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Abstract
This paper reports on the current state of our efforts to shed
light on the origin and evolution of linguistic diversity by
using synthetic modeling and artificial life techniques. We
construct a simple abstract model of a communication
system that has been designed with regard to referential
signaling in nonhuman animals. The evolutionary dynamics
of vocabulary sharing is analyzed based on these
experiments. The results show that mutation rates,
population size, and resource restrictions define the classes
of vocabulary sharing.  We also see a dynamic equilibrium,
where two states, a state with one dominant shared word
and a state with several dominant shared words, take turns
appearing. We incorporate the idea of the abstract model
into a more concrete situation and present an agent-based
model to verify the results of the abstract model and to
examine the possibility of using linguistic diversity in the
field of distributed AI and robotics. It has been shown that
the evolution of linguistic diversity in vocabulary sharing
will support cooperative behavior in a population of agents.

Introduction

Chomsky’s famous claim that from a Martian’s-eye-view
all humans speak a single language, is surely plausible.
However, in our view it is true that we have thousands of
mutually unintelligible languages. Terrestrial scientists
have no conclusive answer as to why this linguistic
diversity exists (Pinker 1994). While the quest for the
origin of diversity in languages is a challenging theme,
diversity in species is also one of the most important
themes in biology.  Charles Darwin stressed the importance
of language difference and linked the evolution of
languages to biology (Darwin 1871).

The study of communication/language from an alife
perspective has received a great deal of attention lately
(Steels 1997). Some of the first experiments were
conducted by MacLennan (1991) and Werner and Dyer
(1991). MacLennan considered a population of simple
organisms, represented genetically by truth tables, and
created a shared environment through which the organisms
could pass initially arbitrary signals. It was observed that
effective communication evolved in the population based
on their scoring function. The simulation experiment by
Werner and Dyer successfully demonstrated the evolution
of a system for signaling between members of opposite

sexes to coordinate mating behavior. In their model,
explicit scoring functions were not used, and instead
effective communication allowed males to find females
more rapidly, and thus increased the reproductive rate of
the individuals that communicated effectively.

Concerning the evolution of grammar, Batali (1994)
constructed a model for the evolution of grammar, and
performed the simulations of evolution on populations of
simple recurrent networks where the selection criterion was
the ability of the networks to recognize strings generated
by grammars. The results suggested a new explanation for
the “critical period” effects observed in language
acquisition. Hashimoto and Ikegami (1995) studied the
evolution of grammar systems in networks using an agent
model. In their model, the individual grammar was
expressed by a symbolic generative grammar, and each
agent was ranked explicitly by three scores in each round:
speaking, recognizing and being recognized. It was
observed that two processes, a module type evolution and a
loop forming evolution, were significant. The number of
recognized words rapidly increased when a module
emerged in a grammar system, and many words could be
derived recursively by a grammar processing a loop
structure.

There have not been many studies concentrating on the
issue of the linguistic diversity from an evolutionary
perspective.  Werner and Dyer (1991) showed that
“dialects” that are bilingual (i.e., correctly interpret several
signaling protocols) have an increased chance of
dominating over time.  Also, Hashimoto and Ikegami
(1995) studied the diversity of spoken words produced by
symbolic grammar systems in terms of the computational
ability of automata, where their computational ability was
the ratio of recognizable words to the total number of
possible words.

The most straightforward explanation for the origin of
linguistic diversity is based on spatial distribution of
individuals (Arita, Unno, and Kawaguchi 1995). The
following two studies have supported this view. Arita and
Taylor (1996) constructed a simple communication model
in which a population of artificial organisms with neural
networks inhabited a lattice plane and each organism
communicated information with neighbors by uttering
words. The results of the experiments showed that the
accumulation of mutation, propagation delay and the



effects of inheritance produce very complex dynamics,
while learning by neural networks and selection of parents
have large effects on language unification. Through their
experiments on naming games, Steels and McIntyre (1997)
showed that agent interaction, which depends on spatial
distribution, determines the degree of diversity in
vocabulary. Their research takes the view that linguistic
information evolves and is transmitted culturally, not
genetically.

There have been other explanations of the origin of
linguistic diversity. Hutchins and Hazlehurst (1995)
presented simulations employing communities of simple
agents in order to model how a lexicon could emerge from
interactions between agents in a simple artificial world.
Their models were not based on the evolutionary
perspective, but on the connectionist approach. They
occasionally observed that the random initial starting
points of the networks in a community were incompatible
with each other, and this led to divergence in the verbal
representations of these individuals.

Recently, Werner and Todd (1997) have extended their
previous model to focus on exploring the idea that the
origin of diversity in communication signals is due to
sexual selection. In their new model, communication
signals were used to attract females as mates, and sexual
selection drove the evolution of male songs and female
song preferences. Each male had genes that directly
encoded the notes of his songs, and females’ genes
encoded a transition matrix used to rate transitions from
one note to another in male songs.  Each entry in the
transition matrix represented the female’s expectation that
one pitch would follow another in a song. They have
adopted three methods for scoring the male songs, one of
which is based on the idea in ethology that females
exposed to the same song repeatedly will become bored
and respond to that song less. They have shown that sexual
selection could lead to maintenance of signal diversity,
which was at its maximum in an initial population with
many different male songs.

The first goal of our paper is to investigate the origin
and evolution of linguistic diversity from an evolutionary
perspective.  To do this we construct minimal models that
are designed with regard to referential signaling in
nonhuman animals and analyze their evolutionary
dynamics based on the synthetic experiments. The second
goal is to examine the possibility of utilizing linguistic
diversity in the fields of distributed AI and robotics, based
on the results of the above experiments. We believe that a
very simple communication system can continue to
generate linguistic diversity in an environment without
spatial distribution.  This supports the hypothesis that in an
environment with limited amounts of resources that
contains individuals with poor linguistic facilities,
linguistic unification is not necessarily adaptive.

Section 2 discusses the design of the abstract model
based on the communication systems among the nonhuman
animals, and shows the results of the experiments. Section
3 constructs an agent-based model by introducing the

evolutionary mechanism of the abstract model into a
concrete situation in order to verify the results obtained in
Section 2.  Section 3 also examines the possibility of
utilizing the mechanism in engineering fields. Section 4
discusses several issues concerning the origin and
evolution of linguistic diversity and its application, based
on the results described in the previous Sections. Section 5
summarizes the paper.

Abstract Model

Background
Seyfarth, Cheney, and Marler’s pioneering work (1980) on
the vervet monkey’s alarm call system revealed that they
produce acoustically distinct and discrete alarm call types,
and in response to hearing such calls, individuals respond
with behaviorally appropriate escape responses. It is a
remarkable point that vervet monkeys are born with the
ability to respond appropriately to general predator
categories (e.g. things up in the air, slithering things on the
ground), where learning plays virtually no role in
modifying signal structure, either during early
development or later in life (Hauser 1996). A referential
system is functionally significant because when an
individual hears an alarm call, an appropriate antipredator
response can be initiated without having to see what is
going on. In fact, the vervet monkey’s alarm call system is
a beautiful illustration of how selection pressures might
have favored signal diversification (Hauser 1996). An all-
purpose alarm call would not work for vervet monkeys,
because it would not provide sufficient information about
the type of predator or escape response that would be most
appropriate.

Since the work on the vervet monkey’s alarm call
system, several other studies have focused on the problem
of referential signaling in nonhuman animals, including
other simian primates (e.g., rhesus macaques), prosimians
(e.g., ringtailed lemurs), and a few other species (e.g.,
domestic chickens). It has become clear that these signals
are used in various contexts such as predator encounters,
discovering food, and social relationships. For example,
when a food call is given, listeners obtain information
about the availability of alternative food sources, which
can serve to guide their foraging decisions. Characteristics
of these communication systems, especially in primates,
are as follows:
・ The communication systems are composed of speakers

and listeners. Those who encounter the predators (or
food) produce acoustically distinct and discrete alarm
(or food) calls, and in response to hearing such calls,
listeners behave appropriately.

・ The signals are referential in the sense that they are
reliably associated with objects and events in the
environment.

・ They don’t react instinctively as a direct expression of
their internal states. They send the signals with some



primitive type of intention on the assumption of the
existence of listeners.

・ They are born with ability to respond appropriately to
general categories. Learning plays a relatively small
role in modifying signal structure.

・ These types of communication systems illustrate how
natural selection might have driven signal
diversification.

The first steps toward human languages are still
shrouded in mystery despite the studies and controversies
in many fields, but the above described communication
systems might be strong candidates for the immediate
steps, in other words, the “protolanguages”. This paper
aims at exploring the origin and evolution of linguistic
diversity using two different types of models (in Section 2
and Section 3) with a communication system which is
constructed with regard to this type of communication
system observed in nonhuman animals.

Definition
The communication system in our models is composed of
Npop individuals. Each has a simple vocabulary system that
is represented by a table which relates words and meanings
as shown in Fig. 1. Identical words can appear more than
one time, which corresponds to homonyms (word 12 in this
figure), while each meaning appears one time in this table.
These tables describe innate information, and are
transmitted to offspring by genetic operators.

Fig.1 An example of vocabulary table.

First an initial population of Npop individuals with
randomly generated vocabulary tables is generated. A
signaler and Nrec listeners are randomly selected in the
beginning of each “conversation”.  In a conversation, a
word is uttered by the signaler, and each listener is one of
the following three types, based on the interpretation of the
word:
・ a listener that has the word in its vocabulary table, and

its meaning is equal to the meaning in the signaler’s
vocabulary table (“right listener”),

・ a listener that has the word in its vocabulary table, but its
meaning is not equal to the meaning in the signaler’s
vocabulary table (“misunderstanding listener”),

・ a listener that doesn’t have the word in its vocabulary
table (“ignorant listener”).

In the case that the received word is a homonym in the
listener’s vocabulary table, one meaning is randomly
selected as its interpretation. Fig. 2 shows an example
where a signaler sends the word 5 which expresses the
meaning 2.

Here, we divide the “right listeners” into “successful
listeners” and “unsuccessful listeners”, because it would be
necessary to take these constraints into consideration in

many situations investigated. For example, in the case of
the food call, some of the listeners that wish to obtain the
food might nonetheless fail to do so, because of feeding
competition. In the case of the alarm call, some of the
listeners that intend to respond with behaviorally
appropriate escape responses might nonetheless fail in their
effort to escape from the predator.

In every conversation each individual belongs to one of
the following categories: signaler, successful listeners,
unsuccessful listeners, misunderstanding listeners, ignorant
listeners, or nonparticipants, as shown in Fig. 2, and they
are rewarded with Rsend, Rshare, Runshare, Rwrong, Rignorant,
or Rout, respectively. There can be positive, negative, and
zero values. These rewards are genetic fitness scores  for
signaling.

Fig. 2 An example of conversation.

After this process of conversation is repeated Nconv
times, the information in the vocabulary tables is passed on
to offspring by genetic operations. The next generation that
is composed of also Npop individuals, is created by roulette
selection based on the scores, where mated vocabulary
tables cross over at a randomly-selected point of columns
(Fig. 3). Then, mutation is performed on each word in the
vocabulary tables with some probability Pmut, where the
word is changed to a randomly selected word.

Fig. 3 An example of cross over on vocabulary table.
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Experiments
We have conducted simulations following the procedure
described above. The abstract model is general in the sense
that it can represent many situations depending on the
values of the rewards. In this paper, we examine the
communication system in the context that an individual
finds a food source and utters the word for its meaning (the
type of the food). We leave until later the case of alarm
calls, though we see no reason why it should be different.

The number of the population (Npop) was 64. If the
number of the right listeners was not more than 4 in a
conversation, all of the right listeners were considered to
be successful and to obtain Rshare. Otherwise, 4 successful
listeners were randomly selected from the right listeners,
and the remaining right listeners were considered
unsuccessful because of competition. The individual that
found the food source and successful listeners shared the
food source equally, that meant Rsend = Rshare = Rfood /
(n+1), where the amount of the food source was Rfood and
the number of the successful listeners was n. Rfood was set
to be an arbitrary constant, 20. The reward for the
individuals that interpreted the uttered word correctly, but
couldn’t obtain the food source (Runshare), was –3. The
reward for the individuals that misunderstood the uttered
word (Rwrong) was –2. The reward for the individuals
which did not have the uttered word in their vocabulary
tables (Rignorant), and the reward for the individuals which
didn’t join the conversation (Pout), were –1 and 0,
respectively. The number of the individuals which joined
the conversation was always 20 (Nrec+1). Each generation
had 500 conversations (Nconv). Each word was expressed
by an integer I (0 <= I <= 99). In this paper, we have
investigated the case that there is only one type of food
source (the size of vocabulary table was one) for
convenience of the analysis.

Fig. 4 a)-d) show the evolutionary dynamics in
vocabulary sharing where mutation rates (Pmut) are 0.01,
0.015, 0.04, and 0.1 respectively. The horizontal axes
represent the generations. The vertical axes represent the
distribution of words corresponding to the meaning, and
each same gray level means that an identical word is
dispatched to the meaning.

It has been shown overall, from these figures, that the
lower the mutation rate becomes, the more individuals
have the same word for the meaning. The states of how the
meaning was typically shared among the population were
classified into the following 4 classes (the threshold values
are approximate numbers).

Class A (Pmut is less than 0.015, Fig. 4a)):
A dominant word emerges, and the state becomes

stable.
Class B (Pmut is nearly 0.015, Fig. 4b)):

The state that 3-6 words coexist and the state that
one word spreads, appear in turn.
Class C (Pmut is more than 0.015 and less than 0.07,
Fig. 4 c)):

Several words coexist. New words appear and
then disappear repeatedly.

Class D (Pmut is more than 0.07, Fig. 4d)):
The state changes in a chaotic manner.

a)

b)

c)

d)

Fig. 4 Evolution of vocabulary sharing:
Rmut = a) 0.01, b) 0.015, c) 0.04, d) 0.1.

In class B, the latter state was broken by an individual
which had a new word generated by mutation. The reason
this occurred is considered to be that the merit to the
mutant of monopolizing the food sources it found was
larger than the merit of sharing the sources found by the
others by receiving the information of their existence at
that moment. It is shown here that the unification of
vocabulary tables in the population is not necessarily
adaptive, which is a remarkable point.

We have conducted another series of experiments
concerning the effects of the population size, and those
concerning the effects of the amount of the source (Rfood).
Some of the results are shown in Fig. 5a)-b). It can be
found from these figures that an increase (decrease) in
population size has the similar effects to an increase
(decrease) in mutation rate. One of the things that we
notice is that there is a difference between those occasions
where many words coexist generated by increasing the
mutation rate, and those occasions where many words
coexist because of increased population size. In the former,
the individuals with a new word appeared repeatedly and
the states are changing.  However, in the latter, the state
has a tendency to be stable without allowing the
individuals with a new word to appear. The experiments on
the effects of varying the amount of the food source have
shown that the more the amount of the food source is, the



more individuals have a same word for the meaning.

a)

b)

Fig. 5 Effect of varying population size:
Npop = a) 32, b) 128.

Fig. 6 shows the relation between the state of
vocabulary sharing and the scores of agents when Pmut =
0.015. The upper part of this figure shows the state of
vocabulary sharing, the middle part shows the average
score of individuals, and the lower part shows the number
of the words shared by more than 3 agents. It is easy to
make a distinction between the occasion where several
words coexist and the occasion where there is only one
dominant word in the middle graph. It is regarded as the
cause of reduced scores in the state with a dominant word
that a large number of individuals with the identical
vocabulary obtained the reward (cost) Punshare frequently
in this state.

It has been assumed in all of the experiments to this
point that any individual who has found the food source
always signals. Here, we make a minor modification in the
settings in order to investigate the motivation of signalers.
We interpret that a specified word (the word 0 in this series
of experiments) means being silent. If an individual who
has found a food source has the word 0 corresponding to
the food source, then it will not signal at all. Therefore, it
could monopolize the food source, which will be a merit,
but at the same time it can’t obtain the information about
the existence of the other food sources when the other
individuals find them, which will be a demerit. The
experiments have been conducted under the same
conditions (Pmut = 0.015) but with this modification. The
results are shown in Fig. 7a). A silent individual, that is a
mutant with this newly defined word 0, was generated by
mutation at about the 180th generation, and then the silent
group spread through the population rapidly.
Communication died out in all experiments when silent
individuals were allowed. The reason for this is estimated
that the silent individuals have no need to pay the penalty
when they can’t obtain food sources, and at the same time,
they have a slimmer chance to be sent signals from the
individuals with a non-zero word, as the number of the
silent individuals increases.

In the above described experiment, when a silent
individual found a food source, it monopolized all of the

food source if it could. We have modified this setting here
to be that it could obtain half of the food source at most.
The results are shown in Fig. 7b). In this case, the silent
group does not become dominant. The reason is believed to
be that the silent individuals made less efficient resource
distribution than non-silent group in the sense that it
sometimes happened that the silent individuals left food
sources without transferring information of the source. The
issues concerning the silent individuals are worth
examining, and some of them will be discussed in Section
4.

Fig. 6 Relations between average score
and the number of  shared words.

a)

b)
 

Fig. 7 Effects of allowing silent individuals:
full monopolization, b) half monopolization.

issues concerning the silent individuals are worth
examining, and some of them will be discussed in Section
4.



Agent-based Model

Definition
We have introduced the evolutionary mechanism of the
abstract model generating the linguistic diversity into a
concrete situation and have constructed an agent-based
model. The first objective of its design and experiments is
to verify the results of the experiments concerning the
abstract model, which depend on the explicit reward
setting, by defining a concrete task done by agents. The
second objective is to explore the possibility of applying
the evolutionary dynamics of the linguistic diversity to
issues in various fields, such as robotics and distributed AI.

Foraging behavior in the population of simple mobile
agents (robots) has been taken up as the theme of the
agent-based model. The task described in this Section
could be interpreted in many ways, as energy supply in
robotics, or garbage collection in distributed AI, for
example, since we have assumed a situation in which
mobile agents move and gather food sources using the
simple communication system.

The field has Npop mobile agents and Nfood food sources.
Each agent has a vocabulary table and has an energy value
as an internal state, which corresponds to a genetic fitness,
though it could be negative. If the energy value of an agent
is less than Ehungry, then the agent is “hungry”. When the
energy value is Efull, the agent is “full”, and it cannot eat
the food source any more. Each agent consumes one unit
of energy every time step.

Fig. 8 Transitions among behavioral modes.

The behavioral state of each agent is one of the 3 modes:
Search Mode, React Mode, or Approach Mode (Fig. 8). At
the beginning of every generation, agents and the food
sources are located at randomly selected positions in the
field. All agents are in Search Mode, and the energy values
are Efull. Each agent in Search Mode selects randomly and
engages in one of the following five behaviors: halt,
moving forward, moving backward, turning right, or
turning left. The distance of moving forward/backward, D
is randomly determined every time (0 < D < Lmove, in
pixels). The speed of moving in any mode is constant

(Vagent pixel/step). The angle of turning right/left, X is
randomly determined every time (0 < X < Aturn, in
degrees). It takes 1 time step to turn right/left. Agents in
Search Mode detect food sources within a distance of
Ldetect. When a hungry agent in Search Mode finds a food
source, it utters the word for it, and its state changes into
Approach Mode. This signaling process takes 1 time step.

An agent in Approach Mode approaches the food
source. Each food source also has an energy level which is
Efood initially. When an agent reaches a food source, it
ingests the food until it becomes full or the energy of the
food source becomes zero. If the energy of a food source
becomes zero, it is removed from the field. Food sources
are generated only when a new generation of agents is
created. Other agents cannot get the information about the
exhaustion of the food source. Therefore, when the food
sources are removed, the agents which are in React Mode,
in other words, which are devoting themselves to going for
the location where the word was uttered, would generate
loss of time and energy for themselves. This cost, which is
represented implicitly and naturally in this agent-based
model, is equivalent to the value expressed by Runshare in
the abstract model.

Agents that are in Search Mode and are within a distance
of Lhear can hear uttered word. If an agent is hungry and is
a “right listener”, its state changes into React Mode. Each
agent in React Mode approaches the location where the
word was uttered. When an agent in React Mode reaches
the location, if it detects a food source, its state changes
into Approach Mode, otherwise its state changes into
Search Mode.

In this manner, the agents repeat searching for food,
approaching food or the places the words were uttered,
uttering words, and hearing the words, until Nstep time
steps pass from the beginning, or all food sources are
consumed. Next, the information on vocabulary tables is
passed on to offspring by genetic operations in the similar
way as in the abstract model. The next generation that are
composed of also Npop agents, are created by roulette
selection based on their energy values after scaling, where
mated vocabulary tables cross over at a randomly-selected
point of columns. Then, mutation is performed on each
word in the vocabulary tables with some probability Pmut,
where the word is changed to a randomly selected word. In
this manner, these processes with a population of a new
generation are repeated again and again.

Experiments
We have conducted some preliminary experiments with the
following parameters.

Npop = 20; Nfood = 20; Nstep = 10000; Lmove = 100;
Ldetect = 100; Lhear = 200; Vagent = 1; Aturn = 100;
Ehungry = 3000; Efull = 5000; Efood = 4500;

Also, only one meaning was set up in this series of
experiments. In other words, there was one type of food in
the field. Evolution was observed for 300 generations.
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Fig, 9 shows the evolutionary dynamics in vocabulary
sharing for 300 generations, where Pmut was 0.01. We
have observed the similar evolutionary dynamics to those
in the abstract model, except that the effect of the mutation
rate is slightly different. The threshold value is
approximately 0.01 in this agent-based model which
divides Class A and Class C, while Pmut around 0.015 is
the threshold in the abstract model.

Fig. 9 Evolution of vocabulary sharing.

The following two additional methods were investigated
for comparative evaluation:

Method 1:

All agents have the identical word-meaning relation
(vocabulary table) a priori. Therefore, when an agent
utters a word, each listener is either successful or
unsuccessful, and cannot be a misunderstanding
listener or an ignorant listener. No genetic operators
are used, and there is no evolution.

Method 2:

There is no communication at all. All agents are
silent all the time. There is also no evolution.

We have conducted 10 trials of the comparative
experiments. The parameters have the same values as in
the experiment shown in Fig. 9. Results are shown in Table
1. Table 1 shows the average energy value and the
maximum energy value among all agents, and the number
of the occurrences that all food sources were exhausted.
We refer to the method based on the original agent-based
model as Method 0 in this table. It is shown that the
maximum energy value and the average energy value in
the Method 0 are more than the ones in the Method 1 and
Method 2. This means that the evolution of the vocabulary
table contributed to the efficient task execution in these
experiments. However, the number of the occurrences that
all food sources were exhausted in Method 1, is slightly
more than that in the Method 0. The cause of this seems to
be that the communication with the identical word
increased the cases that all food sources had been
exhausted, although it made the agents that heard the word
waste time and energy. It is also shown that Method 2 (no
communication) shows poor performance as compared
with the other two methods. These results mean that the
role of the evolving communication system with linguistic
diversity is significant for the foraging behavior in the
population of agents.

Table 1 Results of the comparative experiments.

Trial Method 0 Method 1 Method 2
No. Avg E. (max E.)

Exhaustion
Avg E. (max E.)

Exhaustion
Avg E. (max E.)

Exhaustion

1  -1254 (4004)
175

-3608 (4354)
184

-4508 (4409)
131

2 -2667 (4529)
166

-2715 (4392)
179

-5016 (4634)
143

3 -3560 (4476)
166

-4096 (4200)
170

-5595 (4305)
140

4 -3654 (4242)
168

-3698 (3824)
171

-2219 (4193)
137

5 -3362 (4143)
162

-1908 (4319)
170

-3716 (3905)
145

6 -1039 (4680)
170

-4300 (3952)
175

-2052 (3953)
127

7 -2933 (4186)
165

-396 (3933)
177

-3764 (4195)
139

8 -2011 (4371)
168

-2601 (4676)
183

-5492 (3926)
147

9 -2239 (4427)
171

-3509 (4498)
169

-3531 (3675)
139

10 -2035 (4060)
161

-1759 (4174)
173

-4203 (3619)
122

Average -2475 (4312)
167

-2859 (4232)
175

-4010 (3081)
137

Discussion

Observed linguistic diversity
The results of the experiments imply that the linguistic
diversity grows when population size, mutation rate, or
restriction on resources becomes greater. Fig. 10 shows
this implication roughly. From another point of view, it can
be said that the communication system adapts to the
growth of population size, mutation rate, or restriction on
resources by increasing its linguistic diversity. One
extreme case is that there is no diversity.  This
corresponds to the case that all agents shared an identical
vocabulary table in the experiments with small mutation
rates, or the case that all agents were silent in the
experiments allowing silent individuals. The other extreme
case is that they share no stable and identical vocabularies
at all, and they thus cannot transfer efficient information by
communication systems.  This corresponds to the case with
a quite large mutation rate in the experiments. The results
of the experiments on the agent-based model have shown
that the evolutionary dynamics could maintain a proper
level of linguistic diversity, and attain effective task
execution.

There was a tradeoff between the monopoly of the
resources discovered by an agent itself and the sharing of
the resources discovered by other agents (to be exact,
sharing with risks of additional competition). When the
former exceeded the latter, the linguistic diversity observed



in the experiments was generated by the selection pressure.
This selection pressure allowed the individuals with new
words to increase in the population.

In other words, the individuals with new words can
increase by making others respond with inappropriate
reactions through misinterpreted words, which can be
called functional deception, though cannot be called
intentional deception (deception based upon manipulation
of belief states). All agents became silent when we allowed
the individuals to be silent. In this case, they withheld
information about food sources and thereby increased their
fitness relative to others. We can call it another primitive
form of deception. This type of deceptive behavior in
nonhuman animals has been reported.  In Chimpanzees,
food calls are given by individuals at relatively large food
sources (implying that the costs of increased feeding
competition may be negligible) (Wrangham 1977). Also, in
some species, the probability of calling in the context of
food call is less than 100%, suggesting the possibility that
individuals sometimes suppress their calls (Hauser 1996).

Fig. 10 Growth of linguistic diversity.

The invasion of a silent population and the generation of
linguistic diversity discussed in this paper are closely
linked to the issue of the origin of altruism. Food calls
would appear to be altruistic in general, because those who
announce their discoveries are essentially inviting
increased food competition and, consequently, potentially
decreasing their own access to food. Kin selection and
reciprocal relationships are strong candidates for its
explanation. It has been also reported that there is social
pressure making individuals call. Individual rhesus who
found food but failed to call and were detected by other
group members received more aggression than individuals
who called upon discovery (Hauser 1992). The result that
the silent population disappeared when we reduced the
maximum amount of food sources which individuals could
obtain to half, might be a candidate for its explanation at
the lowest level.

The effects of incorporating a learning mechanism into

these models would be worth investigating, though we
have focused on the evolutionary dynamics of the
linguistic diversity in this paper. It is clear that the effects
depend on the adopted learning algorithm. If we would
adopt a learning algorithm that uses the rewards in
conversations as teacher signals in learning, and modifies
the word-meaning relations gradually, the learning
mechanism would be believed to simply accelerate the
evolutionary dynamics observed in these experiments.
However, the contributions of population size, resource
restriction, and mutation rate to linguistic diversity could
be rather complex.

Possibility of utilizing the diversity
Application of the results of alife studies has been

investigated, and it has begun to bear fruits in various
fields. One of the promising fields is robotics. We have
conducted the experiments on the agent-based model,
partly based on the idea that the communication system
which evolves and maintains linguistic diversity would be
beautifully fit to be used as the flexible mechanism for
communication among population of autonomous robots
that attain cooperative behavior. The results in the
experiments concerning the agent-based model are
encouraging in the sense that the communication system
supported the cooperative task execution.

The complexity in the mechanism of the communication
system is extremely reduced, because we have aimed to
implement a minimal communication system that generates
the linguistic diversity which could be utilized in
engineering fields. Communication systems with far richer
facilities, for example, those with which agents can
negotiate on sharing the resources, would surely rank
higher. On the other hand, slightly extended versions of the
current communication system can be investigated, for
example, as follows:

Version 1:

The agents which found the sources signal only when
they finish feeding and there are food sources left.
This modification of setting can reduce the cost of
listener agents.

Version 2:

The volume of the food calls are set to be proportional
to the amount of the food sources. This modification
makes the number of the listening agents vary
correspondingly to the amount of the food sources,
which can reduce the cost of listener agents.

We expect both versions will rank higher than the results
of our experiments, though we don’t have enough evidence
that in nonhuman animals there are such communication
systems.  Although, some species have a food call which
refers to the quality of food sources.

One of the most difficult hurdles towards physical
realization based on the evolutionary dynamics, in general,
is the relationship between simulations and actual robot
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execution. Even the experiments on this simple
communication system took a while to evolve in the agent-
based model. It is very difficult and may take as much time
for detailed simulations as it would take to build the actual
robot systems. At the same time, it is also impractical to
build and observe many actual robots during many
generations. Therefore, we plan to adopt a hybrid
simulated /embodied selection regime (Miglino, Nafasi,
and Taylor 1995). Large numbers of simulated robots are
examined in simulation, but only the promising subset of
these are actually built and examined, thereby reducing the
scope of the problem. Simulated evolution of
communication systems will also be necessary for speeding
up the adaptation in the physically realized robotic systems
in the near future, and thereby the communication systems
will be able to adapt to rapid changes in dynamic
environments.

Summary

This paper reports on the current state of our efforts to shed
light on the origin and evolution of linguistic diversity,
using synthetic modeling and artificial life techniques. We
have constructed a simple abstract model for a
communication system that is designed with regard to
referential signaling in nonhuman animals. The
evolutionary dynamics of vocabulary sharing was analyzed
based on these experiments.

The results have shown that only a subset of initial
conditions leads to the unification of vocabulary, and the
linguistic diversity evolves corresponding to the changes in
population size, mutation rate and restriction of resources.
We have also observed that unification of vocabulary
causes the decrease in genetic fitness of the individuals.

We have incorporated the idea of the abstract model into
a more concrete situation, and have presented an agent-
based model to verify the results of the abstract model and
to examine the possibility of utilizing the linguistic
diversity in the field of distributed AI and robotics. It has
been shown that selection pressure could explain the
linguistic diversity in the cooperative behavior of multiple
agents.
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