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Walter’s Machina speculatrix inspired the name Rana computatrix for a family of
models of visuomotor coordination in the frog, which contributed to the develop-
ment of computational neuroethology. We o®er here an `evolutionary’ perspective
on models in the same tradition for rat, monkey and human. For rat, we show
how the frog-like taxon a®ordance model provides a basis for the spatial navigation
mechanisms that involve the hippocampus and other brain regions. For monkey, we
recall two models of neural mechanisms for visuomotor coordination. The ¯rst, for
saccades, shows how interactions between the parietal and frontal cortex augment
superior colliculus seen as the homologue of frog tectum. The second, for grasp-
ing, continues the theme of parieto{frontal interactions, linking parietal a®ordances
to motor schemas in premotor cortex. It further emphasizes the mirror system for
grasping, in which neurons are active both when the monkey executes a speci¯c
grasp and when it observes a similar grasp executed by others. The model of human-
brain mechanisms is based on the mirror-system hypothesis of the evolution of the
language-ready brain, which sees the human Broca’s area as an evolved extension of
the mirror system for grasping.

Keywords: biologically inspired robotics; computational neuroethology;
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language evolution

1. From Machina speculatrix to computational neuroethology

Walter’s book The living brain (1953; page numbers given below are from the 1961
edition) approaches an understanding of the brain from two very di®erent perspec-
tives: (i) through the analysis of electroencephalograph (EEG) signals of the human
brain, monitored by a device of his design, the toposcope, which allowed the simulta-
neous viewing of waveforms from many electrodes across the scalp; and (ii) through
the design of `biologically inspired’ robots, in the form of two electromechanical tor-
toises, Machina speculatrix and M. docilis. We here review the robots as a basis for
the `evolutionary’ perspective that this article o®ers on brain and action.

One contribution of 16 to a Theme `Biologically inspired robotics’.
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Walter (1953, ch. 5) sets the design criteria for the robots he designed, or their
potential successors, as follows.

Not in looks but in action, the model must resemble an animal. There-
fore, it must have these or some measure of these attributes: explo-
ration, curiosity, free-will in the sense of unpredictability, goal-seeking,
self-regulation, avoidance of dilemmas, foresight, memory, learning, for-
getting, association of ideas, form recognition, and the elements of accom-
modation.

He dismisses Swiss automata and 1950-vintage computing machines (`a model
of nineteenth century predestination’ !) as failing to meet these criteria, and then
describes two precursors of his work (without bibliographical sources), inventing
mock-biological names for each `species’.

(i) M. labyrinthea. Thomas Ross (in 1938), R. A. Wallace (in 1952) and Claude
Shannon devised machines that initially ¯nd their way through a maze by trial
and error, but then store the route. Thereafter, restarted from the same point,
the machine will go directly `home’ without error. The machines are, within
limits, goal seeking and self-regulating, and possess a form of memory.

(ii) M. sopora. He likens Ashby’s Homeostat, a network designed to resist pertur-
bations by returning key variables to a designated resting state, to `a ¯reside
cat or dog which only stirs when disturbed, and then methodically ¯nds a
comfortable position and goes to sleep again’.

He then introduces his ¯rst `tortoise’ (which is embodied, but its body has wheels
not legs, etc.) The `tortoise’ has two miniature valves, two relays, two condensers, two
small electric motors and two batteries. It has a steerable photoelectric cell, which
makes it sensitive to light, and an electrical contact, which allows it to respond when
it bumps into obstacles. The photo-receptor rotates until a light of moderate intensity
is registered, at which time the organism orients towards the light and approaches it.
However, very bright lights, material obstacles and steep gradients are repellent to
the `tortoise’. The latter stimuli convert the photo-ampli¯er into an oscillator; `this
causes alternating movements of butting and withdrawal, so that the robot pushes
small objects out of its way, goes around heavy ones, and avoids slopes’ (p. 114).
Walter sees this period of oscillation (a second or so) as providing the machine with
`discernment, since, during that period, its behaviour is not dominated by the light,
but, say, the obstacle. The `tortoise’ has a `hutch’, which contains a bright light.
When the machine’s batteries are charged, this bright light is repellent. When the
batteries are low, the light becomes attractive to the machines and `moderation
gives place to appetite and the light continues to exert an attraction until they are
well within their quarters’, where the machine’s circuitry is temporarily turned o®
until the batteries are recharged, at which time the bright hutch light again exerts a
negative tropism (p. 116).

Walter calls his ¯rst biologically inspired robot Machina speculatrix (`the machine
that speculates’), claiming that it exhibits the ability to `speculate’ because it has `the
typical animal propensity: : : to explore the environment rather than to wait passively
for something to happen’. But this is far too behaviourist a view of `speculation’:
there is nothing in M. speculatrix of the mental gymnastics of human speculation
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about possible courses of future events in the endless moving back and forth of M.
speculatrix under the control of its two `neurons’.

Walter (1953, ch. 7) presents M. docilis, the `easily taught’ machine. This new
`species’ is produced by grafting onto M. speculatrix a copy of the conditioned re°ex
analogue (CORA), a circuit designed by Walter to form conditioned re°exes. Its
primary role in M. docilis is to form associations with inputs from a new sensory
channel: a microphone sensitive to sounds. M. docilis `can be taught to come to a
whistle by blowing a short blast and showing it a light. . . light in M. speculatrix elic-
iting an unconditioned re°ex of attraction’. In another experiment, Walter `decided
to teach the model that sound means trouble: : : by connecting CORA to the obsta-
cle avoiding device in M. speculatrix, the feedback circuit which made [it]: : : back
and turn away when its shell was touched. Its education by punishment consisted in
blowing the whistle and kicking the shell a few times.’ Further experiments looked
at the e®ect of having more than one copy of CORA in the brain of M. docilis. His
ch. 7 further analyses the time-scales of memory involved in the model, and presents
some rather preliminary analogies between observations on the circuitry of M. docilis
and observations of some EEG correlates of human mental activity. These analogies
are at a very abstract level, addressing neither the gross anatomy nor the detailed
neurophysiology of the human brain.

What most people know of Walter’s work is the `tortoise’ M. speculatrix, but The
living brain also contains, as we have seen, a second cyber-creature, M. docilis, as
well as analyses of actual brain function, including his `toposcope’ for the display of
EEG recordings. We thus see two di®erent strands here:

(i) the attempt to ¯nd the simplest mechanisms that will yield an interesting
class of robot behaviours|and this includes a `comparative’ method in which
di®erent additions to M. speculatrix yield a variety of di®erent behaviours;

(ii) the attempt to explicate the workings of the human brain.

One can trace a similar duality in the work of Braitenberg. Most people in robotics
know him for his 1984 book, Vehicles, which is very much in the spirit of M. spec-
ulatrix and its elaboration. The core argument for Vehicles was actually published
almost 20 years earlier under the title Taxis, kinesis, decussation (Braitenberg 1965)
and, even earlier, Braitenberg & Onesto (1960) developed a model of the cerebellum
which sought to reconcile Braitenberg’s work on neuroanatomy with the role of the
cerebellum in the timing of the components of a graceful movement, such as that
exempli¯ed in a musical performance. The model was in°uential, but proved to be
wrong, in part because it was developed before Ito’s discovery that Purkinje cells,
the output cells of cerebellar cortex, are inhibitory (see Eccles et al . 1967), but this
simply highlights the di®erence between robotics and neuroscience. In robotics, the
test of success is technological|the machine should yield e®ective performance at
reasonable cost. In computational neuroscience, there is a continual dialogue between
theory and experiment, as the hypotheses and predictions of models stimulate new
experiments, and as new empirical data stimulate the revision or replacement of
existing models. Braitenberg (2002) suggests how the very special intrinsic connec-
tivity of the cerebellar cortex may be translated into physiological relations, which
lead to propositions about cerebellar function that can be tested experimentally.
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In the spirit of Walter and Braitenberg, then, one may focus on one of two
approaches:

(a) incremental design of mechanisms that will yield an interesting class of robot
behaviours|where the biological inspiration comes from the range of animal
behaviours as seen from the `outside’;

(b) the attempt to explicate the workings of the brains of humans and of other
creatures.

I add `and other creatures’ because, in his study of the cerebellum, Braitenberg
used data from non-human animals to ground his analysis of the structure of cerebel-
lar cortex and has also extensively studied the anatomy of the visual system of the
°y, while Walter appealed to studies of Pavlovian conditioned re°exes in dogs and
other animals. However, having said that, I think that in both Walter and Braiten-
berg ones sees somewhat limited interaction between the two approaches (a) and (b).
In this article, I wish to emphasize a `third way’:

(c) the attempt to create a comparative computational neuroethology (i.e. a com-
putational analysis of neural mechanisms underlying animal behaviour) in
which the brains of humans and other creatures come to be better understood
by seeing homologous mechanisms as computational variants which may be
related to the di®erent evolutionary history or ecological niche of the creatures
that contain them.

Such work can, of course, expand the approach to `biologically inspired robotics’
of (a) by augmenting study of the range of animal behaviours seen externally by
the study of the range of brain mechanisms that accompany them. However, the
present article will focus on comparative computational neuroethology. The journey
into computational neuroethology charted here starts with the paper on `What the
frog’s eye tells the frog brain’ (Lettvin et al . 1959), which treated the frog’s visual
system from an ethological perspective, showing that certain visual circuitry could
be analysed as being speci¯c to the animal’s ecological niche, with di®erent cells in
the retina and tectum being specialized for detecting predators and prey. In the late
1960s, I turned the question of Lettvin et al . into the question `What does the frog’s
eye tell the frog?’, taking the ¯rst step in a career that stresses the embodied nervous
system or, perhaps equivalently, an action-oriented view of perception.

In much visually guided behaviour, the animal does not respond to a single stimu-
lus, but rather to some property of the overall con¯guration. Consider, for example,
the snapping behaviour of frogs confronted with one or more °y-like stimuli. Ingle
(1968) found that it is only in a restricted region around the head of a frog that the
presence of a °y-like stimulus elicits a snap, that is, the frog turns so that its midline
is pointed at the stimulus and then lunges forward and captures the `prey’ with its
tongue. There is a larger zone in which the frog merely orients itself, and beyond
that zone the stimulus elicits no response at all. When confronted with two `°ies’
within the snapping zone, either of which is vigorous enough that alone it could elicit
a snapping response, the frog exhibits one of three reactions: it snaps at one of the
°ies; it does not snap at all; or it snaps in between at the `average °y’. Didday (1976)
o®ered a simple model of this choice behaviour; mathematical analysis of a variant
is due to Amari & Arbib (1977). Either may be considered as prototypical for what
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has become known as a winner-takes-all (WTA) circuit, which receives a variety of
inputs and (under ideal circumstances) suppresses the representation of all but one
of them; the one that remains is the `winner’, which will play the decisive role in
further processing.

In the following years (with the bulk of publications from 1982 to 1995), I worked
with a succession of PhD students, starting with R. Lara, to model a variety of aspects
of visuomotor coordination in frog and toad. Arbib (1982) is an overview of early
progress in this task entitled `Rana computatrix : an evolving model of visuo-motor
co-ordination in frog and toad’. Although I am not sure if I was consciously aware of
my debt at the time, it is clear that the name `the frog that computes’ was inspired
by Walter’s M. speculatrix. The name R. computatrix inspired in turn the names of
a number of `species’ of `creatures’ developed by computational neuroethologists in
the years that followed, including Beer’s (1990) computational cockroach Periplaneta
computatrix and Cli®’s (1992) hover°y Syritta computatrix.

With such a background, one may build in two directions, computational neuro-
ethology and biologically inspired robotics, with further studies providing cross-links
between the two. I close this section with some brief comments on the linkage to
robotics. The rest of the paper will then focus on computational neuroethology. It
will place studies of frog, rat, monkey and human in an `evolutionary’ framework.

A basic theme of this paper is that the evolutionary study of brains often reveals
new functions as emerging through modulation and coordination of existing struc-
tures. In other words, to the extent that new circuitry may be identi¯ed with the new
function, it is not as a module that computes the function autonomously, but rather
one that can deploy prior resources to achieve the novel functionality. The discussion
of ¯gure 1 below gives an early example of this from the toad (Ewert & von Seelen
1974), showing how circuitry for avoidance behaviour exploits circuitry for approach
behaviour. My own approach to schema theory (Arbib 1981) was inspired not only
by visuomotor coordination in frog and toad, but also by analysis of human arm
and hand movements (the 1979 talk that became Jeannerod & Biguer (1982)). In
each case, we see behaviour emerging from the competition and cooperation of per-
ceptual and motor schemas as well as, in more complex behaviours, more abstract
coordinating schemas too. Such ideas were, of course, developed independently by a
number of authors, and so entered the robotics literature by various routes, of which
the best known may be the subsumption architecture of Brooks (1986) and the ideas
of Braitenberg cited above; while Arkin’s work on behaviour-based robotics (Arkin
1998) is indeed rooted in schema theory (see Arkin (1989), with its explicit link-
age of robot behaviours to the model of frog detour behaviour developed by Arbib
& House (1987)). Arkin et al . (2003) present a recent example of the continuing
interaction between robotics and ethology, o®ering a novel method for creating high-
¯delity models of animal behaviour for use in robotic systems based on a behavioural
systems approach (i.e. based on a schema-level model of animal behaviour, rather
than analysis of biological circuits in animal brains), and describe how an ethological
model of a domestic dog can be implemented with AIBO, the Sony entertainment
robot. Webb (2001) considers the converse issue: of assessing the extent to which
robotics can o®er good models of animal behaviours. Similarly, Ruppin (2002) dis-
cusses the use of neurally driven evolutionary autonomous agents in neuroscienti¯c
investigations. `Embodied agents’ are de¯ned by their semi-autonomous existence in
interaction with some environment|whether they are hardware robotic devices or
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animals in a physical environment, or software programs that represent key aspects of
such a relationship, `living’ in a simulated virtual environment|where they perform
tasks such as gathering food, navigating, evading predators and seeking prey and
mating partners. Each agent is controlled by an arti¯cial neural network (whether
modelled on real brains or de¯ned by some abstract arti¯cial architecture), which
receives and processes sensory inputs from the surrounding environment and governs
the agent’s behaviour by activating the motors that control its actions. What makes
them evolutionary is that some of the controlling networks are developed through
genetic algorithms that apply computational variants of inheritance and selection to
a population of agents in such a way that their neural controllers change automati-
cally from generation to generation as a population of agents are selected and copied
with modi¯cations over many generations to survive best in a given environment.
What follows, then, can be seen as a contribution to the continuing dialogue between
robot behaviour and animal behaviour in which particular emphasis is placed on the
search for the neural underpinnings of animal behaviour.

(a) Forms of èvolution’

Before proceeding further, I need to delineate the varied forms of `evolution’ that
are current in the ¯elds of biologically inspired robotics, neural network modelling
and computational neuroethology.

Biological evolution. This is the evolution characterized by Darwin’s theory of
natural selection and enriched by recent advances in molecular biology and
genomics. It must be noted that while many genes have been related to speci¯c
components of the phenotype, most genes must interact in a genetic network with
many other genes to contribute to a number of features of the phenotype. As a
result, the relation between genes and overt patterns of the phenotype may be
quite indirect.

Ad hoc evolution. This is the type of `evolution’ exempli¯ed by the transition
from M. speculatrix to M. docilis, and in Braitenberg’s vehicles|adding features
to a model `to see what happens’. While essentially unconstrained by biological
data, this has the virtue of showing that surprisingly complex behaviours can
emerge by putting together relatively few simple mechanisms in such a pseudo-
evolutionary sequence (Braitenberg 1984), thus putting into question the simplistic
view that every apparently complex behaviour must be characterized by its own
explicit and lengthy program.

Genetic algorithms. Here, the inspiration comes from natural selection, but yields
a method of parameter optimization in arti¯cial systems. One takes a population
of objects with randomly assigned parameters arranged in a `genotype’. The suc-
cess of an object determines the likelihood that copies of its genotype will be used
in generating (via `mutation’ and `crossover’ operators) the genotypes for the next
generation. Over a number of simulated generations, the genotypes that result may
come to approach more closely values of the parameters that optimize the objec-
tive function. Genetic algorithms have been applied to the optimization of neural
nets, but in such studies the `genotype’ has tended to characterize the connec-
tion weights of the network rather than the genes that might (indirectly, as noted
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above) contribute to network connectivity. Genetic algorithms may also be applied
to robots in which the biomechanics, as well as the neural controller, are subject
to selection; and even to social systems. It must be stressed again that although
genetic algorithms are inspired by the mechanisms of natural selection, the result
is a mathematical optimization technique equally applicable to non-biological as
to biological systems, and that the `genotype’ for a simulated biological system
may bear no resemblance to the biological genotype.

Conceptual neural evolution. This is the approach taken in this paper, seeking
to understand complex neural mechanisms through an incremental process. Like
ad hoc evolution, the strategy is to add features to a model `to see what happens’.
However, unlike ad hoc evolution, the process is constrained by biological data|
but data that link behaviour to anatomy and neurophysiology, without a necessary
analysis of the underlying genes. The aim is to discover relations between mod-
ules (neural circuits at some grain of resolution) that implement basic schemas
(functions, as distinct from structures) in simpler species with those that elabo-
rate more elaborate schemas in other species. The approach extends the range of
schemas more by module interaction and the addition of modules that modulate
old schemas than by implementing schemas in isolation.

Clearly, the `evolutionary path’ described in this last way is not necessarily sub-
stantiated as the actual path of evolution by natural selection that shaped the brains
of the species we can study today. Rather, it is an attempt to show how the methodol-
ogy of schema theory (introduced in x 3) may help us understand a complex behaviour
by the `evolutionary design’ of successively more complex models to better and bet-
ter approximate the neural realization of that function. The same methodology will
be used in relating cortical functions in mammals to the subcortical functions that
are more closely homologous to certain non-mammalian forms; it will also be used
in re¯ning mammalian models by the successive addition of more brain regions to
those that can o®er a ¯rst approximation to the given function. However, in the lat-
ter case, the order of addition will re°ect a strategy of modelling or exposition with
no claim that the regions evolved one after another in the given order. The result
de¯nitely leads to an enhanced understanding of the more complex brain. It may also
yield hypotheses for the quest for the genetic underpinnings of the evolution of this
complexity as the parameters of variation across species become better delimited.

The structure of the paper is as follows. Section 3 gives an account of R. compu-
tatrix that stresses a quasi-evolutionary framework for relating di®erent subsystems
and behaviours. In x 4, for Rattus computator, we show how the frog-like taxon a®or-
dance model provides a basis for the spatial navigation mechanisms that involve
hippocampus and other brain regions in the rat. A® ordances (Gibson 1966) are fea-
tures of an object or environment relevant to action|visual processing may exploit
them to extract cues on how to interact with an object or move in the environ-
ment, complementing processes for categorizing objects or determining their iden-
tity. In x 5, we use the term Macaca computatrix for models of neural mechanisms
of monkey visuomotor coordination and present two speci¯c models. The ¯rst, for
saccades, shows how interactions between parietal and frontal cortex augment supe-
rior colliculus (SC) seen as the homologue of frog tectum; the second, for grasping,
continues the theme of parieto{frontal interactions, linking parietal a®ordances to
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motor schemas in premotor cortex. We emphasize extension of the system for grasp-
ing to include a mirror system in which neurons are active both when the monkey
executes a speci¯c grasp and when it observes a similar grasp executed by others.
Finally, x 6 presents Homo loquens computator as a conceptual design for a number
of planned implementations of subsystems based on the mirror-system hypothesis of
the evolution of the language-ready brain. This hypothesis is based on the fact that
the mirror system for grasping in monkeys has a homologue located in Broca’s area,
a key area for language, in the human brain.

The evolutionary strategy of comparative neuroethology (Butler & Hodos 1996) is
not, of course, to claim that extant species (in this case, frog, rat, monkey and human)
form an evolutionary sequence, but rather to claim that the common ancestors of
humans with frog, rat and monkey form an evolutionary sequence in that order,
and that many mechanisms of the human brain may have built upon mechanisms
already present in the brain of our common ancestor with present-day species X. We
thus look to species X for clues about that shared inheritance. However, we must
always be on the alert to identify which features of X brains are ancestral, and which
re°ect evolutionary changes that distinguish species X from the human{X common
ancestor.

The research cited below will emphasize models from my own research group, since
the aim here is to o®er an evolutionary perspective on neuroethology that takes us
from action-oriented perception to language, rather than to evaluate alternate models
of the relevant phenomena. (The reader may consult Arbib (2003a) for many related
mini-reviews.) The companion paper (Arbib 2003b) considers some of the material
reviewed here in a very di®erent perspective, namely that of charting a new approach
to computer architecture. Finally, I note that this paper may be read as a sequel to
Arbib (1997).

A disclaimer. The reader should not infer from this paper either that the presented
models were discovered in the order given here, or that each model is itself the best
model of the phenomena (structure and function) which it describes. Some models
have stood the test of time, others have seen drastic revision in light of both new
experimental data and modelling, at the hands of my group and others. However,
all models seem to me to convey important points about brain function and are
presented here to provide a viable framework for conceptual neural evolution.

2. Rana computatrix

R. computatrix (see, for example, Arbib (1982, 1987, 1989) and Arbib et al . (1998)
for reviews) is a set of models of visuomotor coordination in frog and toad. We have
already noted Didday’s model of a prey selector, which can extract the most `food-
like’ stimulus from a retinotopic array. Here we o®er a brief review of other parts of
R. computatrix, with a stress on general principles for viewing subcortical visuomotor
coordination in an `evolutionary’ framework.

(a) Approach and avoidance in frog and toad

A schema is a unit of functional analysis, whether in the brain (Arbib 1981) or a
robot (Arkin 1998). A given schema, de¯ned functionally, may be distributed across
more than one brain region; conversely, a given brain region may be involved in many
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Figure 1. Schema-theoretic models of approach and avoidance behaviour in the toad. (a) The
initial òne schema{one brain region’ model. (b) The re¯ned distributed schema model that is
consistent with lesion data.

schemas. A schema model becomes a biological model, as distinct from a purely
functional model, when explicit hypotheses are o®ered as to how the constituent
schemas are played over particular regions of the brain.

To exemplify this, consider approach and avoidance in the toad. To simplify rather
drastically, we may say that the ability to ¯nd food and escape enemies in the frog
or toad can be reduced to the ability to tell small moving objects from large moving
objects. A frog surrounded by dead °ies will starve to death, but the frog will snap
with equal `enthusiasm’ at a moving °y or a pencil tip wiggled in a °y-like way.
On the other hand, a larger moving object can trigger an escape reaction. Thus a
highly simpli¯ed model of the functioning of the toad brain has signals from the
eye routed to two basic pattern-recognition routines (perceptual schemas): one for
recognizing small moving objects (food-like stimuli) and one for recognizing large
moving objects (enemy-like stimuli). If the small-moving-object schema is activated,
it will, in turn, trigger the motor schema (a system for controlling action) to get
the animal to approach what is apparently its prey (this perception{action pair (the
left-hand path in ¯gure 1a) corresponds to Didday’s prey-selector model). If the
perceptual schema for a large-moving-ob ject is activated, it will trigger the motor
schema for avoidance, causing the animal to escape an apparent enemy (the right-
hand path in ¯gure 1a).

But to make a biological model, we must relate these schemas to anatomy. Each
eye of the frog projects to the opposite half of the brain, especially to the important
visual midbrain region called the tectum. This projection from the retina to a layered
structure of the brain preserves the neighbourhood relationships of the visual ¯eld|
it is called a retinotopic map. Another retinotopic map goes to the pretectum (in front
of the tectum). If we make the hypothesis that the small-moving-ob ject schema is
in the tectum, while the large-moving-ob ject schema is in the pretectum, the above
model predicts that animals with a pretectal lesion would continue to approach small
moving objects just as the normal animal does, but would not respond at all to large
moving objects. However, when Ewert (1987) studied toads in which the pretectum
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had been lesioned, he found that not only did the toads respond to small moving
objects with approach behaviour, but they also responded to large moving objects
with approach behaviour! This observation leads to the new schema-level model
shown in ¯gure 1b (which reinterprets the work of Ewert & von Seelen (1974)). The
new data tell us that, in the absence of the pretectum, the animal must be able
to respond to all moving objects with approach. Thus we replace the perceptual
schema for small moving objects by a perceptual schema for all moving objects.
On the other hand, in the normal toad, recognition of large moving objects triggers
avoidance, and so we leave the right-hand column the way it was. However, although
we have now explained the response of the lesioned animal to all moving objects,
and the response of the normal animal to large moving objects, it remains to tune
the model so that the normal animal will respond to small moving objects with
approach but not avoidance. This we can achieve by having an inhibitory pathway
running from the perceptual schema for large moving objects (in the pretectum) to
the approach schema|or, equivalently, to the schema for all moving objects. This
model explains our small database on the behaviour of both normal animals and
those with a lesion of the pretectum.

Figure 1b provides the ¯rst example of `evolutionary re¯nement’ as we shall study it
in this article. In this case, we see on the left a basic system for preying on all moving
objects. The right-hand system adds functionality, not by adding a disjoint system
for escape behaviour, but by modulating the old system to create a new integrated
system that not only adds the new functionality of escape behaviour but also re¯nes
the capability of the original prey system. The other point of this simple exercise is
that we have shown how hypotheses about neural localization of subschemas may
be tested and re¯ned by lesion experiments. The important point is that biological
models can be expressed at the level of a network of interacting `automata’, and that
these can really be biological models in the sense that they can be subjected to test
at the level of such a coarse-grained network, irrespective of whether or not data or
hypotheses are available about the ¯ne-grain implementation of those automata in
neural networks.

We may think of each basic schema in ¯gure 1b as having its own dedicated neural
circuitry. The perceptual schema for recognizing small moving objects is now revealed
as more complex than at ¯rst appeared. It no longer appears as a module in ¯gure 1b,
but is instead realized by patterns of activity across the circuits that realize the
schemas of the schema assemblage or coordinated control program (Arbib 1981) that
de¯nes it. If the same basic schema occurs more than once in some coordinated
control program, then it must be made clear whether or not the program will require
the activity of only one of these instances at any one time. For example, although a
more elaborate version (Cobas & Arbib 1992) of the schema for `prey capture and
predator avoidance’ contains the `orient’ motor schema in the subschemas for both
`prey capture’ and `predator avoidance’, the overall schema is so structured that at
most one of those subschemas is active at any one time, and so the circuitry for
the `orient’ schema will be activated either with parameters for orienting toward the
prey, or with parameters for orienting away from the predator. Moreover, should
the competition between the `prey-capture’ and `predator-avoidance’ subschemas
be unsuccessful in such a way that both activate the orient schema, it will simply
mean that the same circuitry receives simultaneous, con°icting, commands|in which
case it might, for example, orient the animal to the `average’ direction. The Cobas{
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Arbib model (Cobas & Arbib 1992) generates di®erent motor zones for prey-catching
behaviour that match those observed in normal conditions and in studies of lesioned
animals, and o®ers predictions for experiments on both approach and avoidance
behaviours.

(b) Detours and path planning

The motivation for our next example of `evolutionary re¯nement’ is the behaviour
of frogs (Ingle 1976) and toads (Collett 1982) observing a worm through a semi-
transparent grating or barrier. Instead of launching directly at its prey as would
occur if no barrier were present, the frog often reacts `appropriately’, detouring
around the barrier to get its prey. This behaviour already extends the schema picture
of ¯gure 1. Now, the perceptual schema for recognizing prey must be augmented by
the perceptual schema for recognizing a barrier, and there can no longer be a direct
path from prey recognition (which we have already seen to involve both tectum and
pretectum) to the triggering of approach behaviour. Rather, there must be some way
for this path to be modulated by the recognition of the barrier to yield an indirect
detour, rather than the direct response.

In the particular situation under consideration here, the animal must not only
recognize prey and barrier, but must locate them in space. If it can recognize that
the prey is in front of the barrier or at most a tongue’s length behind it, then the
animal will indeed snap directly. But if the prey is further behind the barrier, then
the animal must use its recognition of where the prey is and where the barrier is to
come up with a path that will carry it around the barrier towards the prey.

Epstein (1979) adapted Didday’s simple model of the tectum as a row of neu-
rons selecting its maximal stimulus by positing that each visible prey-like stimulus
provides a tectal input with a sharp peak at the tectal location corresponding retino-
topically to the position of the stimulus in the visual ¯eld, with an exponential decay
away from the peak. A barrier, on the other hand, provides a trough of inhibition
whose tectal extent is slightly greater, retinotopically, than the extent of the barrier
in the visual ¯eld. Epstein’s model can exhibit the choice of a target in the direction
of the prey or the barrier edge, but not the spatial structure of the behaviour. To
address this, Arbib & House (1987) gave two models for detour behaviour that make
use of separate depth maps for prey and barriers. Lara et al . (1984) o®ered an alter-
native model of detour behaviour in the presence of barriers with gaps in which the
recognition of gaps is an explicit step in detour computation. The same paper also
o®ers models|at the level of interacting schemas rather than layers of neuron-like
elements|for prey acquisition in environments containing chasms as well as barriers,
and for predator avoidance.

Here we discuss the second Arbib{House model, the path-planning model, which
associates with each point of the depth map a two-dimensional vector. In place of a
single scalar indicating a measure of con¯dence that there is a target for the ¯rst move
at the corresponding position in the visual ¯eld, the vector is to indicate the preferred
direction in which the animal should move were it to ¯nd itself at the corresponding
position. The model speci¯es how this vector ¯eld is generated and begins to specify
how the vector ¯eld is processed to determine the appropriate parameters for the
coordinated activation of motor schemas. Each prey sets up an attractant ¯eld, while
each fence post sets up a ¯eld for a predominantly lateral movement relative to the
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Figure 2. An evolutionary view of brain mechanisms for detour behaviour in frog and toad,
in which barrier recognition modulates preexisting schemas for approach (shown here) and
avoidance (not shown) behaviour.

position of the post from the viewpoint of the animal. Arbib & House suggest that,
in the case of a `tracking creature’, such as the gerbil, the vector ¯eld is integrated to
yield a variety of trajectories, with a weight factor for each trajectory; whereas, in a
`ballistic creature’, such as a frog or toad, processing yields a map of motor targets,
appropriately labelled as to type.

I do not claim that the frog brainstem implements the above potential ¯eld algo-
rithm in its neural circuitry. Rather, the crucial point is that we have an evolutionary
account of how such a system might arise (¯gure 2). First, the elements of the prey-
recognition system (perceptual schema, motor schema and motor pattern generator
(MPG)) co-evolve, so that activity in the prey schema can represent a goal in such
a way that the approach schema provides the right control signals for the MPG to
determine a path to the prey. Then the detour system evolves by combining a per-
ceptual schema for stationary objects with a motor schema that modulates the e®ect
that the approach schema has on the MPG.

Figure 1 gave our ¯rst example of the evolving subtlety of schema interactions.
Here, recognition of small moving objects is not, in fact, localized in any one region,
but is rather a system property involving the modulation of the tectum by the pretec-
tum. We have now extended the complexity of the environment to which the animal
responds|it no longer contains a single prey or a single predator to which the ani-
mal may respond with the most basic forms of the `survival behaviours’ of feeding
or °eeing, but now contains the more subtle structure of obstacles that can block
the animal’s path and around which the animal must now be equipped to detour.
In evolutionary terms, this corresponds to expansion of the ecological niche in which
the animal is well suited to survive.

New schemas often arise as m̀odulators’ of existing schemas, rather than as new
systems with independent functional roles. Further examples of this may be seen in
the lesion-based analysis of schemas for approach and avoidance behaviour (Cobas
& Arbib 1992). The implications of such work for computational neuroethology and
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robot design are reviewed by Cli® (2003) and Arkin (2003), respectively. Corbacho
& Arbib (1995) gave a model of how frogs learn to detour as the ¯rst step towards
a general theory of `schema-based learning’. This theory attempts to show how the
search space for learning can be drastically reduced when learning builds upon partly
successful schemas rather than starting ab initio with an unstructured neural net-
work.

We close by noting a general property of vertebrate neural control: we see that there
may be no place prior to the MPG where the di®erent representation of the animal’s
situation are brought together. In general, a multiplicity of di® erent representations
must be linked into an integrated whole. However, this may be mediated by distributed
processes of competition and cooperation. There need be no one place in the brain
where an integrated representation of space plays the sole executive role in linking
perception of the current environment to action.

3. Rattus computator

The term Rattus computator was introduced by Dean & Redgrave (1989) in an
article that developed (in the context of a workshop, many of whose papers were
devoted to aspects of R. computatrix ) the themes of Dean et al . (1989). Where
most work on mammals had stressed the role of SC (the mammalian homologue of
tectum) in approach behaviour (such as the foveation of targets by saccades), Dean
& Redgrave were inspired by the studies in frog and toad to discover that there were
two response systems in the rat SC|not only one for approach, but also one for
avoidance. However, the starting point for the models reported here is the distinction
made by O’Keefe & Nadel (1978) between the taxon (behavioural orientation) system
for route navigation (as in Braitenberg (1965), a taxis is an organism’s response to a
stimulus by movement in a particular direction, e.g. phototaxis is the drive to move
towards light), and the locale system for map-based navigation, and proposed that
the locale system resides in the hippocampus. Guazzelli et al . (1998) quali¯ed the
latter assertion, showing how the hippocampus may function as part of a cognitive
map. The point is that `place cells’ in hippocampus correlate with where the rat is
located, but do not correlate with where it wants to be. We thus postulate that the
place cells must interact with `goal cells’ and a `cognitive map’ located elsewhere.

But ¯rst consider the taxon system. We relate taxis to the notion of a® ordances.
Just as a rat may have basic taxes for approaching food or avoiding a bright light,
say, so does it have a wider repertoire of a®ordances for possible actions associated
with the immediate sensing of its environment. Such a®ordances include `go straight
ahead’ for visual sighting of a corridor, `hide’ for a dark hole, `eat’ for food as sensed
generically, `drink’ similarly, and the various turns a®orded by, for example, the sight
of the end of the corridor. Since the rat’s behaviour depends more on smell than on
vision, we should add `olfactory a®ordances’, but relevant data are sparse.

Both normal and hippocampal-lesioned rats can learn to solve a simple T maze
in the absence of any consistent environmental cues other than the T-shape of the
maze. If anything, the lesioned animals learn this problem faster than normal ani-
mals (O’Keefe 1983). After the criterion was reached, probe trials with an eight-arm
radial maze were interspersed with the usual T trials. Animals from both groups con-
sistently chose the side to which they were trained on the T maze. However, many
did not choose the 90¯ arm, but preferred either the 45 or 135¯ arm, suggesting that
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the rats had solved the T maze by learning to rotate within an egocentric orienta-
tion system at the choice point through ca. 90¯. This leads to the hypothesis of an
orientation vector being stored in the animal’s brain, but does not tell us where or
how the orientation vector is stored. One possible model would employ coarse coding
in a linear array of cells, coded for turns from ¡ 180 to +180¯. From the behaviour,
one might expect that only the cells close to the preferred behavioural direction are
excited, and that learning `marches’ this peak from the old to the new preferred
direction. However, it requires a simpler learning scheme to `unlearn’ ¡ 90¯, say, by
reducing the peak there, while at the same time `building’ a new peak at the new
direction of +90¯. If the old peak has `mass’ p(t) and the new peak has `mass’ q(t),
then as p(t) declines towards zero while q(t) increases steadily from zero, the centre
of mass

¡ 90p(t) + 90q(t)
p(t) + q(t)

will progress from ¡ 90 to +90, ¯tting the behavioural data.
The determination of movement direction is easily modelled by `ratti¯cation’ of the

Arbib & House (1987) model of frog detour behaviour. There, prey were represented
by excitation coarsely coded across a population, while barriers were encoded by
inhibition whose extent closely matched the retinotopic extent of each barrier. The
sum of excitation was passed through a WTA circuit to yield the choice of movement
direction. As a result, the direction of the gap closest to the prey, rather than the
direction of the prey itself, was often chosen for the frog’s initial movement. The same
model serves for behavioural orientation once we replace the direction of the prey
(frog) by the direction of the orientation vector (rat), while the barriers correspond
to the absence of a®ordances for movement.

To approach the issue of how a cognitive map can extend the capability of the
a®ordance system, Guazzelli et al . (1998) extended the Lieblich & Arbib (1982)
approach to building a cognitive map as a world graph, a set of nodes connected
by a set of edges, where the nodes represent recognized places or situations and the
links represent ways of moving from one situation to another. A crucial notion is
that a place encountered in di®erent circumstances may be represented by multi-
ple nodes, but that these nodes may be merged when the similarity between these
circumstances is recognized. They model the process whereby the animal decides
where to move next, on the basis of its current drive state (hunger, thirst, fear, etc.).
The emphasis is on spatial maps for guiding locomotion into regions not necessarily
current visible, rather than retinotopic representations of immediately visible space,
and yields exploration and latent learning without the introduction of an explicit
exploratory drive. The model shows (i) how a route, possibly of many steps, may
be chosen that leads to the desired goal; (ii) how short cuts may be chosen; and
(iii) through its account of node merging, why, in open ¯elds, place-cell ¯ring does
not seem to depend on direction.

By means of a model employing a competitive Hebbian learning rule responsible
for coding visual and path integration cues, Guazzelli et al . (2001) were able to
explain the diversity of place-cell responses observed in a large set of electrophys-
iological experiments with a single ¯xed set of parameters. Experiments included
changes observed in place ¯elds due to exploration of a new environment, darkness,
retrosplenial cortex inactivation and removal, and rotation and permutation of land-
marks. To code for visual cues for each landmark, we de¯ned two perceptual schemas
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representing landmark bearing and distance information over a linear array of cells.
The information conveyed by the perceptual schemas is further processed through
a network of adaptive layers, which ultimately modulate the resulting activity of
our simulated place cells. In path-integration terms, our system is able to dynami-
cally remap a bump of activity coding for the displacement of the animal in relation
to an environmental anchor. We hypothesize that path-integration information is
computed in the rodent posterior parietal cortex and conveyed to the hippocam-
pus, where, together with visual information, it modulates place-cell activity. It is
worth noting that although we place rat before monkey in our pseudo-evolutionary
sequence, the modelling went in the reverse order|it was the model by Dominey
& Arbib (1992) of dynamic remapping in the saccade system of the monkey that
inspired our model of dynamic remapping in the locomotion system of rat. Thus
the bene¯ts of conceptual evolutionary modelling can be used to illuminate `simpler’
organisms in the light of available knowledge of `more complex’ organisms, as well
as vice versa, as we progress to a uni¯ed comparative neuroethology.

The overall structure of the R. computator is shown in ¯gure 3. The ¯gure is best
understood by `reading’ from right to left.

On the right is the basic motivational system, centred on the hypothalamus, which
holds neural representations for basic drives such as fear, hunger and sex. The activity
level can depend both on internal state signals (e.g. low blood sugar increases the
hunger signal) and by sensory cues (seeing food may provide an `incentive’ signal that
increases the hunger signal). As the animal acts, it may or may not be successful
in reaching a goal object (e.g. food); as a consequence, the animal may (in the case
of food) change its internal state by becoming less or more hungry. Finally, for this
block of the ¯gure, the nucleus accumbens is modelled as the locus of reinforcement
learning, which yields an adaptive bias signal for action selection dependent on the
current internal state.

Before continuing the analysis of the ¯gure, note the following.

(i) Much more is known about the motivational (some call it emotional) system
than is included here (see, for example, LeDoux (2000), which notes especially
the role of the amygdala, which is not included in ¯gure 3), posing further
challenges for the study of R. computator.

(ii) The motivational schema shown here has not been incorporated explicitly into
the models of monkey and human described below, but the role of nucleus
accumbens shown here is paralleled by models that incorporate reinforcement
learning in the basal ganglia as a mechanism for the biasing of cortical action
selection (see, for example, Dominey et al . 1995; Gillies & Arbuthnott 2000;
Gurney et al . 2001).

In the middle of the ¯gure, we see that sensory inputs determine parietally encoded
a®ordances for the rat’s locomotion; these provide the `menu’ for premotor cortex
to select (on the basis of a variety of cues) appropriate commands for the MPGs
that control the biomechanics of action. The following two points should be borne
in mind.

(i) The frog-inspired model might involve midbrain circuitry (including SC, the
homologue of tectum). It would thus be useful to return to the data of Dean &
Redgrave (1989) and their successors to better understand how to apportion

Phil. Trans. R. Soc. Lond. A (2003)



2360 M. A. Arbib

hippocampal
formation

place

 

incentives

internal state

MPGs

sensory
inputs

posterior
parietal

affordances

prefrontal
world
graph

hypothalamus

nucleus
accumbens

motivational
schema

premotor
action selection

consequences

goal object

Figure 3. An overview of mechanisms in the current version of R. computator. Sensory inputs
determine parietally encoded a® ordances for the rat’ s locomotion; these provide the m̀enu’
for premotor cortex to select appropriate commands for MPGs. The right half of the ¯gure
illustrates the taxon a® ordance model. The motivational system, centred on the hypothalamus,
holds neural representations for basic drives, which can be updated on the basis of internal state
signals and by sensory cues (incentives). The nucleus accumbens is the locus of reinforcement
learning, which yields an adaptive bias signal for action selection dependent on the current
motivational state. The left of the ¯gure shows the world-graph model. The place ( ỳou are
here’ ) system of the hippocampus is augmented by a cognitive map, the world graph, which is
posited to be in prefrontal cortex. A dynamic remapping mechanism in parietal cortex allows
the animal to update its place-cell encoding on the basis of its recent movements in those case
where landmarks encoding the new place are not currently visible.

a®ordances and action selection between cortex and midbrain. (Indeed, the
model of monkey saccade control in ¯gure 4 does make a more informed attempt
at apportionment.)

(ii) More research is required to determine the extent to which action selection
really occurs in premotor cortex, and to what extent selection occurs at the
level of parietal cortex by restricting the set of `relevant’ a®ordances.

Finally, on the left of the ¯gure, we see the systems that augment the taxon
(behavioural orientation) system for route navigation with a locale system for map-
based navigation. Here the place (`you are here’) system of the hippocampus is
augmented by a cognitive map, the world graph that is posited to be in prefrontal
cortex. Mechanisms for updating and using the cognitive map are taken from Lieblich
& Arbib (1982)|their implementation in a neural model, and the testing of that
model against neurophysiological data, remains a target for future research. The
model includes a dynamic remapping mechanism in parietal cortex, which allows the
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animal to update its place-cell encoding on the basis of its recent movements in those
cases where landmarks encoding the new place are not currently visible.

4. Macaca computatrix

Continuing with our quasi-evolutionary progression, we study how, in the monkey,
cortex augments SC (the mammalian homologue of frog tectum) in the control of
the rapid eye movements known as saccades, and then turn to the visual control of
grasping. In both cases, the integration of parietal a®ordances with premotor motor
commands will play a key role (Arbib 1997).

(a) Saccades

SC is the primary recipient of the projection from the retina to the midbrain, and is
a layered structure, with activity of cells in the super¯cial layers of the SC indicating
visual activity but with cells in the deep layers activated only for the target of the
upcoming saccade. Both maps are retinotopic and in register, i.e. a hypothetical
coordinate grid drawn on the retina may be related to a grid on SC such that, given
a point on the retina, a vertical penetration at the corresponding point of the SC
will yield cells in the upper layers that are activated by stimulation of the retinal
locus, and cells in deep SC whose ¯ring correlates with shift of gaze to a target in
that retinal direction. It is possible to trigger saccades by stimulation of SC with the
length and direction of the saccade encoded retinotopically on the collicular surface.
Here, the SC commands an eye movement relative to the current direction of foveal
gaze, rather than giving commands in a head- or body-centred frame. The projection
from SC to neurons called long lead bursters in the brainstem is monosynaptic, while
the latency from deep SC activity to motoneurons is polysynaptic. These cells control
the brainstem saccade burst generator, which takes as input the parameters of the
saccade and provides as output the control signal to the ocular motoneurons|¯rst a
burst of activity in burster neurons lasts long enough to bring the eyes to their new
position, then maintained activity in tonic neurons causes the oculomotor neurons
to ¯re in such a way as to cause the muscles to hold the eyes in their new position
in the orbit (see van Gisbergen & van Opstal (2003) for a current review).

The logic of modelling integrates both structural and functional considerations
as, for example, our de¯nition of a schema combines our analysis of some aspect of
behavioural or cognitive function with our emerging understanding of the structure
of some brain region. As we saw in our discussion of R. computatrix, the de¯nition of
a schema becomes further re¯ned as we expand it to include neurophysiological and
anatomical data on the brain region(s) posited to implement it, and our de¯nition of
particular schema will be reshaped as this process of model extension proceeds. The
use of the coarse functional description at the schema level, as well as the detailed
functional/structural description of the neural level, is to maintain intelligibility as
more and more neural details are incorporated into the model to explain a larger
and larger body of behavioural/cognitive data. In this spirit, we now turn to a multi-
schema view of the saccadic eye-control system. Dominey & Arbib (1992) show how
to replace the constituent schemas by neurophysiologically plausible networks in
the cerebral cortex and basal ganglia. The discussion here addresses three types of
saccade of increasing subtlety.

Phil. Trans. R. Soc. Lond. A (2003)



2362 M. A. Arbib

The simple saccade task. A monkey ¯xates a spot of light, which later disappears
as another spot of light (target point) appears in another location. The monkey is
rewarded for making a saccade to the new target at its onset.

The delayed saccade task (Hikosaka & Wurtz 1983). A peripheral target
point is brie°y illuminated during the display of the ¯xation point. The monkey is
trained to make a saccade to the location of the previously °ashed target only after
removal of the ¯xation point, thus showing that it has remembered the location of
this target during the period between the removal of the target and the removal
of the ¯xation point.

The double saccade task (Mays & Sparks 1980). Following o®set of the ini-
tial ¯xation point (F), targets A and B are successively presented. The total dura-
tion of presentation is less than the time required to initiate the ¯rst saccade.
Reward is contingent on successive saccades from F to A and then from A to B.

The classic models of saccade control address only the simple saccade task. The
delayed saccade task requires that the target speci¯cation be held in some form of
working memory, rather than being derived from current retinal input. The double
saccade task exhibits a dissociation between the site of retinal stimulation and the
metrics of the second saccade it elicits, whereas the initial retinotopic representation
of the second target, B, in the colliculus would by itself drive a saccade from F to B,
the saccade it elicits starts from A, suggesting that a dynamic remapping takes place
during the initial saccade to B, e®ectively subtracting vector FA from vector FB to
yield the actual movement speci¯ed by the vector AB. Sparks & Mays (1980), using
trials in which an intervening saccade changed the position of the eyes after a brief
visual target had been extinguished, discovered quasi-visual (QV) cells, the location
of whose activity, even if the eyes had moved after the target disappeared, represented
the current retinotopic position of the remembered target, while Gnadt & Andersen
(1988) observed such remapping in posterior parietal cortex. In the model described
here, we hypothesize that the actual remapping is accomplished in PP and that this
provides the input to the QV cells of SC.

Dominey & Arbib (1992) used an extensive analysis of the literature to develop
the neural model outlined in ¯gure 4. Heavy outlines separate modules representing
di®erent brain regions, and each brain region is divided into arrays that model cells
with similar neurophysiological responses. For example, there are cells in di®erent
regions whose activity is best correlated with the onset of a saccade; other cells
have activity best correlated with maintained activity or working memory between
the presentation of a stimulus at the beginning of a delay period until the actual
response. However, while a great deal of knowledge of the available data went into
the construction of the model, the data are not rich enough to get a model that would
actually compute and so we, as modellers, had to make a number of hypotheses about
missing connections, weights and time constants to get the model to run. The model
was then tuned so that the passage from the presentation of visual input to generation
of eye movement both matches the external behaviour, and internally, for those pop-
ulations that were based on cell populations with measured physiological responses,
we match, at some level of detail, those responses. In particular, the model detailed
how thalamocortical loops could implement target memory (which is thus a schema
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Figure 4. The modular design of the model developed by Dominey & Arbib (1992) to explain
the neural mechanisms for memory saccades and double saccades. The model includes SC and
brainstem, as well as cortical regions, thalamus and basal ganglia. It represents each brain region
by one or more layers of physiologically identi¯ed cell types: vs, visual pre-saccade; ms, memory
pre-saccade; sm, sustained memory; vm, visual response to memory target; qv, quasi-visual; wta,
winner-take-all; PPctr, central element of PPqv; FEF, frontal eye ¯eld; PP, posterior parietal
cortex; CD, caudate nucleus; SNR, substantia nigra pars reticulata; TH, thalamus (mediodorsal);
FOn, fovea on (foveation).

whose implementation is distributed across interacting brain regions), while remap-
ping was conducted by circuitry intrinsic to the region lateral intra-parietal sulcus
(LIP) of posterior parietal cortex (shown as `PP’ in ¯gure 4), whose projections then
accounted for related activity patterns in other brain regions, including QV activity
in SC. In particular, the model then showed how, when a new target representation
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was created by remapping, the result would replace the old representation in target
memory.

The model again embodies the theme of parietal a®ordances (here, the encoding of
possible saccade targets in the LIP region of PP) controlling premotor action selection
(here, the frontal eye ¯elds (FEF)). In this case, the result is that FEF may project
one or more peaks of excitation to SC, where it may be combined with concordant
or discordant input from retina. We hypothesize (in analogy with the Didday model
of frog tectum) that the SC then applies a WTA mechanism to choose one of these
peaks to command the brainstem saccade generator. However, the role of the basal
ganglia complicates this story. Basically, the portion of the basal ganglia involved
in oculomotor control has the caudate (`CD’ in ¯gure 4) receive input from cortex,
while substantia nigra pars reticulata (SNR) provides output to SC. Intriguingly,
the cells in SNR are tonically active, and thus normally will block the SC from
triggering a saccade unless the corresponding command signal (either from retina
or FEF) can surmount this inhibition. It appears that FEF thus acts on SC in two
ways|both by exciting it directly and by pinpointing disinhibition of the SC by the
basal ganglia. Brie°y, localized activity can excite cells in caudate, which inhibit cells
in SNR; since the SNR cells then inhibit the corresponding SC cells less strongly,
the latter are more likely to ¯re. However, it seems strange at ¯rst sight that the
brain should include this redundant pathway from FEF to SC: one excitatory, the
other disinhibitory. Some insight into this was o®ered by Dominey et al . (1995), who
used reinforcement learning in the caudate to show how the pathway through basal
ganglia could, rather than being redundant, learn to apply appropriate biases on the
disinhibition (and thus on target selection) in cases where the choice of target was
dependent on visual cues, or where saccades had to be executed in some preassigned
sequence. This latter modelling then relates to the role of nucleus accumbens in R.
computator.

(b) Parietal{premotor interactions in the control of grasping

The neurophysiological ¯ndings of the Sakata group (Taira et al . 1990) on the
parietal cortex and the Rizzolatti group (Rizzolatti et al . 1988) on the premotor
cortex indicate that the parietal area anterior intra-parietal (AIP) sulcus and the
ventral premotor area F5 in monkeys form key elements in a cortical circuit, which
transforms visual information on intrinsic properties of objects into hand movements
that allow the animal to grasp the objects appropriately (see Jeannerod et al . (1995)
for a review). Motor information is transferred from F5 to the primary motor cortex
(denoted `F1’ or `M1’), to which F5 is directly connected, as well as to various
subcortical centres for movement execution. Discharge in most F5 neurons correlates
with an action; the most common are `grasping with the hand’, `grasping with the
hand and the mouth’, `holding’, `manipulating’ and `tearing’. Rizzolatti et al . (1988)
thus argued that F5 contains a `vocabulary’ of motor schemas (Arbib 1981). The
situation is, in fact, more complex, and `grasp execution’ involves a variety of loops
and a variety of other brain regions in addition to AIP and F5. Complementing these
data are observations (Ungerleider & Mishkin (1982) in monkey; re¯ned by Goodale
& Milner (1992) in human) that we may distinguish a dorsal stream from primary
visual cortex (V1) to the parietal cortex, which encodes parameters necessary for
interacting with objects (AIP here; LIP for targets for saccades), from a ventral
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Figure 5. The FARS model of Fagg & Arbib (1998) includes the role of IT and PFC in modulating
F5’ s selection from the menu of a® ordances sent from region AIP of the parietal cortex. Dorsal
stream: extraction of object parameters related to movement (a® ordances). Ventral stream:
object identi¯cation.

stream from V1 to the inferotemporal cortex (IT), which serves for recognition of
the type or identity of objects.

Within this framework, the Fagg{Arbib{Rizzolatti{Sakata (FARS) model (Fagg &
Arbib 1998) provides a computational account of what we call the canonical system,
centred on the AIP ! F5 pathway, showing how it can account for basic phenomena
of grasping. Our basic view is that AIP cells encode a® ordances for grasping from the
visual stream and send their neural codes on to area F5. Figure 5 shows that F5 may
receive signals for multiple a®ordances, and thus diverse possible actions, through
the dorsal stream. Note that the dorsal stream does not know `what’ the object is;
it can only see the object as a set of possible a®ordances. The ventral stream, in
contrast, is able to recognize what the object is. The model thus posits that IT,
by encoding the nature of the object, can instruct various areas in the prefrontal
cortex (PFC) which can help F5 select the appropriate a®ordance. For example,
the appropriate grasp for lifting a mug to drink may be very di®erent for a grasp
designed rather to just move it out of the way. Moreover, the brain rarely commands
a single movement, but may need to control a sequence of manipulations. To this end,
we postulate that, while unit actions may be commanded by F5, each sequence of
actions may be stored in the part of the supplementary motor area called pre-SMA
(Luppino et al . 1990) with administration of the sequence (inhibiting extraneous
actions, while priming imminent actions) carried out by the basal ganglia (Bischo®-
Grethe et al . 2003) using circuitry separate from, but analogous to, that involved
in oculomotor control. The main di®erence is that the output of oculomotor basal
ganglia is primarily directed `downstream’ to SC, while the output of skeletomotor
basal ganglia is primarily directed `upstream’ to cerebral cortex via regions of the

Phil. Trans. R. Soc. Lond. A (2003)



2366 M. A. Arbib

thalamus. For two di®erent perspectives on the role of basal ganglia, see Bischo®-
Grethe et al . (2003) and Prescott et al . (2003).

We now build on the earlier studies to develop and extend the mirror-system
hypothesis of the evolution of the language-ready brain.

(c) The monkey mirror system for grasping

Rizzolatti et al . (1995) found a subset of the grasp-related premotor neurons of F5
that discharge not only when the monkey executes a certain class of actions, as
other grasp-related F5 neurons do, but also when the monkey observes more-or-less
similar meaningful hand movements made by the experimenter (or another monkey).
They call these `mirror neurons’. Mirror neurons do not discharge in response to
simple presentation of objects, even when held by the hand of the experimenter.
They require a speci¯c action (whether observed or self-executed) to be triggered.
Moreover, mirror neurons do not ¯re when the monkey sees the hand movement
unless it can also see the object|or, more subtly, if the object is not visible but is
appropriately `located’ in working memory because it has recently been placed on a
surface and has then been obscured behind a screen, towards then behind which the
experimenter is reaching (Umilta et al . 2001). Thus F5 in the monkey is endowed
with an `observation/execution matching system’ and we refer to this system in the
monkey brain as the mirror system for grasping. We refer to those F5 neurons that
are active only during the monkey’s own movements as canonical F5 neurons. Most
current papers seem to view each mirror neuron as coding a speci¯c (more or less
broadly tuned) class of actions. However, the available data seem more consistent
with the view that mirror neurons encode `components’ of the actions of interest. I
suggest that, rather than seek `the’ neuron for each action, we should look at sets of
neurons during related movements to try to ¯nd the di®erences and similarities to
extract the ensemble code.

The monkey mirror system, as observed neurophysiologically by Rizzolatti et al .
(1995), is concerned with observation of a single action that is already in the monkey’s
repertoire. Possible roles for such a mirror system may include the following.

(1) Self-correction, based on the discrepancy between intended and observed self
action.

(2) Learning by imitation at the level of a single action.

(3) Social interaction. By anticipating what action another monkey has begun,
a monkey can determine how best to compete or cooperate with the other
monkey.

To date, analysis of monkey behaviour seems consistent with roles (1) and (3), but
monkeys seem poor at imitation in any extended sense. In fact, a major part of our
hypothesis on the evolution of language readiness developed in the next section is
that evolution of the hominid brain equipped it to support richer and richer forms
of imitation.

My hypothesis is that it is function (1) that led to the evolution of the mirror sys-
tem, i.e. by being able to respond to the relation between hand and object, it laid the
basis for generalization from self hand movements to other’s hand movements. Func-
tion (3) was then a by-product, an `exaptation’, although it is the property that most
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people emphasize when discussing mirror neurons. Mirror neurons enable a monkey
to see what other monkeys are doing. This relates to the notion of understanding,
of not simply seeing a movement as a movement of a hand, but rather recognizing
it is a goal-directed action. However, I regard true `understanding’ as involving the
interaction of many brain regions, not just activity within the F5 mirror neurons.

The FARS model has two primary components: the recognition of object a®or-
dances and the selection by F5 of an appropriate grasp from this menu of a®or-
dances. As we move on to the new model, the MNS1 model of the mirror neuron
system (MNS) (Oztop & Arbib 2002), we not only have to recognize object a®or-
dances, but we also have to recognize how the hand is moving and preshaping. The
model incorporates experimental results on other regions of the brain that provide
appropriate data for trajectory and preshape. The caudal intraparietal sulcus (cIPS)
is not part of this new system, but rather provides information about the shape of
the object, which AIP needs to do its job, looking at the orientation, etc., of the
surfaces of the object. Two other brain regions are in the parietal cortex: PG, which
seems to be particularly good at spatial coding for objects, including motion during
interaction of objects as well as self motion, and PF, which seems more related to
somatosensory information, touch, etc., but again related to mirror-like responses.
Finally, superior temporal sulcus (STS) is in the temporal cortex rather than the
parietal cortex, but seems to be very important in detecting biologically meaningful
stimuli such as hand movements, as well as having sub-regions that encode motion-
related activity. Perrett (1989, 1990) found STS neurons whose properties resemble
the visual properties of F5 mirror neurons during action observation, but are not
excited during active movements of the observer.

The key criteria for activating an F5 mirror neuron are as follows.

(1) The preshape that the monkey is seeing corresponds to the grasp that the
mirror neuron encodes.

(2) The preshape that the observed hand is executing is indeed appropriate to the
object that the monkey can see (or remember).

(3) The hand must be moving on a trajectory that will indeed bring it to grasp
the object.

In modelling this, we could just have tried to explicitly program the various por-
tions of our overall system to yield appropriate mirror activity. However, the MNS
model of Oztop & Arbib (2002) starts with a `brain’ in which the F5 canonical neu-
rons are already controlling an interesting set of grasps and then has the mirror
neurons learn to recognize how motion of the hand relative to an object correlates
with F5 canonical neuron activity during self-generated movements. We will then
see how this can be the basis for the recognition of movements executed by others.
An interesting sub-issue is that it will be adaptive for the monkey if it can recognize
the other monkey’s actions as soon as possible. Thus the ability to activate mirror
neurons from smaller and smaller samples of the onset of a trajectory will be an
important criterion for further developments in the modelling.

Figure 6 is a diagram of the MNS model of the mirror system. It highlights the
components that Oztop & Arbib (2002) see as crucial for operation of the mirror
system in the monkey. Along the top diagonal there is a portion of the FARS model
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Figure 6. The MNS model of Oztop & Arbib (2002). Top diagonal: a portion of the FARS model.
Object features are processed by AIP to extract grasp a® ordances, and these are sent on to the
canonical neurons of F5 that choose a particular grasp. Bottom right: recognizing the location
of the object provides parameters to area F4, which programs the reach. The information about
the reach and the grasp is taken by the motor cortex M1 to control the hand and the arm. New
elements of the MNS model: at the bottom left are two schemas|one to recognize the shape
of the hand of the actor being observed by the monkey whose brain we are interested in, and
the other to recognize how that hand is moving. Just to the right of these is the schema for
hand{object spatial-relation analysis. It takes information about object features, the motion of
the hand and the location of the object to infer the relation between hand and object. Just
above this is the schema for object associating a® ordances and hand state. Together with F5
canonical neurons, this last schema provides the input to the F5 mirror neurons.

(cf. ¯gure 5). Object features are processed by AIP to extract grasp a®ordances,
and these are sent on to the canonical neurons of F5 that choose a particular grasp.
The bottom right of the ¯gure shows how recognizing the location of the object
can provide appropriate parameters to another motor programming area (in this
case, F4, which is adjacent to F5 in premotor cortex), which computes the reach.
The information about the reach and the grasp is taken by the motor cortex M1 to
actually control the hand and the arm.

The other schemas add the new functionality that allows the MNS to do its job.
At the bottom left we have two schemas that may be localized in area STS of the
monkey brain: one to recognize the shape of the hand of the actor being observed by
the monkey whose brain we are interested in, and the other to recognize how that
hand is moving. Just to the right of these is the schema for hand{object spatial-
relation analysis. It takes information about object features, the motion of the hand
and the location of the object to infer the relation between hand and object. Just
above this is the schema for associating object a®ordances and hand state, which may
be in area 7b (= PF) of the monkey brain. We want to understand how information
coming from the F5 canonical neurons during the monkey’s own movements can be
used to enable the F5 mirror neurons to learn how to recognize actions. We also want
to understand how the mirror neurons are activated not only as an accompaniment
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to the monkey’s own movement, but also when the monkey observes a similar action
by someone else.

We recognize an action when we see that the way in which the hand is moving
and shaping is indeed appropriate to one of the a®ordances of an object. Clearly, in
the initial stage of someone else’s grasping movement, you may not yet be sure as
to whether they will be engaged in a precision pinch or a power grip or whatever.
Thus it becomes necessary to monitor the possible movement of a variety of portions
of the hand along what may turn out to be the appropriate opposition axis for the
movement that will be ¯nally recognized. For this reason, Oztop & Arbib (2002)
have de¯ned the hand state to characterize the hand in relation to the object to
be grasped (see their paper for the particular choice of the seven parameters that
de¯ne the hand state in the model, and thus the seven-dimensional trajectory F(t)
that mirror neurons in the model must learn to classify). By being de¯ned in terms
of relationships between hand and object, the hand state has the beauty that it
will work just as well for observing how well another monkey’s hand is moving to
grasp an object (function (3) above) as for measuring how the monkey’s own hand
is moving to grasp the object (function (1) above). This is the secret that allows
self-observation by the monkey to train a system that can be used for observing the
actions of others and recognizing just what those actions are.

The details of Oztop & Arbib (2002) are beyond the scope of this article, but the
key idea in simulating the `core of the mirror circuit’ (the so-called MNS1 model)
is that, starting from grasps that are currently within the repertoire of the system’s
canonical neurons, the mirror neurons learn to recognize whether the motion of the
¯ngers of the hand is directed towards forming a preshape appropriate to the observed
object and whether the motion of the wrist is on a trajectory appropriate to bringing
the hand towards the object. This is achieved by a mechanism whereby cells that
are initially triggered by F5 canonical activity learn to respond so well to a range of
hand-state trajectory input associated with it that eventually these cells can respond
to input concerning the object a®ordance and hand-state trajectory even when the
monkey itself is not performing the grasp, i.e. when there is no activity of the F5
canonical neurons. Given the ingenious construction of the hand state, we now have
a system that can respond to the actions of others as well as to self-generated actions.

Although MNS1 was constructed as a model of the development of mirror neurons
in the monkey, we believe that it serves equally well as a model of the development
of mirror neurons in the human infant. A major theme for future modelling, then,
will be to clarify which aspects of human development are generic for primates, and
which are speci¯c to the human repertoire. The MNS1 model makes the crucial
assumption that the grasps that the mirror system comes to recognize are already
in the (monkey or human) infant’s repertoire. Present modelling within my group
postulates the following stages prior to and during the development of the mirror
system for grasping in the infant.

(i) The child re¯nes a crude map (SC) to make unstructured reach and `swipe’
movements at objects; the grasp re°ex occasionally yields a successful grasp
(see Kuperstein (1998) and Baraduc et al . (2001) for two examples of related
modelling).

(ii) The child develops a set of grasps that succeed by kinesthetic, somatosensory
criteria (the infant-learning-to-grasp model (ILGM) of Oztop et al . (2003)).
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(iii) AIP develops as a®ordances of objects become learned in association with suc-
cessful grasps. Grasping becomes visually guided; the grasp re°ex disappears.

(iv) The (grasp) MNS develops driven by visual stimuli relating hand and object
generated by the actions (grasps) performed by the infant him/herself (see the
MNS1 model described above).

(v) The infant (with maturation of visual acuity) gains the ability to map other
individual’s actions into his internal motor representation.

(vi) Then the infant acquires the ability to create (internal) representations for
novel actions observed and develops an action-prediction capability.

We assume that stages (i){(iv) are much the same in monkey and human, but
that stages (v) and (vi) are rudimentary at best in monkeys, somewhat developed in
chimpanzees and well developed in human children. In terms of ¯gure 6, we might
say that if MNS1 were augmented to have a population of mirror neurons that
could acquire population codes for observed actions not yet in the repertoire of
self-actions, then in stage (v) the mirror neurons would provide training for the
canonical neurons, reversing the information °ow seen in the MNSI model. We note
that this raises the further possibility that the human infant may come to recognize
movements that are not only not within the repertoire, but which never come to be
within the repertoire. In this case, the cumulative development of action recognition
may proceed to increase the breadth and subtlety of the range of actions that are
recognizable but cannot be performed by children.

The important point I wish to emphasize is that such learning models, and the
data they address, make it clear that mirror neurons are not restricted to recognition
of an innate set of actions, but can be recruited to recognize and encode an expanding
repertoire of novel actions.

5. Homo loquens computator

(a) Human mirror system for grasping

While our understanding of the mirror system for grasping in the monkey brain
rests on neurophysiological recording of the activity of single cells in selected brain
regions, the discovery that there is also a mirror system for grasping in the human
brain rests on techniques for measuring regional cerebral blood °ow to get a mea-
sure of how activity in various brain regions di®ers from task to task. The two
main methods are positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI). Rizzolatti et al . (1996) used PET imaging to show that
Broca’s region is activated by observation of hand gestures. They compared three
experimental conditions: object observation (control condition); grasping observa-
tion (the subject observed someone else grasp an object); and object prehension (the
subject grasped the object). The most striking result was highly signi¯cant activa-
tion in the rostral part of Broca’s area for both the execution and observation of
grasping. Thus a key area in the human language system is a possible mirror system
for grasping! Moreover, Matelli (as reported by Rizzolatti & Arbib (1998)) provides
an anatomical argument that F5 in the monkey is homologous to (i.e. shares an
evolutionary history as a distinguishable brain region with) area 45 in the human
(Broca’s area = areas 44 + 45). (For further analysis, see Arbib & Bota (2003).)
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(b) The mirror-system hypothesis

Rizzolatti et al . (1995) thus hypothesized that the functional specialization of
human Broca’s area derives from an ancient mechanism related to the production
and understanding of motor acts. The `generativity’, which some see as the hallmark
of language, is present in manual behaviour, which can thus supply the evolutionary
substrate for its appearance in language. Rizzolatti & Arbib (1998) further developed
these ideas in their paper `Language within our grasp’. Their theory is within the
tradition that roots speech in a prior system for communication based on manual
gesture|and views the present human capacity for language as based not on speech
alone, but rather on communication integrating vocal, facial and manual gestures.
What it adds to the manual origins hypothesis is that the mirror system provides a
possible neural `missing link’ in the evolution of human language readiness.

The mirror-system hypothesis. Broca’s area in humans evolved from a basic
mechanism not originally related to communication|the mirror system for grasp-
ing in the common ancestor of monkey and human. The mirror system’s capacity
to generate and recognize a set of actions provides the evolutionary basis for lan-
guage parity, in which an utterance means roughly the same for both speaker and
hearer.
It is important to also note that the mirror-system hypothesis does not say that
having a mirror system is equivalent to having language. Monkeys have mirror
systems but do not have language, and we expect that many species have mirror
systems for varied socially relevant behaviours. Moreover, it does not say that the
ability to match the perception and production of single gestures is su±cient for
language.

The monkey mirror system, as observed neurophysiologically by Rizzolatti et al .
(1995), is concerned with observation of a single action that is already in the mon-
key’s repertoire. `Beyond the mirror’ (as so conceived) lies the imitation of complex
behaviours, `parsing’ them into variations of familiar elements and then being able to
repeat the observed structure composed from those elements. Arbib (2002) expanded
the mirror-system hypothesis by adding two imitation stages to those discussed by
Rizzolatti & Arbib (1998) to de¯ne seven stages of evolution, from manual grasping
through imitation to language. I do not argue for a sharp transition from one stage
to the next; rather, I suggest a process of cumulative changes whereby creatures
with many of the skills of stages 1 to n + 1 gradually emerged from creatures who
possessed only the skills of stages 1 to n.

(1) Grasping.

(2) A mirror system for grasping (i.e. a system that matches observation and exe-
cution).

(3) A simple imitation system for grasping.

(4) A complex imitation system for grasping.

(5) `Proto-sign’: a manual-based communication system, breaking through the
¯xed repertoire of primate vocalizations to yield a combinatorially open reper-
toire.
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action (cf. ¯gure 5) ! recognizing an action (cf. ¯gure 6) ! describing an action (which takes
us into the domain of proto-sign and thence to language).

(6) `Proto-speech’: a vocal-based communication system that breaks through the
closed nature of primate vocalizations as a result of the `invasion’ of the vocal
apparatus by collaterals from the communication system based on F5/Broca’s
area.

(7) Language: the change from action-object frames to verb-argument structures
to syntax and semantics; co-evolution of cognitive and linguistic complexity.

We have already given a full account of stages (1) and (2) and now move on to the
later stages. Note the careful use of the term `proto-speech’ in stage (6), rather than
the term `speech’. This is because `speech’ may be taken to mean `spoken language’
and I want to emphasize the possibility of an evolving capacity for proto-speech as the
open-ended production and perception of sequences of vocal gestures, without these
sequences at ¯rst constituting a language. Arbib (2002) spells out these stages, and
my current hypothesis is that stages (4){(6) were present in pre-human hominids, but
that the `explosive’ development of proto-speech may have been coupled with fur-
ther evolution of imitation abilities, and that what we know as language (stage (7))
depended on `cultural evolution’ well after biological evolution had formed modern
Homo sapiens. This remains speculative, and one should note that biological evolu-
tion may have continued to reshape the genome for the human brain even after the
skeletal form of H. sapiens was essentially stabilized, as it certainly has done for skin
pigmentation and other physical characteristics. However, the fact that human chil-
dren can master any language equally well irrespective of their genetic community
shows that these changes are not causal with respect to the structure of language.

To close this discussion, I present ¯gure 7, which provides a crude framework for
development of neurolinguistics within the framework o®ered by the mirror-system
hypothesis (see Arbib 2001 for details; an updated version appears in Arbib & Bota
(2003)). It shows the cumulative emergence of three fronto-parietal systems: at the
top, choosing an action (cf. the FARS model); in the middle, recognizing an action
(cf. the MNS model); and, ¯nally, describing an action (which takes us into the
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domain of proto-sign and thence to language). When we compare the ¯rst two levels
as sketched in ¯gure 7 to the greater richness of ¯gures 5 and 6 (which themselves
greatly simplify the mechanisms of the monkey brain), we get some sense of the
challenges that lie ahead in developing, and carrying out detailed simulations of, H.
loquens computator. Clearly, this is all too brief, but should provide the key points
for our discussion of conceptual neural evolution. Much more detail is provided by
Arbib (2003c).

To close the section, I mention two examples, which may signal a con°uence
between robotics and language.

Lowe et al . (2002) have constructed a generic human-modelling system to produce
human avatars (the graphics equivalent of a robot), and used it as the basis for a
tuition system for Auslan, the Australian sign language (Johnston & Wilkin 1998).
Using the human-modelling system, the Auslan tuition system provides an interac-
tive extensible interface for learning sign language. Important sign-language features
such as hand shape, position, orientation and motion are clearly visible, while user-
controllable sign position and viewing angle allow these features to be examined
closely by the user. Current work is extending the human-modelling system to dis-
play facial expressions and visual speech, which are important components of Auslan.
For example, the signs `angry’ and `complain’ di®er only in facial expression, whereas
`today’ and `now’ di®er only by the word that is mouthed while signing.

Billard (2000) has developed a preliminary model of primate imitative ability, to
explore hypotheses about the posited role of imitation (stages (3) and (4)) in our the-
ory of language evolution. The aim was to build a comprehensive, though simpli¯ed,
model of the visuo-motor pathway behind learning by imitation, from processing real
video data to directing a complete dynamic simulation of a humanoid. This model is
biologically inspired in its function, as its modules have functionalities similar to that
of speci¯c brain regions, but the modules are composed of arti¯cial neural networks
whose neurons are little constrained by biological data. It is loosely based on neu-
rological ¯ndings in primates and incorporates abstract models of some brain areas
involved in visuo-motor control, namely STS, the spinal cord, the primary motor cor-
tex (M1), the dorsal premotor area (PMd) and the cerebellum. The model of head,
trunk, arms and hands is implemented in a dynamic simulation of a 65-degrees-of-
freedom avatar, which allows it to approximate the motions of a humanoid. Learning
of movements is done in the PMd and cerebellum modules, which are implemented
using the dynamical recurrent associative memory architecture (DRAMA) (Billard
& Hayes 1999). The STS{PMd{M1 interconnection is a simpli¯ed version of the
mirror-neuron model described above. Arbib et al . (2000) report on a methodology
for inferring predictions from such models for the result of brain imaging using fMRI.
fMRI activity of the cerebellum and PMd modules was predicted from the model
for imitation against observation tasks in a ¯nger-tapping experiment and compared
to the real fMRI activity of the same regions measured by Iacoboni et al . (1999).
We saw higher ratios for fMRI data than for synthetic data. The point was not to
claim that we had achieved the ¯nal model of imitation, but rather to highlight the
importance of being able to use multiple sources of data in validating a model, and
the utility of synthetic fMRI in bringing human-brain imaging to bear in developing
a model of `the supporting neural networks’, whether in the control of an avatar or
an actual humanoid robot used as a testbed for testing theories in computational
neuroscience.
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6. Conclusion

With this, we may be closing the circle back to the work of Walter which started this
article. The Latin noun specula (f.) means a look-out, or watchtower, and is related
to the noun speculator (m.), which switches to the feminine form speculatrix to agree
in gender with Machina in M. speculatrix, `the machine that speculates’. Specula is
surely the cognate of speculum (m.), which means mirror. Would it be too fanciful,
then, to say that the complex computational model of the brain I am developing
may indeed give rise to a new M. speculatrix as the machine that makes full use of
mirror neurons?

In any case, the time comes to brie°y recapitulate the path we have trodden.
First, we charted four forms of evolution: biological evolution (cf. Darwin’s theory

of natural selection); ad hoc evolution (exempli¯ed by the transition from M. specu-
latrix to M. docilis, and in Braitenberg’s vehicles); genetic algorithms (a method of
parameter optimization in arti¯cial systems inspired by natural selection); and con-
ceptual neural evolution (seeking to understand complex neural mechanisms through
an incremental process). We then agreed to take an approach to computational
neuroethology (computational modelling of the neural mechanisms mediating ani-
mal behaviour) that exempli¯ed conceptual neural evolution, though it remains our
goal to make the models of conceptual evolution hew more and more closely to stud-
ies of biological evolution. Moreover, at various places, we saw convergences between
our biological modelling and biologically inspired approaches to the study of robots
and intelligent agents.

With this, we o®ered a conceptual evolution of the vertebrate nervous system that
took us through four stages.

(i) Rana computatrix (the computational frog). Here we saw basic mechanisms for
approach and avoidance in frog and toad and for detours and path planning
(the latter an inspiration for work in behaviour-based robotics), which centred
on the construction of a retinotopic map in tectum for the visual guidance of
behaviour.

(ii) Rattus computator (the computational rat). We noted the distinction between
the taxon (behavioural orientation) system for route navigation and the locale
system for map-based navigation, and showed that the taxon system could be
modelled using concepts gleaned from our study of R. computatrix, but now
with the idea that mechanisms of the SC (the mammalian homologue of the
frog’s tectum) are `re°ected’ into cortical structures in which the parietal cortex
extracts a®ordances (visually coded potentialities for action) and premotor
cortex (part of the frontal cortex) determines the appropriate motor schemas
for action. We then showed how this basic capability may be augmented by a
cognitive map that resides in part in the hippocampus. Since `place cells’ in
the hippocampus correlate with where the rat is located, but do not correlate
with where it wants to be, we postulated that the place cells must interact with
`goal cells’ and a `cognitive map’ located elsewhere.

(iii) Macaca computatrix (the computational monkey). We looked ¯rst at the con-
trol of saccades, seeing how the SC controls eye movements in a fashion homol-
ogous to the way in which tectum controls whole body movement ion the frog,
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and then saw how the theme of parietal a®ordances and frontal motor schemas
was carried forward in the relation of posterior parietal cortex and frontal eye
¯elds in the control of saccades. We then saw how this theme was further
expressed in the neural mechanisms in the monkey for control of grasping. We
then noted a special re¯nement of this latter system, the monkey mirror sys-
tem for grasping, in which a subset of the cells of premotor cells involved in
grasping are active not only when the monkey performs a certain type of grasp,
but also when the monkey observes others (monkey or human) performing a
more-or-less similar grasp.

(iv) Homo loquens computator (the talking computational human). Here we brie°y
charted the mirror-system hypothesis for a major evolutionary leap|the ability
of humans to learn language whereas other creatures cannot. The key observa-
tion was that the human mirror system for grasping appears to be in Broca’s
area, suggesting that the ability to match the perception and production of
hand movements may be crucial to the evolution of human-brain mechanisms
that support language, with proto-sign possibly providing the sca®olding for
proto-speech en route to the language-ready brain.

All this is but the `tip of the iceberg’ in understanding how the complexity of
the human brain may be rooted in the complexities (but simpler complexities) of
the brains of our evolutionary cousins. What has made this relevant to the celebra-
tion of the legacy of Walter is the growing realization that this exercise in charting
conceptual evolution of the vertebrate nervous system not only promises increasing
convergence with attempts to probe the biological evolution of brain structures, but
may also o®er new brain operating principles that will advance the design principles
for a new generation of biologically inspired robots.

An earlier version of this paper appeared as part of the preliminary Proceedings released prior
to the EPSRC/BBSRC International Workshop, B̀iologically-Inspired Robotics: the Legacy
of W. Grey Walter’ , 14{16 August 2002, HP Bristol Labs, UK. Preparation of this article was
supported in part by a Fellowship of the Center for Interdisciplinary Research at the University of
Southern California, and in part by the National Science Foundation under Grant EIA-0130900.
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