture has been deployed to support a
sharing annotation system among distributed blog servers.
In this specific application the advertising game is used to
align the references of distributed ski route catalogs. A first
trial is currently under test in the domain of ski moun-
taineering. Nevertheless, it is not a goal of this paper a

consumerprovider

label

label

decoding perception

encoding

PEER

actuation

object

object

Figure 1: The schema shows the four basic actions performed by a peer during the advertising game, according
to its role in the game (provider or consumer).

detailed presentation of such an application.
In the next section we briefly summarize the basic con-

cepts of advertising games. After that we illustrate the ser-
vice oriented architecture that has been designed to support
the deployment of the advertising game model in practice.
Finally we show a real world application where such an ar-
chitecture has been deployed to support the advertising task
in a fully distributed systems.

2. GAMING APPROACH TO ADVERTIS-
ING PROBLEM

An advertising game involves two or more peers. The ba-
sic interaction involves two peers with different roles: con-
sumer (or speaker) and provider (or hearer), therefore a ses-
sion of communication is not symmetric. Nevertheless each
peer can play different roles in different sessions.

More formally an advertising game is defined by a set of
peers P, of size NP where each peer p ∈ P has a set of
concepts Cp = {c1, . . . , cn} of size NC . A set of objects is
defined, O = {o1, . . . , om}, such that a subset of them can
be conceived as representative of a given concept. The ob-
jects are shared among the peers while concepts are private
of each peer. A lexicon L is a relation between concepts and
words, where it is assumed that words are composed using
a shared and finite alphabet. Lexicon is extended with a
couple of additional information: the number of times the
relation has been used and the number of times the relation
was in successful use. Each peer p ∈ P has its own lexicon
drawn from the Cartesian product Lp = Cp ×W ×N ×N ,
where W is a set of words and N the natural numbers to
represent the peers’ preferences. The lexicon may include
synonymous words, two words associated to the same con-
cepts, and homonymous words, the same word can be as-
sociated to two different concepts. A peer p ∈ P is then
defined as a pair p =< Lp, Cp >.

An advertising game is an iterative process where at each
step two peers are selected to interact together. The inter-
action proceeds as follows (see Figure 1). First the speaker
ps randomly selects a concept from its set of concepts, then
it encodes the concept cs ∈ Cs through a word wj . The word
is chosen accordingly to the current version of the local lex-
icon Ls (local to speaker ps). The denotation of concept cs

is obtained looking at the most successful word. A word wj

is more successful than a word wk iff < cs, wj , uj , aj >∈ Ls,
< cs, wk, uk, ak >∈ Ls, uj ≥ uk and either aj/uj > ak/uk

or aj/uj = ak/uk and uj > uk, where uj represents how
many times the word wj has been used and aj represents
how many times there was an agreement on word wj with
other peers. In case of a tie, a random choice is performed.

The hearer ph decodes the word wj retrieving the associated
concept ch ∈ Ch looking at its own lexicon Lh.

The next step is concerned with the actuation task. Ac-
tuation can be modeled as a function fa : C −→ 2O that
takes in input a concept and gives in output a subsample
of objects. Actuation function has a stochastic component,
therefore two subsequent invocations of fa(ch) do not nec-
essarily produce the same outcome. The outcome of actu-
ation is sent back to the speaker. Once received a sample
of objects, the speaker has to deal with the perception task.
Perception can be modeled as a function fp : 2O −→ C that
takes in input a sample of objects and gives in output an
hypothesis of concept, namely ĉh, that may subsume such a
sample. Of course the hypothesis formulated by the percep-
tion function is sensitive to the size of the sample.

The last step is concerned with the assessment. The
speaker has to verify whether the concept perceived from
the hearer’s objects is the same selected at the beginning
of the communication session. The assessment process can
now be carried on easily checking the condition cs = ĉh.

If the concept referred by the hearer is the same selected
by the speaker, both of them give a positive reinforcement
to their lexica updating the corresponding word-concept as-
sociation as follows: < cs, wj , uj + 1, aj + 1 >∈ Ls and
< ch, wj , uj + 1, aj + 1 >∈ Lh. If the hearer replies with
a different concept cs 6= ĉh, it means that the communi-
cation failed, the peers’ lexicon is updated with a negative
reinforcement increasing only the counters of lexical rela-
tion (while the counters of agreements on the lexical re-
lation remain the same): < cs, wj , uj + 1, aj >∈ Ls and
< ch, wj , uj + 1, aj >∈ Lh.

3. AN ARCHITECTURE FOR ADVERTIS-
ING GAME

Now that we have laid out the theoretical basics of the
advertising game technique, it is time to discuss the archi-
tecture we propose for its concrete realization. While some
implementations already exist, e.g. [13], they only consist
of stand-alone simulators that lack the distributed nature
of the model. The architecture presented here, by contrast,
brings the model into a fully distributed environment, where
its strength and weak points can thoroughly and more real-
istically be evaluated.

In fact, the main goal that guided the design of our archi-
tecture was to support an open-ended distributed system.
The architecture promotes heterogeneity (by only specify-
ing the minimal set of requirements needed for interoper-
ability and allowing for alternative solutions to be adopted
in many parts of the system), autonomy (by avoiding strong

Figure 2: The architecture of the component that implements the advertising game technique.

or centralized coordination among parts of the system), and
robustness to evolution (by taking into account that the sys-
tem is inherently dynamic and subject to change).

By providing an implementation of the advertising game
technique, we target legacy distributed systems, where peers
are interconnected and cooperating, but have no or little
ability to interoperate in terms of lexicon alignment, as ex-
plained in the introduction. Therefore, from the software
engineering point of view, the main challenge of our research
is to realize a component that can be transparently plugged
into an existing distributed system, requiring no or as few
as possible modifications to its legacy parts. We decided
to focus especially on web services based systems, because
they represent the current solution of choice for distributed
systems interoperability.

The component that implements and encapsulates the ad-
vertising game technique is made up of three modules: the
Game Engine Module (GEM), the Game Strategy Module
(GSM), and the Game Protocol Module (GPM). The GEM
module provides the set of primitives needed to perform the
advertising game, the GSM module models and realizes the
strategy used during a game, the GPM module provides
communication primitives. GEM and GPM are providers
of mechanisms: they implement and export the building
blocks of the advertising game technique. The GSM mod-
ule, by contrast, realizes policies: it specifies which of these
building blocks should be used and how they should be com-
bined to perform a game. The key advantage obtained by
this division of the system is that it allows to clearly sep-
arate communication protocols from gaming strategies. As
a consequence, only protocols need to be defined at sys-
tem level, while strategies can be autonomously decided by
each peer. Furthermore, changes in one module do not affect
other modules as long as the common interface remains con-
stant. A graphical description of the architecture is given in
Figure 2.

We start describing the component architecture from the
Game Strategy Module. The GSM module represents the
core part of this architecture. It encompasses the “intelli-
gence” of the peer and informs its acts during the game. It
is in charge of a number of activities: deciding when to start
a new game and how long it is to last, what are the concepts
to play with, which peers are to be taken as opponents, how
to evaluate other peers’ performance, what type of feedback

to provide on current lexicon on the ground of past game
results.

At this point of our research, different choices for each of
these activities seem to be reasonable and worth more ex-
perimentation. It is therefore critical being able to easily
implement, test, and compare different alternatives. While
one can think of many technologies to model a strategy
and implement its runtime, our favor went to BPEL4WS.
BPEL4WS is a composition language normally used to per-
form web services orchestration. It fits our requirements
with its built-in coordination features, relatively high-level
flow control constructs, and the ability to use services offered
by external components through standard invocation inter-
faces. Other appealing features of BPEL4WS are its rela-
tively high level of abstraction, the possibility to do quick,
graphical programming, and its flexibility.

<sequence>

<invoke name="choosePeer" partner="GEM"

portType="GemPT" operation="pickPeerAtRandom"

outputContainer="PeerInfo" />

<assign><copy>

<from variable="PeerInfo" part="PeerURL" />

<to variable="Message" part="PeerURL" />

</copy></assign>

<invoke name="chooseConcept" partner="GEM"

portType="GemPT" outputContainer="ConceptInfo"

operation="pickConceptAtRandom" />

<invoke name="denote" partner="GEM"

portType="GemPT" operation="denote"

outputContainer="LabelInfo" />

<assign><copy>

<from variable="LabelInfo" part="Label" />

<to variable="Message" part="Label" />

</copy></assign>

<invoke name="sendLabel" partner="GPM"

portType="GpmPT" operation="sendLabel"

inputContainer="Message"

outputContainer="Examples" />

</sequence>

Figure 3: BPEL4WS code that implements a step
of the strategy.

BPEL4WS processes realize strategies selecting and or-
chestrating primitive services offered by the GEM and the
GPM modules 1. In fact, a typical step in a strategy re-
quires the following operations: choose from the primitives
offered by GEM one that provides the desired functionality,
e.g., choose the peer to be challenged next according to a
particular selection method, for instance, randomly. Then,
invoke the primitive and collect the result, e.g., get infor-
mation about the peer, in particular its address. Use this
information as intended, e.g., leverage the information about
the chosen peer to guide the selection of the concept to play
with. Lastly, communicate, if needed, to a remote peer via
one of the primitives defined in GPM.

This step of the strategy may be described by the follow-
ing pseudo-code snippet:

Peer p := GEM.pickPeerAtRandom();

Concept c := GEM.pickConceptAtRandom();

Label l := GEM.denote(c);

sendLabel(p, l);

Its BPEL4WS implementation is shown in Figure 3.
The GPM module embeds the choreography 2 of the dis-

tributed system: it defines the protocols available for inter-
peer collaboration in terms of sequences of communication
primitives.

We identified two fundamental protocol variants: pull-
based and push-based protocols. In the pull-based protocol,
the speaker chooses the label to play with, sends it to the
hearer and waits for a set of examples. Finally, the per-
ception step allows the speaker to align its lexicon to the
hearer’s lexicon. By contrast, in the push-based protocol,
the speaker chooses the label to play with and a set of ex-
amples and sends them to the hearer. The hearer then per-
forms the perception step and updates its lexicon to align
it with the speaker’s. Symmetrical feedback protocols are
also possible: in this case, the variants discussed above are
extended with a final feedback message, from the speaker to
the hearer in the pull-based version, from the hearer to the
speaker in the push-based version.

Accordingly with this sketch of the protocols, the GPM
module provides primitives

• To send a peer a label;

• To send a label and a set of examples;

• To send a set of examples;

• To send a feedback message.

Higher level characteristics of the communication proto-
col, such as timeout settings and exception conditions han-
dling, are left to be decided to the strategy module. For full
details on the communication protocol, refer to [6].

1Some BPEL4WS engines adopt the WSIF [8] framework
which allows to define Java bindings to invoke services.
When available, we leveraged this technology to minimize
inter-module communication cost.
2We use the term “choreography” as defined in the Web
Services Choreography Description Language draft [10]:

[Choreography] defines from a global view-
point [web services’] common and complemen-
tary observable behavior, where message ex-
changes occur, when the jointly agreed ordering
rules are satisfied.

Support and enforcement of choreography represent the
minimal requirement to be satisfied for interoperability. In
other words, as long as an implementation of the GPM prim-
itives is provided, alternative realizations of the advertising
game technique can be developed, even adopting different
design or technologies, and still maintain interoperability
with the architecture we propose.

The last module of the advertising game component is the
Game Engine Module. The game engine has to provide an
implementation of the operations that are used internally by
a peer during a game. In particular, it offers methods

• To select concepts to play with;

• To select peers to be challenged;

• To perform the reification step;

• To perform the denotation step;

• To perform the perception step;

• To update the lexicon on the basis of game results;

• To extend the lexicon if a new label or concept are
learnt during the game.

These basic activities can be performed in many different
ways. As an example, let consider the activity of select-
ing the peer to play with the next game. One can imagine
alternative criteria to guide this process: e.g., random se-
lection among the set of known peers, selection on the basis
of the number of past contacts or past performances, or
more sophisticated selection techniques such as active sam-
pling. The GEM module collects and makes available the
implementations of each different criterion to the strategy
module.

Consequently, it is clear that the GEM module has no
requirement of minimality, as it was for the communication
primitives. Instead, it provides an open-ended collection
of activity realizations that can grow with the necessity of
devising more complex strategies. At first glance, for each
basic activity there seems to be a limitless number of alterna-
tive realizations. However, we expect that further research
on advertising game strategy will help single out those crite-
ria that really are helpful for building a shared lexicon and,
thus, that the number of implementations needed will be
quite limited.

To get a feeling of the primitives that the GEM module
might make available, Table 1 shows some variants for the
activities of perception, concept and peer selection.

It should be further noted that different peers can have
completely disjointed sets of gaming primitives, e.g., one
adopts the random peer selection mechanism, the other opts
for a selection based on the history of past games. The only
requirement is that every peer has at least one realization
for each activity, i.e., each peer must be provided with an
operation to choose the next game opponent.

While minimality and standardization of communication
primitives guarantee interoperability of peers, extendability
and specialization of game engines promote differences in
peers’ personalities and lexicon building behaviors.

Differences in the purpose of modules is reflected in the
technology used to implement them. To encode the busi-
ness logic, we use Java, because it offers a convenient en-
vironment to implement computationally demanding activ-
ities required by some game primitives. We have already

Activity Family Variants Input Output

perceive
perceivePairwiseMatching Concept, ExampleSet int
perceiveMachineLearning Concept, ExampleSet int

pickConcept

pickConceptAtRandom Concept
pickConceptAfterPeer Peer Concept
pickMostUsedConcept Concept
pickLeastUsedConcept Concept

pickPeer

pickPeerAtRandom Peer
pickPeerActiveSampling Peer
pickPeerAfterConcept Concept Peer
pickMostContactedPeer Peer
pickMostFriendlyPeer Peer

Table 1: An excerpt of the primitives made available by the GEM module.

discussed the advantages of using BPEL4WS to define the
games strategies. Lastly, for the communication protocol,
we turned to web services technology to benefit from its in-
teroperability, reusability and deployability characteristics.

4. A REAL WORLD APPLICATION
The technique and the architecture described in the pre-

vious sections are currently under test in a real-world appli-
cation in the domain of ski mountaineering.

It is common for ski mountaineers to form on-line commu-
nities. A community is aggregated around a web site that
generally offers two kinds of services: a ski route catalog and
a ski trip annotation list. Ski routes are mainly concerned
with persistent, static and validated information while ski
trips are usually volatile, fresh and not certified.

The ski routes catalog provides information about ski rou-
tes. For each ski route it generally gives geographical in-
formation, e.g., starting and ending point of the route, a
measure of the its difficulty, and other details that might be
useful, e.g., an estimate of the time needed to complete it.
Members of the community are encouraged to write com-
ments about their excursions on routes contained in the site
catalog. These annotations take the form of a report of a
trip and provide information about dynamic aspects of the
route, e.g., snow conditions, presence of dangers, etc. Anno-
tations are collected in the ski trip annotation list and made
available to all members of the community.

The typical use case for the services offered by a similar
site is as follows. A ski mountaineer browses the ski route
catalog to identify a number of candidate routes for her next
trip. Her choice among all possible destinations is guided
by her reading of other users’ annotations. For example,
she might decide not take a trip if another ski mountaineer
signaled in his trip annotation the danger of avalanches on
that route.

In the scenario described so far, ski mountaineers have ac-
cess only to the annotation list provided by their own com-
munity. However, many ski mountaineering communities
exist and their catalogs present large overlapping sections,
i.e., the same routes are recorded on multiple sites. There-
fore, annotations about trips done along the same routes
are produced in different communities. Nevertheless, it is
important to maximize the sharing of past trip experiences
in order to achieve better trip planning and safer ski trips.
Thus, there is a need for inter-community annotations ex-
changing and sharing.

Aggregation services are designed to solve this problem.

Essentially, an aggregation service collects annotations from
different sources and builds a reverse mapping between an-
notations and annotated items. That is, given a certain
item, it allows to access all known annotations referring to
it.

It is clear that to make this approach effective the aggre-
gation service must have a way to understand that different
annotations, generally originating from different sources, re-
fer to the same item. In other words, items must be globally
identified. As an example, let consider the case of an ag-
gregator serving a certain number of readers communities,
where annotations consist of comments about books. In this
domain, the ISBN number represents a global identifier of a
book. Therefore, as long as every annotation uses the ISBN
number to identify the book it refers to, the aggregator can
easily associate a book to its comments.

Unfortunately, a unique global identifier is not available
for most domains. In particular, not only there is no global
reference catalog for ski routes, but also an effort in this
direction is not foreseeable in the future. What is needed
then, in order to make possible the sharing and aggregation
of ski trip annotations, is a method to dynamically build a
common ski route catalog that does not require a standard-
ization or agreement effort.

The model based on the advertising game technique and
the service oriented architecture that we illustrated in previ-
ous sections satisfy this need. In particular, the advertising
game technique can be leveraged to originate a common ref-
erence system for ski routes without requiring any kind of
ex-ante agreement among different ski mountaineering sys-
tems.

This common reference system allows single communi-
ties to preserve their autonomy in the design of ski route
schemas, while, at the same time, permits ski mountaineers
to effectively access trip annotations independently from the
specific catalog they refer to.

Let examine how the advertising model maps to the ski
mountaineering domain. Ski mountaineering web sites play
the role of peers. Ski routes map to concepts. They are pri-
vate to each peer, in the sense that a peer is free to model a
route adopting the schema it prefers. As a consequence, gen-
erally, different sites represent the same routes in different
ways. The role of objects is played by concrete represen-
tations of ski route models. A common choice to represent
a ski route is to provide an XML linearization of the in-
formation available for the route. For example, Figure 4
shows such linearization for the same route as modeled by

two different ski mountaineering sites.

<item>

<id>5947</id>

<top>Monte Cevedale (Zufallspitze)</top>

<region>Ortles</region>

<title>Dalla Vedretta di Solda</title>

<global_difficulty>PD+</global_difficulty>

<ski_difficulty>S3</ski_difficulty>

<base_height>2600</base_height>

<top_height>3757</top_height>

<gap>1300</gap>

<exposure>NW</exposure>

</item>

<route>

<trip_id>2109</trip_id>

<end_p>Cevedale (Monte)</end_p>

<start_p>da Solda</start_p>

<area>Alto Adige</area>

<district>null</district>

<valley>Valle di Solda - Suden tal</valley>

<difficolty>BSA</difficolty>

<exposure>N</exposure>

<start_h>2610</start_h>

<end_h>3769</end_h>

<gap>1159</gap>

<start_place>Solda, Funivia di Solda</start_place>

</route>

Figure 4: Representation of the same route on two
different ski mountaineering web sites.

A critical step in the advertising game is represented by
the assessment task. It is in charge of evaluating whether
two route linearizations represent the same ski route, possi-
bly modeled using different schemas. At the moment the as-
sessment task is performed using a bipartite matching algo-
rithm. The linearizations are divided in tokens and schema
information is dropped. This leaves with two sets of tokens,
in our example {5947, Monte Cevedale (Zufallspitze), Or-
tles, Dalla Vedretta di Solda, PD+, S3, 2600, 3757, 1300,
NW} and {2109, Cevedale (Monte), da Solda, Alto Adige,
null, Valle di Solda - Suden tal, BSA, N, 2610, 3769, 1159,
Solda, Funivia di Solda}. A bipartite matching algorithm
is then used, given a distance function, to find the optimal
matching of tokens. The assessment ends successfully if the
evaluation of the matching is above a given threshold. More
experimentation is underway to improve and tune the algo-
rithm.

It should be clear, then, that the advertising game is com-
pletely independent from ski route schemas and dependent
only on route information. The underlying assumption is
that while the modeling of a ski route can be done in many
different ways, i.e., there is high variance on schema models,
the information that describes a route is rather homoge-
neous.

5. CONCLUSIONS AND FUTURE WORK
The paper focuses the attention on a recent approach to

advertising based on the notion of advertising games. After
a brief summary of the basic concepts of advertising games,

we have introduced a service oriented architecture to sup-
port a real distributed implementation of such a model. We
argued how the design choices are compliant with the re-
quirements of distributed systems. More in detail, we aimed
to minimize the global assumption enabling autonomous lo-
cal design choices.

The next step will be concerned with the evaluation of the
architecture in a real world setting that has been recently
deployed in the domain of ski mountaineering. We are cur-
rently testing it in a scenario that involves three web sites:
www.moleskiing.it, www.skirando.ch and www.gulliver.it.

From the technological point of view we are particularly
interested in assessing whether BPEL4WS is effective in de-
veloping flexible alternative strategies for evolutionary ad-
vertising games.

6. ACKNOWLEDGEMENTS
We would like to thank Paolo Busetta for his suggestion

on BPEL4WS as a powerful tool for game strategy encoding.
Alessandro Agostini and Paolo Busetta helped us to revise
this paper.

This work was partially funded by the DiCA project,
thanks to a grant of INRM (Istituto Nazionale Ricerca Mon-
tagna) and PAT (Provincia Autonoma di Trento).

7. REFERENCES
[1] A. Agostini and P. Avesani. Advertising games for

web services. In R. Meersman, Z. Tari, and D. Schmit,
editors, Eleventh International Conference on
Cooperative Information Systems (CoopIS-03), Berlin
Heidelberg, 2003. Springer-Verlag LNCS.

[2] P. Avesani and A. Agostini. A peer-to-peer advertising
game. In M. Orlowksa, M. Papazoglou,
S. Weerawarana, and J. Yang, editors, First
International Conference on Service Oriented
Computing (ICSOC-03), pages 28–42, Berlin
Heidelberg, 2003. Springer-Verlag LNCS 2910.

[3] S. Bergamaschi, S. Castano, and M. Vincini. Semantic
integration of semistructured and structured data
sources. SIGMOD Record, 28(1):54–59, 1999.

[4] P. Bouquet, L. Serafini, and S. Zanobini. Semantic
coordination: a new approach and an application. In
Second International Semantic Web Conference,
volume 2870 of Lecture Notes in Computer Science,
pages 130–145. Springer Verlag, September 2003.

[5] J. Broekstra, M. C. A. Klein, S. Decker, D. Fensel,
F. van Harmelen, and I. Horrocks. Enabling knowledge
representation on the web by extending RDF schema.
In World Wide Web, pages 467–478, 2001.

[6] M. Cova, A. Sharma, and R. Tiella. Specification of a
service oriented architecture for advertising games.
Technical Report T04-06-01, ITC-irst, June 2004.

[7] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning
approach. In SIGMOD Conference, 2001.

[8] M. J. Duftler, N. K. Mukhi, A. Slominski, and S. W.
ana. Web Services Invocation Framework (WSIF). In
OOPSLA 2001 Workshop on Object-Oriented Web
Services, 2001.

[9] J. Hendler and D. McGuinness. Darpa agent markup
language. IEEE Intelligent Systems, 15(6), 2000.

[10] N. Kavantzas, D. Burdett, and G. Ritzinger. Web
services choreography description language version
1.0. http:
//www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 27
April 2004. W3C Working Draft.

[11] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In The VLDB Journal,
pages 49–58, 2001.

[12] B. Magnini, L. Serafini, and M. Speranza. Linguistic
based matching of local ontologies. In Workshop on
Meaning Negotiation (MeaN-02), Edmonton, Alberta,
Canada, July 2002.

[13] A. McIntyre. Babel: A testbed for research in origins
of language. In Proceedings of COLING-ACL 98,
Montreal, 1998. ACL.

[14] L. Steels. Grounding symbols through evolutionary
language games. In A. Cangelosi and D. Parisi,
editors, Simulating the evolution of language, pages
211–226. Springer Verlag, London, 2001.

[15] L. Steels and F. Kaplan. Bootstrapping grounded
word semantics. In T. Briscoe, editor, Linguistic
evolution through language acquisition: formal and
computational models, chapter 3, pages 53–73.
Cambridge University Press, Cambridge, 2002.

[16] L. Steels and A. McIntyre. Spatially distributed
naming games. Advances in complex systems, 1(4),
January 1999.

