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Introduction

Linguistic theoryin thegenerative traditionis basedonasmallnumberof simplebut impor-
tantobservationsabouthumanlanguagesandhow they areacquired.First,thestructureof language
is extremelycomplex– socomplex that it is oftenarguedthatit wouldbeimpossibleto learnwith-
out prior knowledgeasto its generalcharacter(Chomsky, 1965).Second,childrenlearnlanguages
rapidlyandseeminglyeffortlessly. Althoughclearlylimited with respectto othersortsof cognitive
tasks,every normalchild raisedundernormalcircumstanceslearnsthe basicsyntaxof language
within afew yearsof birth. Third, theworld’s languagesexhibit structuralcommonalities–so-called
linguisticuniversals.Together, theseobservationshave ledmany researchersto theconclusionthat
languageinvolvesdomain-specificforms of knowledgethat are largely innate. In the generative
approach,the facultyof mind dedicatedto languageis calledlinguistic competence. A generative
grammaris aformaldescriptionof this faculty, in theform of asystemthatgeneratesthesetof pos-
siblesentencesof a givenlanguage,andtherebybestows on its possessortheability to distinguish
betweengrammaticaland ungrammaticalutterances.Grammarsdevelopedwithin this tradition
(which we will call the standardapproach)typically consistof primitives,operations,andprinci-
plesintendedto describethe knowledgeof an idealizedspeaker/hearerin a homogeneousspeech
community. In thisapproachcognitive representationsarehierarchicallystructuredsetsof symbols
andcognitive processesareoperationson them.

Althoughthestandardapproachhasbeenvery successfulin promotingthediscovery of de-
scriptive generalizationsaboutlinguistic structureandvariation,it presentsseveralproblemswhen
consideredasthe basisfor a theoryof how languageis acquiredandused. Theseproblemsarise
from the competence-performance distinction that is oneof the foundationalassumptionsof the
approach.The distinctionbetweenwhatpeopleknow aboutlanguageandwhat they do with that
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knowledgeis easyto recognize. However, the relationshipbetweencompetencegrammars and
performanceis morecomplex.

Oneissueconcernsthesystematicambiguityin thefield regardingtheextentto which com-
petencegrammarshouldfigure in accountsof performance.Chomsky hasoften suggestedthat
competencegrammarsdescribeproceduresfor relatingdifferentlevelsof representation,but arenot
characterizationsof thecomputationsinvolvedin usinglanguage.In Chomsky (1995)hereiterated
this view: “The orderingof operations[in grammaticaltheory] is abstract,expressingpostulated
propertiesof the languagefaculty of the brain, with no temporalinterpretationimplied.” How-
ever, many researchershave pursueda moreliteral-mindedinterpretationof grammarasthebasis
for accountsof how languageis acquired,used,or impairedasa consequenceof brain injury. In
acquisition,a well known exampleis the work of Borer andWexler (1992),in which acquisition
phenomenaarecharacterizedin termsof thematurationof principlesascribedto UniversalGram-
marsuchasthebi-uniquenessrelationsandA-bar chains.Within this approachacquisitionis char-
acterizedasmovementalonga trajectoryfrom not knowing to knowing rulesof grammar(Gold,
1967). In theareaof languageprocessing,FrazierandFodor(1978)developeda theoryof parsing
basedonheuristicsapplyingto grammaticalrepresentationsdevelopedwithin generative theory. In
neurolinguistics,Grodzinsky (1995)arguesfor anaccountof agrammaticaphasiain whichpatients
fail to representtraces,aparticularaspectof grammaticaltheory. Uncertaintyabouttherelationship
betweencompetencegrammarandperformancehasexistedthroughoutthe history of generative
linguistics(seeFodor, Bever, & Garret,1974;Berwick& Weinberg, 1984;Bresnan,1978).

A secondproblemcreatedby the competence-performance distinction is that it motivates
disregardingdatathat may actuallybe crucial to understandingbasiccharacteristicsof language.
Thecompetenceapproachexcludesperformancemishapssuchasfalsestarts,hesitations,anderrors,
but alsomorecentralaspectsof linguistic performance.It is assumed,for example,that language
shouldbecharacterizedindependentlyof theperceptualandmotorsystemsemployed in language
use;memorycapacitiesthatlimit thecomplexity of utterancesthatcanbeproducedor understood;
andreasoningcapacitiesusedin comprehendingtext or discourse.The competencetheoryalso
systematicallyexcludesinformationaboutstatisticalandprobabilisticaspectsof language;thefact
that “that” is usedmoreoften than“than,” for example,or that the word “the” is followed more
often by a noun thana verb arenot seenasrelevant to this deepercharacterizationof linguistic
knowledge.However, recentstudieshaveemphasizedtheimportantrolestheseaspectsof language
andcognitionplay in acquisitionandprocessing(MacDonald,Pearlmutter, & Seidenberg, 1994;
Trueswell,Tanenhaus,& Kello, 1993;Kelly, 1992;Saffran,Aslin, & Newport,1996).

Onthestandardview thechild is learningarulesystemthatgovernstherelationshipsamong
abstractlinguistic entities.Thechild attendsto thestructureof utterancesguidedby innatecapac-
ities in order to set languagespecificparameters.Poverty of the stimulusargumentsareusedto
suggestthatknowledgeof languageis underdeterminedby evidenceavailableto languagelearners
andmustthereforebeattributableto innateUniversalGrammar(Chomsky, 1981). Statisticaland
probabilisticpropertiesof theinput arepresumedto playno role in this processandtheir influence
is excludedfrom generative accountsof acquisition,suggestingthat childrenignoretheseaspects
of input. Excludingtheuseof thesefactorsfrom theoriesof acquistionis seenaspositive, in that
it avoids a possiblecombinatorialexplosionof intercorrelationsamonglinguistic propertiesthat
wouldmakeacquisitiondifficult. Thefallacy in thisargumentis thatthestatisticalandprobabilistic
aspectsof languagemightactuallyfacilitateacquisition.Allowing thatchildrenattendto all aspects
of linguistic input–evenspeecherrors–isnot a problembecausethelow frequency of particularer-
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rorsmeansthat they will not seriouslyinfluencethestatisticalmodelof languagedevelopedin the
courseof learning.

Theapparentcomplexity of languageandits uniquenessvis a vis otheraspectsof cognition,
whicharetakenasmajordiscoveriesof thestandardapproach,mayderive in partfrom thefactthat
these“performance”factorsarenot availableto enterinto explanationsof linguistic structure. If
in fact the propertiesof the languagefaculty areto someextent determinedby a combinationof
generalneuralinformationprocessingproceduresappliedto theuniquetypesof tasksthatlanguage
processingrepresents,thenanapproachto thecharacterizationof thelanguagefacultythatexcludes
referenceto thesefactorsrunsthe risk of mischaracterizingthenatureof linguistic cognitionin a
fundamentalway.

A third issueconcernstherole of performancedatain deriving thecompetencetheoryitself.
Themappingbetweencompetencegrammarandperformanceis atbestcomplex, aswehavenoted;
it is alsolargely unknown. A problemarisesbecausetheprimarydataon which the standardap-
proachrelies–grammaticalityjudgments–arethemselvesperformancedata(e.g. Bever, 1972).The
methodologyof the standardapproachholdsthat propertiesof the hypothesizedlanguagefaculty
canbeidentifiedon thebasisof experts’ intuitive judgmentsof thewell-formednessof utterances.
However, therelationshipbetweengrammaticalityjudgmentandthestructureof thegrammaris no
moretransparentthanbetweenotheraspectsof competenceandperformance.

On the standardview, a grammaticalsentenceis one that is generatedby the competence
grammar. This definitionentailsthatevery sentenceis eithergrammatical(generatedby thegram-
mar) or not. The metaphorhereis that of a Turing machinethat recognizessomestringsbut not
othersasmembersof a language.A grammaticalityjudgment,in contrast,is a particularway of
queryingone’s grammaticalknowledge. Amongnon-experts(i.e., non-linguists),performanceon
this taskis affectedby thememorylimitations,distractions,shiftsof attentionandinterest,errors,
falsestartsandhesitationscharacteristicof otheraspectsof performance.For theseinformants,
linguisticcompetenceis only onefactorin thejudgmentprocess.

For linguists,usinggrammaticalityjudgmentsto infer propertiesof theunderlyingcompu-
tationalsystemcanonly be justified if they areable to abstractaway from these“grammatically
irrelevant” distractions.The notion that linguistsarepartly in thebusinessof looking beyond ac-
tual behavior (determinedby a mix of performanceandcompetence)to discover true underlying
competenceis suggestedby Grimshaw and Rosen(1990),who argue againstequatingsubjects’
performanceon a judgmenttask with grammaticalknowledge: “To determinepropertiesof the
underlyingsystemrequiresinferentialreasoning,sometimesof a highly abstractsort.” (p. 188).
Linguistsassumethatthey arecapableof reasoningfrom intuitionsaboutgrammaticalityto under-
lying competence.This typeof reasoningobviously requiresawarenessof thetypesof factorsthat
influencegrammaticalityjudgments.Theproblemwith this logic is thatno generaltheoryof how
grammaticalityjudgmentsaremadehasever beenproposed.Consideringthe enormousnumber
of performancefactorsthat have beenidentifiedaspotentially influencingthe judgmentprocess,
andhow poorly they areunderstood,it is not surprisingthata carefulreview of theevidenceleads
Schutze(1996) to concludethat “it is hard to disputethe generalconclusionthat metalinguistic
behavior is notadirectreflectionof linguisticcompetence.”1

1Degreesof ungrammaticalityhave long beenrecognizedin thestandardlinguisticsliterature(e.g. Chomsky, 1961,
1965).Oneway of reconcilingtheparadoxentailedby acompetencegrammarwith gradedjudgmentdatais to have the
grammarassigndegreesof badnessto stringsthatviolate grammaticalprinciples. Anotheris to saythat the judgment
processitself resultsin gradedjudgmentsbecauseit includesnon-syntacticinformation(Bever, 1972).A third possibility
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Giventhethreeissueswe have noted–theuncertaintiesaboutwhethercompetencegrammar
shouldfigure in accountsof performance,the exclusionof dataconcerningstatisticaland prob-
abilistic aspectsof language,and the difficulty involved in “reverse-engineering” grammarfrom
performancedata–itis quitepossiblethat the formalismsof thestandardapproachreally areonly
metaphoricallyrelatedto thebrainprocessesinvolved in producingandcomprehendinglanguage.
This alternative is sometimesrecognizedin the literature,but rarely takenseriously. For example,
Schutze(1996)concedesthat

It is conceivable that competencein this senseof a staticallyrepresentedknowledge
doesnot exist. It couldbethata givenstringis generatedor its statuscomputedwhen
necessary, andthatthedemandsof theparticularsituationdeterminehow thecomputa-
tion is carriedout, e.g.,by somesortof comparisonto prototypicalsentencestructure
storedin memory. Sincesuchascenariowoulddemandamajorrethinkingof thegoals
of thefield of linguistics,I will notdealwith it further.

Theremainderof this articlerepresentsa steptowardjust sucha rethinkingof thelinguistic
endeavor.

An AlternativeFramework

In recentyears,a framework hasbegunto developthatdifferssignificantlyfrom thestandard
approachwith respectto what it meansto know a language.Thegoalof this work is not to devise
primitivesandprinciplesthatdescribethesetof sentencesanidealizedspeaker/hearerwouldaccept,
but ratherto make explicit theexperientialandconstitutionalfactorsthataccountfor thedevelop-
mentof knowledgestructuresunderlyinglinguisticperformance.Whereasthestandardapproachis
committedto theuniquenessof linguistic representationsvis a vis othercognitive domains,andto
theexistenceof representationswhosefundamentalcharacteris shapedby therepertoireof innate
ideas,thealternativeview seescognitive representationsasonecomponentof asystemthatincludes
boththeorganismandits environment.Cognitiveprocessesaretakento bethemanipulationof rep-
resentationssuchthattheorganismis ableto interactsuccessfullywith its environment(vanGelder,
in press).Linguistic representationsemerge asa functionof the interplayamongseveral factors,
including thephysicalcomponentsof the humanbrain thatareactive during languageprocessing
(andtheircharacteristicmannerof processinginformation),thetaskssuchcomponentsareengaged
in, andcharacteristicsof thelanguagesignalsto whichthey areexposed,particularlytheirstatistical
aspects.This view hasarisencontemporaneouslywith andpartly asa consequenceof connection-
ism, which hasprovided novel views of both the natureof mentalrepresentationandthe waysin
whichsuchrepresentationsmightbelearned.

A consequenceof this move away from a commitmentto the uniquenessof linguistic rep-
resentationsis a renewed interestin the possibility of relating factorstypically considerednon-
linguistic to linguistic regularities.For example,regularitiesin thesoundsystemcouldbeseenas
arisingout of a complex setof conspiraciesandcompromisesamongfactorsaffectingproduction
suchas the shapeof the articulators;constraintsarising from the serialnatureof language;and

is thatconstructionsareunderlyinglygrammaticalto adegree(Lakeoff, 1973).Theexistenceof all of thesepossibilities
simultaneouslymakesdistinguishingtheeffectsof grammaticalknowledgeon judgmentdatafrom thoseof processing
difficult (Clark & Haviland, 1974),andthe assumptionthat it is possibleto determinethe propertiesof an underlying
grammarfrom judgmentdataevenmoreproblematic.
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efficiency, i.e., the needto minimizeeffort expendedwhile simultaneouslyremainingascommu-
nicative aspossible.This perspective is beginning to be appliedmostproductively to phonology
(e.g.Maddiesson,1997;Browman& Goldstein,1989),andhasthepotentialfor beingappliedpro-
ductively to otheraspectsof languagebehavior. Similarly, becausethereis noapriori commitment
to describingknowledgeof languagein termsof formal primitives, functionalconsiderationsare
not excludedfrom enteringinto explanationsof whatknowledgeof languageconsistsof (Bates&
MacWhinney, 1982).

Thealternative framework alsoentailsa differentview of thenatureof languageacquisition
(Allen, 1997b;Seidenberg, Allen, & Christiansen,1997;Seidenberg, 1997). On thestandardap-
proach,to know a languageis to know therulesthatdefinea computationalsystemthatgenerates
thesetof sentencesin that language.It follows that to learna languageis to learntherulesof this
computationalsystem.Thechild’s taskis to identify thegrammar(the rule set)thatcharacterizes
thetarget language.This identificationparadigmhasplayeda centralrole in linguistic theoriesof
acquisition(Gold,1967;Wexler & Hamburger, 1973;Wexler & Cullicover, 1980).

We view the taskof learninga languagedifferently. The taskthat childrenareengagedin
is learningto uselanguage. In the courseof masteringthis task, they develop varioustypesof
knowledgerepresentationsthatallow communicationto proceed.Theseknowledgerepresentations
areshapedby many factors,includingnon-linguisticones,which should,on our view, provide the
primitivesof atheoryof linguisticknowledge.Theprimaryfunctionof thisknowledgeis producing
andcomprehendingutterances,whethergrammaticalor otherwise.A by-productof thisknowledge
is thecapacityto distinguishgrammaticalfrom ungrammaticalsentences.

As an analogy, considerthe problemof learningto read. The beginning reader’s problem
is to learnhow to readwords. Therearevariousmodelsof how the knowledgerelevant to this
taskis acquired(e.g. Coltheart,Curtis,Atkins, & Haller, 1993;Seidenberg & McClelland,1989).
Onceacquiredthis knowledgecanbeusedto performmany othertasks,includingthemany tasks
thatpsychologistshave usedin studyinglanguageandcognition.Onesuchtaskis lexical decision:
judgingwhetherastimulusis a wordor not. EvenyoungreaderscanreliablydeterminethatBOOK

is a word but NUST is not. Note, however, that the taskconfrontingthe beginning readeris not
learningto make lexical decisions.By thesametoken,thetaskconfrontingthelanguagelearneris
not learningto distinguishwell- andill-formed utterances.In bothcases,knowledgethatis acquired
for otherpurposescaneventuallybeusedto performthesesecondary(metalinguistic)tasks.Such
tasksmayprovideausefulwayof assessingpeoples’knowledgebut shouldnotbeconstruedasthe
goalof acquisition.

This perspective shareswith Chomsky the view that the competencegrammaris only
metaphoricallyrelatedto acquisitionandprocessing.However, on our view it is alsoonly indi-
rectly relatedto theknowledgethatunderliestheseandotheraspectsof languageuse.Knowledge
of languageis construedasoneor moreneuralnetworksthatareengagedin producingandcompre-
hendingutterances.Grammarsrepresenthigh-level, idealizeddescriptionsof thebehavior of these
networks thatabstractaway from thecomputationalprinciplesthatactuallygovern their behavior.
Grammaticaltheoryhasenormousutility asa framework for discovering andframing descriptive
generalizationsaboutlanguagesandperformingcomparisonsacrosslanguages,but it doesnotpro-
videanaccuraterepresentationof thewayknowledgeof languageis representedin themindof the
language-user.
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GrammaticalityJudgments

Theapproachthatwehave briefly summarizedis beginningto beappliedto arangeof ques-
tionsaboutacquisition,processing,andbreakdown following braininjury (Plaut,McClelland,Sei-
denberg, & Patterson,1995;MacDonaldetal., 1994;Seidenberg, 1997).Herewewantto returnto
theconceptof grammaticalityandto thetaskof makinggrammaticalityjudgments,bothof which
arecentralto the standardapproach.We have suggestedthat knowledgeof languageis not a set
of rulesfor generatingsentencesandthatthechild’s taskis not grammaracquisition.We therefore
oweanaccountof how it is thatpeoplecannonethelessmake grammaticalityjudgments.

The capacityto make thesejudgmentsemergesout of the ability to processlanguagenor-
mally. The task requiresinformantsto establishcriteria for decidingwhetherto call a sentence
grammaticalor ungrammatical.Oneimportantpropertyof thetaskis thatdifferentdecisioncriteria
maybeuseddependingonthepropertiesof thesentencesbeingjudged.Thus,judgingtheutterance
*the the the the the asungrammaticalmay not rely on the sameinformationasjudging *the boy
tried Bill to go or *the boyfell thechair. Thefirst sentencecanbejudgedon thebasisof whether
it even potentiallyconformsto an interpretableobject; superficialpropertiessuchasthe absence
of nounsandverbsprovide a reliablebasisfor decidingthat it doesnot. Thesecriteriawill benot
sufficient for the secondand third sentences,which requireusingothersortsof information. A
secondpoint is that for a broadrangeof sentencetypes,judgmentsmaybereliably cuedby local
statisticalinformationconcerningsubsequencesof words. For example,recognizingthatTheboy
fell thechair is aninstanceof thepatternNPfell NPmaybesufficient to make adecisionbasedon
propertiesof theverbFALL. Peoplecanobviouslymakeuseof informationderivedfrom acomplete
analysisof theutteranceif it is requiredfor furtherprocessing(asin formulatinga correction,for
example),but this level of analysisis not requiredin many cases.

One reasonto believe that judgmentsof well-formednessreflect statisticalinformation is
that in many cases,suchjudgmentsreflectambiguityresolutionproceduresthat alsorely on this
information.For example,socalled“gardenpaths”canarisewhena word hastwo meanings,one
of which is very frequentandonerelatively rare. In a sentencesuchasThehorseracedpastthe
barn fell, RACED is usedmuchmorefrequentlyasa transitive verb thanasa pastparticiplein a
reducedpassive. In suchcases,the frequentmeaningquickly dominatesthe rarermeaning,often
to thepoint that thereaderis unawareof thealternatestructuralinterpretation.Suchsentencesare
oftenjudgedungrammaticalby speakerswho fail to recomputetherelationshipsamongthelexical
itemsin thesentenceafteraninitial parse.Statisticalinformationof thistype(therelative frequency
with whicha lexical item is usedin onewayratherthananother)is thusrequiredto accountfor the
conditionsunderwhich judgmentsof well-formednessaremade.

Theusualargumentagainstthis approachto grammaticalityis that therearesentencescon-
taining low probability sequencesof wordsthat cannonethelessbe judgedasgrammatical(e.g.,
Colorlessgreenideassleepfuriously). The treatmentof suchsentencesturnson the levels over
which sequentialstatisticsarebeingcomputed.Althoughtheungrammaticalityof many sentences
canbedeterminedby detectinglocalanomaliesdefinedover sequencesof lexemes,othersmayde-
pendon statisticsinvolving othertypesof information. Assume,for example,thatcomprehension
involvescomputinghigh level semantictypesof words;for example,thata DOG is a thingandthat
PUSHING is an action. This informationwould provide the basisfor decidingthat the sequence
Colorlessgreenideassleepfuriously is acceptablebecauseeachof the local (high level) semantic
sequencesPROPERTY PROPERTY THINGS ACTION MANNER is quitenormalEnglish.Thesequence
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Ideascolorlesssleepfuriouslygreenwouldberejectedon this basisbecausethesequenceTHINGS

PROPERTY ACTION MANNER PROPERTY doesnotoccur.
Giventhis accountof grammaticalityjudgment,thefactthatthestandardapproachexcludes

mostof thisstatisticalinformationis important.If grammaticalityjudgmentscanbebasedonstatis-
tical informationderived from experiencewith thetarget language,thenit cannotbeassumedthat
thetaskrequirescomputingthekindsof representationsassumedwithin thestandardapproach.

Agrammatism

Wecannow usethisaccountto exploresomepuzzlingdataconcerningapparentdissociations
betweenknowledgeof grammarandthecapacityto make grammaticalityjudgments.Thespeech
of agrammaticaphasics(Broca-typepatientswith lesionsin the anteriorportion of the dominant
hemisphere)is typically restrictedto telegraphicutterancesthat rely heavily on openclasslexical
items.Thisproductionimpairmentis frequentlyaccompaniedby impairedcomprehension:Broca’s
aphasicstendto experiencedifficulty on comprehensiontaskswhensyntaxalonefurnishescritical
aspectsof meaning(Caramazza& Zurif, 1976;Saffran,Schwartz,& Marin, 1980).Linguistshave
beeninterestedin this form of aphasiabecauseit wasthoughtto provide anotherkind of evidence
bearingonthenatureof linguisticcompetence,specificallytheexistencefor asyntacticmodulethat
canbeselectively impaired.

Thework of Linebarger, Schwartz,andSaffran (1983)raisedimportantquestionsaboutthe
interpretationof agrammaticbehavior. They describedfour agrammaticpatientswho exhibited
comprehensiondifficultiesbut retainedtheability to judgethegrammaticalityof many sentences.
Theseresultsareimportantbecausethey representadissociationbetweengrammaticalityjudgment
andotheraspectsof performance.

Attemptsto relateagrammaticcomprehensionto syntactictheoryassumethat a failure to
structurallyrepresenta sentencecausesa failure to comprehendthat sentence.If grammatical-
ity judgmentsrepresentevaluationsover syntacticrepresentations,thenthefailure to syntactically
representa sentenceshouldalsoaffect the ability to make appropriategrammaticalityjudgments.
Linebargeretal.’sdataprovidedevidenceagainsttheclaimthatagrammatismrepresentsaselective
lossof syntacticcapacity, in thatpatientswho performedat chancelevelson comprehensiontasks
performedat high levelswhenjudgingthegrammaticalityof similarsentencetypes.

Thesefindingsgeneratedconsiderablecontroversy. One responsewas the formulationof
revisedtheoriesthat attemptedto maintainthe ideathat “agrammatism”hasa grammaticalbasis
(e.g., Grodzinsky, 1990;Hildebrandt,Caplan,& Evans,1987;Zurif & Grodzinsky, 1983). How-
ever, theseproposalshave run into otherproblems(Tesak& Hummer, 1994; Druks & Marshall,
1991;Milekic, Boskovic, Crain,& Shankweiler, 1995). In themodelpresentedbelow, we develop
an alternative accountin which a “syntactic” processingdeficit is createdby damagingpartsof a
neuralnetwork thatcomputesfrom form to meaningandfrom meaningto form.

A secondissueconcernstheassumptionthat thegrammaticalityjudgmenttaskprovidesdi-
rectevidenceabouta person’s syntacticknowledge.We have suggestedthatgrammaticalityjudg-
mentsin many casesdo not requireevaluationsof completesyntacticrepresentations,but instead
canbebasedonhow well anutteranceconforms(sometimesquitelocally) to statisticalregularities,
acquiredin thecourseof learning,andgenerallyexcludedon thestandardapproachfrom descrip-
tionsof languagecompetence.Knowledgeof suchregularitiesmight provide thebasisfor making
well formednessjudgmentsevenwhennormalcomprehensionprocessesaresignificantlyimpaired.
In thenext sectionwepresenta simulationmodelthatexhibits just thisoutcome.
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SimulatingGrammaticalityJudgments

We now describea connectionistmodelof grammaticalityjudgmentsthat providesa basis
for differentiatingbetweenseveralclassesof grammaticalandungrammaticalutterancesand,when
damaged,exhibits partial retentionof this capacity. Themodellearnedto performtwo mappings.
Givenasequenceof wordsasinput, it computedtheirsemanticrepresentations.Thisform to mean-
ing mappingis ananalogueof comprehension.Conversely, givenaninput sequenceof meanings,
themodelcomputedtheappropriatewords,themeaningto form mappinginvolved in production.
Our hypothesisaboutgrammaticalityjudgmentis that it involvescomputingthemeaningof a sen-
tenceandthenpassingthat derived representationthroughthe productionsystem.The mismatch
betweenthe form presentedas input andthe form computedon the backward passthroughpro-
ductionprovides the basisfor judging grammaticality. In the implementedmodel this mismatch
wasquantifiedasthe distancebetweenrelevant vectors. We assumethat if thesedifferencesare
largeenough,subjectscanseta decisioncriterionthatallows themto distinguishthegrammatical
andungrammaticalutterances,asin thestandardsignaldetectionparadigm,althoughthis decision
processwasnotexplicitly modeled.

Put simply, the judgmentprocessis modeledby queryingthe network for its versionof an
input sentence.Given a particularinput utterance,would the modelhave said it the sameway?
This is accomplishedby processingthe input sentencenormally, computingasfar aspossiblethe
correspondingmeaning,generatingasentencethatcorrespondsto thatmeaning,andthenmeasuring
how far aparttheinputandoutputformsare.

This way of implementingwell-formednessjudgmentswasinspiredby a view of grammat-
icality in which a grammaticalstructureis seenasonewhich bestsatisfiesthevariousconstraints
developedover thecourseof learning(e.g. Smolensky, 1986). Theseconstraintsreflectthe inter-
actionof innateconstraints(whetherlinguisticor non-linguistic)andtheinput to which thelearner
hasbeenexposed. It follows that an ungrammaticalstructureis onethat is suboptimal,meaning
that thereis someotherstructurethat bettersatisfiesthe relevant setof constraintsgivena partic-
ular input. As an example,let us take the input to a sentencegeneratingsystem(production)to
be a conceptualrepresentation.On this view, the form producedon the basisof this conceptual
representationwill be thatwhich bestsatisfiesthemultiple constraintsthatmake up thespeaker’s
knowledgeof form–meaningrelationships.

It follows thatthegrammaticalityof anutteranceis definedwith respectto aparticularmean-
ing. Unlike theTuring machinemetaphorof stringrecognition,thegrammaticalityof anutterance
cannotbedefinedwith respectto the form of thatsentencealone,but mustmake referenceto the
meaningthatgaveriseto it. It furtherfollows thatan(absolutely)ungrammaticalutteranceis oneto
whichno meaningmaps.Notethatthis is not equivalentto sayingthatanungrammaticalutterance
is onethatmapsto no meaning,becausepresumablythereis alwayssomesemanticrepresentation
that bestsatisfiesthe constraintsgiven the ungrammaticalutteranceasinput. If we now take the
input to themetataskof grammaticalityjudgmentto bea sentence,andwegeneratea hypothetical
spaceof all possiblemeaningcandidates(comprehension),therewill alwaysbesomebest(seman-
tic) candidate,even for (absolutely)ungrammaticalutterances.On the otherhandif we take the
semanticoutputgeneratedby that ungrammaticalinput andmapit backto form (production)we
will not get the sentenceform that we startedwith, if it is the casethat no meaningmapsto that
form.

The hypothesis,then,is that a mismatchbetweenthe form that is the input to the compre-
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hensionsystemandthe form producedon the basisof what wascomprehendedcould be usedas
the basisfor detectingungrammaticality. We assumethat if thesedifferencesare large enough,
subjectscanseta decisioncriterion that allows themto distinguishthe grammaticalandungram-
maticalutterances,asin thestandardsignaldetectionparadigm,althoughthisdecisionprocesswas
notexplicitly modeled.

NetworkImplementation

Thenetwork usedin thesesimulationswastrainedonaseriesof utteranceslikethosegivenby
Linebargeretal. to theiragrammaticsubjects.As aconsequenceof trainingontheform to meaning
andmeaningto form mappings,thenetwork developeda typeof symmetricknowledge,i.e., both
that form a entailedmeaningb andthatmeaningb entailedform a. Becausebothmappingshada
sharedcomputationalsubstrate,thesetwo skills werenotindependentof oneanother. After training,
the network wasevaluatedby supplyingeithernovel forms or novel meaningsandrecordingthe
network’s behavior. In the courseof training the network developedsensitivity to the statistical
propertiesof thesentencesto whichit wasexposed,andasaconsequencebehaveddifferentlywhen
providedwith grammaticalandungrammaticalversionsof theseutterances.

Whennormalprocessingwasdisruptedby “damaging”thenetwork, it exhibitedbehaviors
seenin agrammaticpatientssuchasa failure to producehigh frequency itemsthat arelow in se-
manticcontent(function words)and impairedcomprehension(i.e., failure to activate the correct
sequenceof semanticrepresentationsfor a given lexical input sequence).Although impairedin
theseways,thedamagednetwork retainedtheability to distinguishbetweenmany grammaticaland
ungrammaticalutterances.

Architecture

The architectureusedin the simulationsis shown in Figure1, andconsistedof threemain
layers. The semanticlayer consistedof 297 units which served to representthe semanticsof an
utterance(seeRepresentationbelow). This layer wasconnectedto itself via a setof 15 cleanup
units.

The pathway from the semanticunits to the cleanupunits andbackto semanticsallow for
the semanticunits to interactwith one anotherduring processing.The purposeof the layer of
cleanupunitsalongthispathway is to allow for interactionsto developamongsemanticunitsduring
processing.By providing anintermediatelayerof units(thecleanupunits)alongthepathway from
semanticsto semantics,it becomespossibleto encodein the weightsof thesepathways a more
complex setof relationshipsamongsemanticunits. For example,EXCLUSIVE-OR relationships
amongsetsof semanticunitsbecomelearnablewhenacleanuplayeris usedto connectthesemantic
layer to itself, whereasonly linearly separablerelationships(e.g.,AND or OR) would be learnable
if the semanticlayer were to be connectedto itself directly without an intermediatelayer. The
pathwaysbetweenthesemanticunitsandthecleanupunitsthusallow for combinationsof semantic
featuresto influencethepatternsthatdevelopover timeon thesemanticunits.

Futhermore,in processinganexemplarthroughtime, thesemanticunitsandtheir associated
cleanupunits serve to form an attractornetwork, wherean initial activity on the semanticlayer
maybecoercedover time towardthenearestfixedpoint attractordevelopedduringtraining2. The

2If aseparatedimensionis assignedto eachunit, theneachfixedpointattractorcorrespondsto aparticularpoint in a
spacewhosedimensionalityis definedby thenumberof units in thevector. Thepositionof this point is determinedby
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Form Hidden Meaning

Clean-up Clean-up

Figure 1. Architectureof thegrammaticalityjudgmentmodel.Arrows representfull connectivity between
layers.

semanticlayerwasalsoconnectedto ahiddenlayerconsistingof 50units.Thesehiddenunitswere
connectedto eachform unit, eachsemanticunit, andto eachother. The 97 form units werealso
connectedto eachothervia asetof 15cleanupunits,allowing fixedpointattractorsto developin the
form representationaswell. All connectionsetswerefully connected,andall weightswereinitially
setto randomvaluesbetween-1 and1.

NetworkDynamics

Theimplementednetwork developedasensitivity to thecharacteristicsof sequencesof words
in anutterance.Our strategy for accomplishingthis wasin somewaysquitesimilar to thatusedin
simplerecurrentnetworks(Elman,1990),in which sequentialdependenciesaredevelopedby rep-
resentingsequencesthroughtime. Our network differsfrom thestandardsimplerecurrentnetwork
in severalways,however. First,we exploitedtheadvantagesprovidedby thecontinuousactivation
functiondescribedin Pearlmutter(1989),in whichthestateof aunit changessmoothlyover timein
responseto input from otherunits. This approachsignificantlyimprovestheability of networksto
“reachbackin time,” thatis, to developsensitivity to longersequencesthanis possiblein standard
discretetime nets.This continuousapproachis approximatedby dividing thenormaltime stepsof
discretebackpropthroughtime (Williams & Zipser, 1990)into ticksof someshorterduration.An
infinite numberof suchtickswouldrepresenttruly continuousactivation.Thenumberof timesteps
per tick (calledthe integrationconstant)changesthe grain at which activation is propagatedand
errorinjectedinto thenetwork. Detailsof theimplementationaregivenin theAppendix.

Second,unlike a simplerecurrentnetwork that freezesa setof weights(copy backconnec-
tions)from thehiddenunitsto the“context” units,all connectionsetsin thisnetwork weretrainable.
In thissense,thesimplerecurrentnetrepresentsastrictsubsetof theweightvaluesthatournetwork
cantake on. Like the simplerecurrentnetwork, however, this network doesnot suffer from the
problemassociatedwith providing a distinctsetof unitsandconnectionsfor eachdistinctsequen-
tial element(letter, phoneme,word, etc.) in a representation,wherethe setof weightsencoding
knowledgeaboutan elementin oneposition is completelyindependentof the weightsencoding
knowledgeaboutthesameword in adifferentposition.Rather, in thisnetwork informationderived
from experienceaboutanelementoccurringat time

�
is availableto thenetwork whenthatelement

occursat time
��� ���

.
For purposesof the simulation,we definedan exemplarasa sequenceof states,eachrep-

resentingeithera word or a word’s semantics.Undertheversionof continuousbackpropagation
utilized here,the network doesa forward passon the entirestring (all of the words) integrating

theactivationvalueof theunits.Thesetof patternsthatareattractedto any of thefixedpointsin thecourseof processing
form thebasinof attractionfor thatfixedpoint.
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activity up,andrememberingits statefor thewholeutteranceat every tick. On thebackwardpass,
error is injectedfor eachtick basedon theintegrationconstant,theerrorassociatedwith eachunit
for eachtick, andonwhatflowedbackwardfrom thefollowing tick.

The targetsfor eachutterancethusform a trajectory that the network attemptsto learnto
follow. For semantictargets,this trajectoryis thesequenceof pointsdefiningthesemanticvaluesof
eachword in theutterance.For form targets,this trajectoryis thesequenceof pointsrepresenting
theindividualwordsof theutterance.

Useof this systemallows thenetwork to developsensitivity to thesequencesof statetransi-
tionsdefinedby the trainingutterances.At word

�
, informationaboutword

���	�
,
����


, etc. is
availableto thenetwork in the form of thestateof the target,hidden,andcleanupunitswhenthe
processingof word

�
begins. Recurrentconnectionsallow thestateof thehiddenunitsat any time

to beinfluencedby their own stateat previous times. Thenetwork learnsto rely on regularitiesin
thesesequencesto theextentthatthey minimizeerror.

Eachutterancein thetrainingsetwaspresentedfor 65“seconds,” with anintegrationconstant
of .2 (5 tickspersecond).Eachwordwaspresentedfor awindow of 3 seconds,thus15ticks. Inputs
wereclampedonly for theinitial 7 ticksof theword’s window, andfeedbackwasgivenonly on the
final 8 ticks of each3 secondwindow. This offsetbetweenthetime at which the input is clamped
andthetimeatwhich thetargetis requiredforcesthenetwork to dependon its currentstateaswell
asits input. Thus,for example,activity on thesemanticvectorcorrespondingto thesemanticsof
theword (e.g. CAR) wasmadeto dependnot only on the input from the formal representationof
CAR, but alsoon thestateof thenetwork beforeandafterthetimethattheform vectorfor theword
CAR wasclampedasinput.

This techniqueforcesthenetwork to useinformationearlierin thesequenceto begin to acti-
vatewhatit is predictableaboutthenext item orderto minimizeerror. Giventheattractornetwork
implementedvia clean-upunitsat themeaninglayer, if thepredictioncanget thesemanticvector
into theright neighborhood,theactualword presentedwill sharpentherepresentationquickly. Of
course,only partsof thenext word canbepredicted:(e.g.,the ENTITY featureaftera determiner
is a goodguess).But if a wrong predictionis made,it takesthe network a long time to recover,
becauseboththecurrentstateof thesemanticattractorandtheidentity of thecurrentwordhave an
effecton thesemanticoutput.

Representation

Meaning. It is notoriouslydifficult to representthe semanticsof propositions. It is even
moredifficult, if not impossible,to representthe semanticsof propositionswithout a systemfor
binding argumentsand roles. In order to simplify the simulations,the semanticsof utterances
wererepresentedby sequencesof word level semanticrepresentations.As a consequence,many
relationshipslikecoreference,binding,predication,andahostof othersrelevantto thesemanticsof
propositions(whethersemanticor syntacticallyrepresented)arenotcapturedby thisapproach.

This simplificationmeansthatour modeldoesnot representphrasalandpropositionallevel
relationshipsamongwordssuchassubjectof predicateor objectof verb. Although we assume
that a gooddealof knowledgeconcerningthe formal expressionof thesehigher level structures
is alsoemergentfrom form-meaningpairingsavailablein the learner’s environment,the technical
challengesinvolvedin modelingsuchknowledgeareconsiderable.This “role filler” (or “binding”)
problemarisesin many cognitive domains,andhasreceivedconsiderableattentionelsewheree.g.,
in theareaof vision HummelandBiederman(1992),von derMalsburg andSchneider(1986);for
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phrasestructureOmlin andGiles (1995);for grammaticalcategory assignmentElman(1990);for
verb argumentstructureAllen (1997a). Although the techniquesusedin theseapproachesvary,
muchof this work suggeststhat temporaldynamicsof processingwill play a crucial role in un-
derstandinghow suchrelationshipsarerepresented.Theapproachadoptedhereis compatiblewith
this generalview, in that both this work and that focusedon binding assumethat understanding
cognitive representationwill involve theanalysisof dynamicalsystemsthatchangethroughtime.
In short,our modeldoesnot dealwith all aspectsof languagebut its limitationsarenot relevant to
theideathatis ourmainfocus,thatmany grammaticalandungrammaticalutterancescanbedistin-
guishedusingmuchsimplerandmorelocal typesof knowledgerepresentationsthanarerequired
for completesyntacticanalysisor semanticinterpretation.

Featuresfor the semanticrepresentationsof wordswere basedon the semantichierarchy
associatedwith eachword from theWordnetdatabase(Miller, 1990),andthenaugmentedby hand.
AlthoughWordnetincludesentriesfor many openclassitems,featuresfor theclosedclasswordsin
thetrainingsetweredevelopedby hand.An exampleof thesetof featuresusedfor thewordHOUSE

appearsin 1.

(1) HOUSE: househousinglodgingstructureconstructionartifactobjectphysicalobjectentity

Sincepronouns,prepositions,anddeterminersdo not appearin theWordnetdatabase,theseitems
weregivensemanticfeaturesthatrepresentedtheirrelationshipbothto eachotherandtootherwords
in the training set. For example,the pronounhe wasgiven the featuresSINGULAR, MALE, and
ANIMATE. In addition,featuressuchasPLURAL wereaddedto wordssuchasmen,themand ducks
to distinguishbetweenpluralandsingularversionsof thesameword. Weusedtheserepresentations
becausethey form a seriesof hierarchies,with somefeatures(e.g. ENTITY) applying to many
differentwords,andothers(e.g. VEHICLE) applyingto many fewer. Thesemanticrepresentations
thushave aninternalstructurethatthenetwork cantake advantageof duringlearning.Unitshigher
on thehierarchytendto bepositively correlatedwith thoselower on thehierarchy, andto develop
positiveweightsbetweenthem.As aconsequence,unitshigheronthehierarchywill tendto activate
thosebelow them, and thoselower on the hierarchywill tend to activate thoseabove them. In
contrast,unitsatsimilar levelstendto inhibit eachother.

Thesemanticsof eachword, then,wasrepresentedasthestateof a spacewhosedimension-
ality wasdefinedby thenumberof units(297)in thesemanticrepresentation,andthesemanticsof
anutterancewasrepresentedby aseriesof suchstates.

Form. The forms of utteranceswererepresentedasa seriesof wordspresentedover time.
Wordswererepresentedlocally, that is, eachword wasrepresentedby a singleunit. The vector
representingeachwordwasthusextremelysimple,consistingof asingleunit beingonandall other
form unitsbeingoff for theappropriatetime steps.Theform of anutterancewaspresentedto the
network by activatingtheunitsrepresentingeachwordof theutterancein sequence.Therewere97
distinctwordsusedin theexamplesets,sotheform layerconsistedof 97units.

TrainingandTestingMaterials

Agrammaticperformanceon ten sentencetypeswasreportedby Linebarger et al. (1983).
Thesetypesformedthebasisof thetrainingandtestingsetsusedin thesimulations.Grammatical
andungrammaticalversionsof thesetentypesarelistedin Table1.
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Table1: Grammaticalandungrammaticalexamplesof sentencetypesusedfor trainingandtestcorpora.

Type Example
I. Strictsubcategorization
grammatical Hecameto my houseatnoon.
ungrammatical * Hecamemy houseat noon.
II. Particlemovement
grammatical Shewentup thestairsin ahurry.
ungrammatical * Shewentthestairsup in ahurry.
III. Sub-auxinversion
grammatical Did theold manenjoy theview?
ungrammatical * Did theold manenjoying theview?
IV. Emptyelements
grammatical Frankwasexpectedto getthejob.
ungrammatical * Thejob wasexpectedFrankto get.
V. Tagquestions,PronounAgreement
grammatical Thelittle boy fell down, didn’t he?
ungrammatical * Thelittle boy fell down, didn’t it?
VI. Left Branchcondition
grammatical Whichold mandid you invite to theparty?
ungrammatical * Whichold did you invite manto theparty?
VII. Gaplessrelatives
grammatical Mary atethebreadthatI baked.
ungrammatical * Mary atethebreadthatI bakedacake.
VIII. Phrasestructure
grammatical Thepaperwasfull of mistakes.
ungrammatical * Thepaperwasfull mistakes.
IX. Reflexiveagreement
grammatical I helpedmyselfto thebirthdaycake.
ungrammatical * I helpedthemselvesto thebirthdaycake.
X. Tagquestions,auxcopying
grammatical Johnis very tall, isn’t he?
ungrammatical * Johnis very tall, doesn’t he?
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A trainingandtestingcorpuswasdevelopedby providing partial paradigmsfor eachof the
sentencetypeslistedabove. Twentysentenceswerecreatedfor eachof the tensentencetypesfor
a total of 200 utterances.The partial paradigmfor eachtypewascreatedby replacingindividual
wordswith othersthat might be usedgrammaticallyin thosepositions. For example,oneof the
sentencetypeswasa reflexive ( Thelittle boycut himselfwhile playing). Theparadigmcreatedfor
thissentencetypeincluded:

� Thelittle boy cuthimselfwhile playing.� Thelittle girl cutherselfat noon.� Thebig boy cuthimselfwhile playing.� A little boy fell while running.� An old mancuthimselfwhile shaving.

Half of this trainingsetwasusedto train thenetwork, andhalf wasusedto assesslearning
aftertraining.Thetrainingcorpusconsistedof 100utterancesand665words(97 types).Themean
numberof wordsper utterancein the training corpuswas6.65,ansthe meannumberof content
wordsper utterancewas3.1. The testingcorpusconsistedof 100 utterancesand652 words(97
types). The meannumberof wordsper utterancein the testingcorpuswas6.52, and the mean
numberof functionwordsperutterancewas2.8. Two examplesweredevelopedperutterance,one
for eachmapping.

Finally, anungrammaticalcorpuswasdevelopedby creatingungrammaticalversionsof each
of thesentencetypeslistedabove. Eachof theungrammaticalutterancesdeviatedfrom thegram-
maticalversionin thewaypickedoutby thecategoryname.For example,theungrammaticalphrase
structureutteranceswereall examplesof phrasestructureviolations(e.g. He cameto my town

*He camemy town). The ungrammaticalcorpusconsistedof 100 utterancesand653 words(97
types). The meannumberof wordsper utterancein the ungrammaticalcorpuswas6.53,andthe
meannumberof functionwordsperutterancewas2.8.

Trainingthenetwork consistedof presentingtwo typesof trials. Themodelwastrainedon
grammaticalsentencesonly. On form to meaningtrials, the unit representingeachword in the
utterancewas activated in sequence.The task of the network was then to computethe correct
semanticrepresentationof eachword in thesequence.Onmeaningto form trials, therequirements
werereversed. Word meaningswerepresentedoneat a time to the network, andthe taskof the
modelwasto computethe formal trajectorythatconstitutedtherepresentationof theutteranceby
activatingtheappropriatewordunitsin theright sequenceattheright time. Thenetwork wastrained
for 25000iterations,whereaniterationconsistedof apresentationandfeedbackoneithera form to
meaningexampleor a meaningto form example.After 25000iterations,thenetwork producedthe
correcttrajectoriesfor all utterancesonwhich it hadbeentrained.

After training,themodel’sperformanceonthreetypesof taskswasassessedundertwo differ-
entconditions.Thethreetaskswerea comprehensiontask,a productiontaskanda grammaticality
judgmenttask. The comprehensionand productiontasksareassessmentsof the model’s ability
to handlethe primary taskof form to meaningandmeaningto form mappingsundernormaland
impairedconditions.Thegrammaticalityjudgmenttaskis a testof themodel’s ability to discrim-
inatetwo typesof stimuli.. In the NORMAL condition,performanceof theundamagedmodelwas
assessed.In the IMPAIRED condition,10%of connectionsbetweenthesemanticandhiddenunits
werelesionedby settingtheir weightsto 0. This representsanimpairmentto thenetwork’s ability
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to successfullyperformthemappingsonwhich it wastrained.

Results

NormalComprehension

Themodel’s ability to producethecorrectsemanticrepresentationsfor novel utteranceswas
testedby supplyingthe100novel utteranceformsof thetestingcorpusto thenetwork andrecording
activationof thesemanticvectorat thecenterof thetargetperiod(tick 11). Theresultsareshown in
thefirst columnsof Tables2 and3. Table2 showstheproportionof wordscorrectlyidentifiedby the
network. Thesefigureswerecomputedasfollows. Thesemanticvectorcomputedby thenetwork 11
ticksaftertheform of awordwaspresentedwascomparedwith thevectorrepresentingthesemantic
target thatword. If thecomputedvectorwasbothcloserto thetargetvectorthanany otherword’s
vectorandeachunit of the computedvectorwaswithin .2 of its target, the word wasconsidered
recognized.The Euclideandistancebetweenthe computedand target vectorsfor eachsentence
typeis shown in Table3. Togetherthesefiguresgive anoverall view of thenetwork’s performance
on thecomprehensiontasks.The first columnof Table2 shows that thenormalnetwork is easily
ableto accommodatenovel utterances.Therangeof identificationis between88%and100%for
comprehensionin the normalnetwork. Thus,althoughthe network hadnot beentrainedon the
sentenceA little boyfell at noonit hadno troubleproducingthecorrectvectorfor eachwordat the
correcttimestep.

Table2: Percentageof wordscorrectlycomprehendedor producedfor normalandimpairednetwork.

Comprehension Production
SentenceType Normal Impaired Normal Impaired
Subcategorization 1.00 0.66 0.93 0.76
ParticleMovement 0.93 0.36 0.99 0.47
Inversion 1.00 0.37 0.93 0.41
EmptyElements 0.91 0.45 0.94 0.59
TagQuestions(PN) 0.94 0.41 0.86 0.46
Left BranchCondition 0.99 0.45 0.88 0.56
GaplessRelatives 0.98 0.49 0.93 0.51
PhraseStructure 0.94 0.34 0.97 0.51
ReflexiveAgreement 0.90 0.54 0.97 0.54
TagQuestions(Aux) 0.88 0.31 0.89 0.57
Mean 0.95 0.43 0.93 0.53

Theseresultsshow that undernormal conditionscomputingthe correctsemanticsfor se-
quencesof novel grammaticalutterancesis asimpleproblemfor thenetwork. Theability to recog-
nizetheelementsof novel grammaticalsequencesis facilitatedby thefactthatthesameweightsare
beingusedfor wordsregardlessof a word’s positionin theutterance.Thus,regardlessof whether
thenetwork hadbeenexposedto BOY in thethird positionof anutterance,theweightsfrom theunit
representingBOY arestill thoseusedwhenBOY appearsin thispositionin anovel utterance.

In the impairedconditioncomprehensionperformanceis significantlyworse. The second
columnsof Tables2 and3 show thatwhendamaged,thenetwork is lesslikely to producethecorrect
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Table3: Distancesbetweentargetandcomputedvectorsfor NormalandImpairedproductionandcompre-
hension.

Comprehension Production
SentenceType Normal Impaired Normal Impaired
Subcategorization 0.97 1.77 0.64 0.87
ParticleMovement 0.87 1.86 0.68 0.92
Inversion 1.01 2.41 0.75 0.94
EmptyElements 1.11 1.98 0.75 1.00
TagQuestions(PN) 1.06 2.21 0.65 1.06
Left BranchCondition 1.00 2.34 0.61 0.83
GaplessRelatives 1.00 2.21 0.77 1.02
PhraseStructure 1.10 2.10 0.79 0.95
ReflexiveAgreement 1.06 1.81 0.68 0.91
TagQuestions(Aux) 1.00 2.04 0.60 0.94
Mean 1.01 2.07 0.69 0.94

word’ssemantics,andthattheaveragedistancebetweenthecorrectvectorandthatproducedby the
network is higherthanin the undamagednetwork. (All differencesbetweencolumns1 and2 of
Tables1 and2 aresignificantat ��������� or lower.)

Production

Themodel’s ability producethecorrectformal representationfor novel utteranceswasthen
testedby supplying100novel meaningsequencesrepresentingthe testingcorpus.As in thecom-
prehensiontask, ten sentencesof eachtype were presented.The resultsare shown in the third
columnsof Tables2 and3. As in thecomprehensiontask,for eachword, theform vectorthatwas
computedby thenetwork 11 ticks afterthesemanticsof a word waspresentedwascomparedwith
thevectorrepresentingthe formal target for thatword. If thecomputedform vectorwascloserto
thetargetvectorthanto any otherformalvector, andtheactivationof eachunit waswithin .2 of its
target, thecorrectword wasconsideredproduced.As in thecomprehensiontask,this taskis fairly
straightforwardfor thenormalnetwork, andperformancewasquitehigh,rangingfrom 86%to 99%
wordscorrectlyproduced.

Impairmentto the network also significantlyaffects its ability to computethe correctse-
quenceof words.Theimpairedmodel’s ability producethecorrectformal representationfor novel
meaningssequenceswastestedasabove. The resultsareshown in the final columnsof Tables2
and3. Again,underdamagedconditions,theproportionof wordscorrectlyproducedis lower, and
the meandistancebetweentarget andcomputedvectorsis higher, thanundernormalconditions.
All differencesbetweencolumnsthreeandfour of Tables1 and2 aresignificantator below the.05
level.

An interestingaspectof theproductiontestson the impairedmodelwasthedifferentialim-
pairmentongrammaticalmorphemesasa consequenceof their semantic“shallowness”.As canbe
seenin Table4, closedclasswordsaremorelikely to fail to beproduced,andto be further from
their targets,thanopenclasswords.Why arefunctionandcontentwordsdifferentiallyaffectedby
damageto theconnectionsbetweenhiddenandsemanticrepresentations?Activationof thecorrect
semanticpatternfor a word reliesbothon theword input to themodelandon thesemanticattrac-
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torswhichmove theinitial representationto its target.Becausethehierarchyis typically deeperfor
contentthanfor functionwords,contentwordsaremoreresilientto damageto thesystem.Thein-
fluenceof semanticrepresentationsonagrammaticproductionmaybeanadditionalfactorto those
alreadyrecognizedconcerningwhy closed-classitemsmay be impairedwhen,for otherreasons,
they mightbeexpectedto beeasyto produce(e.g.,Stemberger, 1985).

Table4: ImpairedNetwork: ContentversusFunctionwordproduction.

SentenceType OC CC
Subcategorization 0.81 0.69
ParticleMovement 0.60 0.35
Inversion 0.57 0.25
EmptyElements 0.63 0.56
TagQuestions(PN) 0.55 0.38
Left BranchCondition 0.74 0.46
GaplessRelatives 0.52 0.50
PhraseStructure 0.73 0.30
ReflexiveAgreement 0.65 0.47
TagQuestions(Aux) 0.63 0.51
Mean 0.64 .44

GrammaticalityJudgments

Thenetwork wastrainedby interleaving form to meaningandmeaningto form exemplars.
This interleaved trainingcausedthe network to develop knowledgeof theprobablecontingencies
amongelementsin sequencesof both form and meaning. The dynamicsof the grammaticality
judgmenttask rely on the following propertyof the trainednetwork: when a formal patternis
suppliedto thenetwork, thesemanticpatternassociatedwith it is activatedbecauseof theform to
meaningconnections.Activation thenflows backto the form vectoralongthenormalmeaningto
form path. This activation resultsin therecreationof theoriginal form vectorseveral ticks after it
is released.Thusthe form thatwaspresentedto thenetwork is normally reproducedasactivation
flows backto the form layer. However, whenthe form of anutterancedeviatesfrom the type the
network is familiar with, thecomputedsemanticsdeviate from normal,andasa consequence,the
form that is createddeviatesfrom the form presented.We simulatethe meta-linguisticnotion of
grammaticalityastheaccuratereproductionof asuppliedform, measuredin termsof distance.The
resultsshow that ungrammaticalutterancesof the type usedin Linebarger et al.’s studyproduce
moredeviant recreationsof theinput thannovel grammaticalsentencesdo.

Tenungrammaticalversionsof eachsentencetypewerepresentedto theboth impairedand
normalnetworks.Althoughimpairmentto thenetwork significantlydisruptstheability of themodel
to computethecorrectmeaningsof novel formsandthecorrectformsof novel meanings,theability
to distinguishgrammaticalfrom ungrammaticalutterancesis retainedfor 7 of the ten utterance
types.

Figures2 and3 show themeandistancebetweentheform vectorsuppliedandthatproduced
11 time ticksaftertheonsetof eachword for normalandimpairednetworks.For example,thefirst
setof barsin Figure2 showsthatthenormalnetwork (re-)producedvectorswith ameandistanceof
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.56 from thosesuppliedon novel grammaticalversionsof thesubcategorizationsentenceslike He
left my houseat noon, but (re-)producedvectorswith a meandistanceof 1.27from that supplied
on novel ungrammaticalsentencessuchasHe left to my houseat noon. For the normalnetwork
7 of the10 sentencetypesproducedsignificantdifferencesbetweengrammaticalandungrammat-
ical distancesat or below the .05 level. The sentencetypeson which the network did not detect
ungrammaticalitiesby this measurewerethe two typesof tag questionsandreflexive agreement.
Figure3 shows thesedistancesfor thegrammaticalandungrammaticalutterancesproducedby the
impairednetwork. As seenin thefirst setof bars,theimpairednetwork (re-)producedvectorswith
a meandistanceof .73from thosesuppliedon novel grammaticalversionsof thesubcategorization
sentences,andvectorswith a meandistanceof 1.26 from that suppliedon novel ungrammatical
subcategorizationsentences.Like thenormalnetwork, in theimpairednetwork 7 of the10sentence
typesproducedsignificantdifferencesbetweengrammaticalandungrammaticaldistancesat or be-
low the .05 level. The sentencetypeson which the network did not exhibit distinctionsbetween
grammaticalandungrammaticalutterancesby thismeasurewerethesametypesasbefore.

Interestingly, Linebarger et al.’s patientdataexhibit essentiallythe samepatternasthe im-
pairedsimulation. Although the patientswereableto judgethe grammaticalityof mosttypesof
sentences,they wereimpairedon thesamethreesentencetypesasthemodel. For the seven sen-
tencetypesthepatientswereableto judgecorrectly, Linebarger(1989)reportsperformancewith a
rangeof 81.2-90.4%correct. For theotherthreesentencetypes,thepatientsperformedat chance
levels(Tagquestions(Aux) 62.1%;Tagquestions(PN)63.7%;Reflexives64.2%).

Figure4 illustratesacomparisonbetweentheprocessingof thegrammaticalandungrammat-
ical versionsof anutteranceof the subcategorizationtype in the normalnetwork. The utterances
differ with respectto thesubcategorizationframesof theverbs.TheverbLEFT doesnotsubcatego-
rizefor theprepositionTO, but theverbWENT does.Thedistancebetweenpresentedandcalculated
valuesof the form vectorat tick 11 are plotted for eachword of the utterance.At the point of
ungrammaticality, the distancebetweenwhat is presentedandwhat is computedrises. Although
the continuationsof the sentencesareidentical,the network continuesto produceformal vectors
thatdeviate from their targetsmorethanin thegrammaticalcase.This effect shows theimpactof
sequentialprocessingin thenetwork.

The oppositecaseis illustratedin Figure5, wherethe verb LEFT is usedcorrectly, but the
verbWENT (which is consistentlyusedwith TO in thetrainingset)is usedin aviolationof its “sub-
categorizationframe”. Again the network respondsto this non-canonicalsequenceby producing
vectorsthatcontinueto deviatefrom their targetsfor thenext two words.

Why doesthis resultobtain? Although the comprehensionandproductionresultsreported
above areconsistentwith theideathat thenetwork wasonly respondingon a word by word basis,
its performanceactuallyrelieson morethanmerelya local mappingbetweenthecurrentform and
meaningpair. Becausethenetwork wasencouragedto developarelianceonits currentstateaswell
as its currentinput, anomaloussequencessuchaswentthe store producestatetrajectoriesin the
semanticunitsthatdonotcorrespondto theregularitiesonwhich thenetwork hascometo rely. As
a consequenceanomalouslocal sequencestendto produceanomaloussemantics,andanomalous
semanticsproduceformal vectorsthatdeviatefrom theform supplied.This resultis partlybrought
aboutby theuseof continuoustime training. Sincetargetsaresuppliedprior to the time at which
clampingthe currentword form canactivatethe correctunits on their own (becauseof the built-
in rise time), the network learnsto rely on informationthat is available,namelymaterialprior in
thesequence.Sinceonly somepartsof theprior sequencearereliable,thenetwork learnsto take
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advantageof thoseregularitiesandignoreotheraspectsof its input.
A relatedissueconcernsthe fact that in our resultsthe absolutevaluefor the distancebe-

tweengrammaticalandungrammaticalutterancesvariesbetweensentencetypes.Is it reasonableto
supposethatdifferentcutoffs arerequiredfor differentsentencetypes?Althoughnosingleline can
distinguishbetweengrammaticalandungrammaticalversionsacrosssentencetypes,it isn’t clear
whatthesignificanceof sucha line would be. Our basictheoryis thatanungrammaticalutterance
resultsin a deviation from thenormalcourseof processing,which we measurein termsof a com-
parisonbetweengrammaticalandungrammaticalversions.Ourmethodassumesasensitivity to this
distinction,andnot to anabsolutelevel of difference.

ColorlessGreenIdeas

Earlier we notedthe existenceof sentencessuchasColorlessgreenideassleepfuriously,
which containlow probabilitysequencesof wordsthatcannonethelessbe judgedasgrammatical
andsuggestedthatthetreatmentof suchsentencesturnsonthelevelsoverwhichsequentialstatistics
arebeingcomputed.We claimedthata sentencesuchastheColorlessonemight beratedasmore
acceptablethana randompermutationof wordsbasedon sequentialregularitiesin the high level
semanticpropertiesof theseitems.

Thenetwork wehavepresentedwasdesignedto besensitive to statisticalregularitiesin lexi-
calandsemanticsequencessimultaneously. Thenetwork wassensitiveto sequencesof lexical items
becausetheinput form of boththetrainingtaskandthegrammaticalityjudgementtaskconsistedof
local representationsof lexical items.At thesametime thenetwork wassensitive to thesequences
of thesemanticrepresentationof words,in thatprocessinginvolvescomputationof thesesemantic
representations.

In orderto demonstratethatthenetwork is sensitiveto bothof theselevelssimultaneoulsy, we
testedthenetwork underfour conditionsthatmanipulatedtwo factors:thetransitionalprobabilities
betweenwordsandthetransitionalprobabilitiesof thesemantictypesthatthewordsrepresented.

In thefirst condition(HH) thenetwork waspresentedwith sentencesin whichthetransitional
probabilitiesbetweenbothlexical itemsandsemantictypeswerehigh. Thesearenormalsentences.
The secondcondition(LH) consistedof sentencesin which the transitionalprobabilitiesbetween
wordswas low, but the transitionalprobabilitiesbetweensemantictypeswashigh. This type of
sentencecorrespondsto ”Colorlessideassleepfuriously” in which the semanticsub-sequences
[propertypropertyentity actmanner]areconsistentwith semanticsequencesthatappearedin the
trainingset,but thebigramfrequenciesof thewords(e.g. colorless-green,green-ideas,etc.) were
low or zeroin thetrainingcorpus.Thethirdcondition(HL) consistedof sentencesin whichthetran-
sitionalprobabilitiesbetweenwordswerehigh,but thetransitionalprobabilitiesbetweensemantic
typeswerelow. This conditionis possiblebecausetherearesequenceswith high word transitional
probabilitiessuchasmothercares, wherethe semantictype representedby the first word in the
pair predictsa differentsemanticcontinuationmorestrongly than that of the secondword. The
fourth condition(LL) consistedof sentencesin which bothtypesof transitionalprobabilitieswere
low. Thisconditioncorrespondsto randomsequencesof wordssuchassleepideasgreenfuriously
colorless. Tensentencesof eachtypematchedin termsof theoverall frequenciesof thewordsthey
containedwerepresentedto thenetwork.

Table5 providesthe meantransitionalprobabilitiesbetweenwords(wtp), the meantransi-
tional probabilitiesbetweensemantictypes(stp),andanexamplesentencefor eachcondition.The
semantictype for lexical itemswasdeterminedby taking the mostfrequentsemanticfeaturethat
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Table5: Examplestimuli andmeanword (wtp) andsemantic(stp) transitionalprobabilitiesfor four condi-
tionsin thegrammaticaliltyjudgmenttask.

Condition Example wtp stp score
HH whichgirl did you invite .33 .32 .68
LH whichstreetinvited acake on time .02 .26 .77
HL my motherwasexpectedto arrive .30 .07 .80
LL on invited cake streettime thewhich .00 .00 1.10

appearedin theword. For example,therepresentationfor theword motherincludedthefollowing
features:

MOTHER: FEMALEPARENT PARENT FEMALE RELATIVE HUMAN LIVINGTHING ORGAN-
ISM ANIMATE ENTITY

Themostfrequentof thesefeaturesin thetrainingvocabulary is theentitybit. Thesemantic
typeof thewordmotherwasthustakento beentity.

Thefinal columnof Table5 givesthemeangrammaticalityjudgmentof thenetwork in these
four conditions.As in theearliergrammaticalityjudgmenttask,thesescoresreflectthemeaneu-
clideandistancebetweenthevectorrepresentingtheformsuppliedto thenetwork andthatcomputed
by thenetwork for eachsentencetype. TheLL condition,correspondingto a randomsequenceof
words,is thesentencetype thatyields the largestdeviation, aswould beexpectedif it is the least
grammatical.TheHH sentencetypesyieldedtheleastdeviation. Theothertwo conditionsresultin
scoresthatareintermediatein value.Thedifferencesbetweentherandomwordcondition(LL) and
theotherthreeconditionsweresignificantbelow the.01level. ThedifferencesbetweentheHH, LH
andLH conditionsarenot significant,althoughthis mayreflecttherelatively smallnumberof test
sentencesin condition.

In summary, themodelyieldedgradedperformanceon thefour typesof sentencesandpseu-
dosentences.The modelcanbe seenasdefininga metric in which sentencesdiffer in degreeof
grammaticality. Thelargestdifferenceswerebetweentherandomwordcondition(LL) andtheother
3 conditions,providing a basisfor treatingthe LL itemsasungrammaticalandthe otherstimuli–
includingthemodel’sversionof a”colorlessgreenideas”sentence–asgrammatical.Themodelalso
suggeststhatit shouldbeharderto judgesentencesof theHL andLH typesasgrammaticalthanthe
HH items,anobservationthatappearsto beconsistentwith humanperformance.

Discussion

Thesimulationspresentedhererepresenta stepin thedevelopmentof thealternative frame-
work we describedin the introduction.Theimplementedmodelillustrateshow knowledgeof lan-
guagecanberepresentedin anetwork ratherthanagrammar. Thenetwork acquiredthisknowledge
in thecourseof learningto comprehendandproduceutterances.Theimplementedmodelis clearly
limited in scope,addressingonly afragmentof thegrammarof onelanguage,but theseresultsinvite
further investigationsalongthesamelinesandwe have by no meansapproachedthelimit of what
canberepresentedin suchsystems(for relatedwork, see Chater& Christiansen,in press).

We alsotook a steptowarddevelopinga theoryof how grammaticalityjudgmentsaremade.
In theabsenceof suchatheory, linguistshave interpretedperformanceonthetaskin differentways.
Sometimesit is assumedthat the judgmentsof native speakers,children,or aphasicpatientsmore
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or lessdirectly reflectthestateof their grammaticalknowledge.Sometimesit is notedthat factors
outsidethe scopeof grammaticaltheorycaninfluencedecisions,but what is involved in filtering
out theseperformancefactorsandwhetherthiscanbeachievedin a consistentmannerareunclear.

Our accountof grammaticalityjudgmenthasthreemain features. First, we note that the
capacityto performthetaskemergesin thecourseof acquiringalanguagebut doesnotplayacentral
role in the acquisitionprocessitself. In this senseit is like beingableto make lexical decisions.
Second,thereareno absolutecriteria for makingsuchdecisions;thecriteria that peopleusevary
dependingon thenatureof thesentencesthey arebeingaskedto judge.Third, makingthedecision
involvesgeneratinganerrorsignalbasedondiscrepanciesbetweenthesentencepresentedandwhat
thelinguisticsystemcomputes.In ourmodelwegeneratedthiserrorsignalby passingthecomputed
semanticrepresentationbackthroughproduction.Thiswasundoubtedlya simplificationinsofar as
othererrorsignalscouldbederivedfrom themodelandtheseareprobablyrelevantto performance
undersomecircumstances.For example,Plaut (1997)hasdescribedhow anomalouspatternsof
semanticactivationcanprovideabasisfor makingalexical (word-nonword)decision,andit is easy
to imaginethesamekind of mechanismbeingusedto judgegrammaticality. 3 Theresultssuggest
that for a fairly broadrangeof sentencestructures,local anomaliesprovide a sufficient basisfor
makingcorrectresponses.This meansthat it cannotbeassumedthatdecisionsnecessarilyrequire
deriving a full syntacticrepresentationof theutterance.

The methodwe usedto implementwell-formednessjudgmentswas inspiredby a view in
which a grammaticalstructureis onewhich bestsatisfiesthe variousprobabilisticconstraintsen-
codedoverthecourseof learning.Onthisview, asentenceis thatwhichbestsatisfiestheconstraints
thatmake up thespeaker’s knowledgeof languagespecificform to meaningandmeaningto form
relationshipsgivenaparticularsemanticintention.Theacceptabilityof anutteranceon thisview is
definedwith respectto a particularmeaning.Thisaccountdiffersin kind, of course,from theview
thatastructuremaybeill-formed solelyon thebasisof thesyntacticfeaturesof its lexical items.

Implementingtheseideasprovided thebasisfor addressingquestionsconcerningthebases
of aphasiaandthenatureof grammaticalityjudgmentsraisedby Linebargeretal. (1983)’s studyof
agrammaticpatients.Damagingthenetwork impairedits performanceon thetasksonwhich it was
trained,yet it wasstill ableto distinguishbetweengrammaticalandungrammaticalrepresentations
of severalsentencetypes.Theseresultsprovideabasisfor explaininghow Linebargeretal’spatients
could performabove chanceon suchsentenceseven whentheir comprehensionwassignificantly
impaired. Given thesimplicity of the input datathat themodelhadto work with, thefit between
themodelandtheLinebargeretal. (1983)datawasquitegood.Althoughtherewassomevariation
amongthepatients,overall thepatientswereimpairedon thesametypesof sentencesasthemodel.
This outcomesuggeststhat our explanationfor the basisof grammaticalityjudgmentsis a viable
one.

Thesentencesthat both thenetwork andpatientscould judgecorrectlyareonescontaining
local sequentialanomalies.Thethreesentencetypeson which bothnetwork andpatientsfailedto
distinguishbetweengrammaticalandungrammaticalversionsweretheonesfor which theselocal

3Plaut(1997)usesa measurecalledstress, basedon theentropy of setsof units. This measurereflectshow far unit
activationdeviatesfrom 0.5, in thatthestressof a unit is 0 whenits stateis 0.5andapproaches1 asits stateapproaches
either0 or 1. In amodelsimulatinggraphemeto semanticmappings,thetargetsemanticpatternsfor wordswerebinary,
and thus they showed maximumstress. Becausenonwords sharedstructurewith setsof words that had conflicting
semanticfeatures,nonwordstypically failedto drivesemanticunitsasstronglyaswordsdid,producingsemanticpatterns
with muchloweraveragestress.
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anomaliesarenot readily apparent.Examplesof the ungrammaticalversionsof the ten sentence
typesare reproducedin Table6. Sentencetype I includesthe local sequenceCAME MY. Type
II containsthesequenceWENT THE STAIRS. TypeIII includesMAN ENJOYING. TypeIV includes
FRANK TO GET. TypeVI includesWHICH OLD DID, andTypeVII includesFULL MISTAKES. None
of thesesequencesareconsistentwith thetypesof lexical-semanticsequencesthatappearin either
thetrainingsetor in thenovel grammaticaltestingset4.

Therewerethreesentencetypesonwhichthemodelwasunableto detectdifferencesbetween
grammaticalandungrammaticalversions.ThesewerethesamesentencetypesthatLinebarger et
al.’spatientshadthemostdifficulty with. In bothcasesthebasisfor impairedperformanceonthese
itemsis unclear. Therearea numberof reasonswhy thenetwork might have beenunableto detect
thesetypesof ungrammaticalities.Onepossibility is thatalthoughthesesentences,like theothers,
containsequentialanomalies,they arenotsufficiently local. Thatis, althoughall tensentencetypes
involve violationsof lexical and/orsemanticsequences,thedistancesover which theanomaliesare
definedaretoo long in thesethreecasesfor the currentarchitectureto pick up. The sentencein
Table6 illustrating Type V, for example,requiresholding informationaboutBOY for five lexical
itemsprior to processingIT. Similarly, theexampleshown for TypeX requiresholdinginformation
abouttheauxiliary for 4 lexical items. This possibilitycouldbeaddressedby conductinga larger
scalesimulationinvolving moresentencesandadjustingthenumberof unitsin thenetwork.

A secondpossibility is that the differencesbetweenthe grammaticaland ungrammatical
forms involve kinds of dependenciesthat our simplenetwork doesnot encode.The modeldoes
not encodeall of theinformationon which grammaticalityjudgmentscanbemade,andit is likely
thatmany ungrammaticalsentencetypeswill requireaccessto suchinformation.A third possibility
is that the poorerperformanceon thesethreesentencetypesderives from the fact that therehap-
penedto be lessoverlapbetweenthemandthe othersentencetypesin the corpus. For example,
the knowledgethat the modelbringsto bearon sequencessuchAS CAME MY relieson exposure
to all of theothersequencesinvolving verbsin thetrainingset. In contrast,knowledgeconcerning
the relationshipbetweenreflexivesandantecedentsin the network comesonly from exposureto
sentenceTypeIX. Poorerperformanceon TypeIX might simply reflectexposureto fewer relevant
examples.Again, this possibilitycanbeaddressedin larger-scalesimulationsof thesametypewe
have explored.

Althoughadditionalresearchis requiredin orderto determinewhich of thesefactorsis rel-
evant to the model’s performance,it is clear that thereare two generalfactorslimit the model’s
performance.First, thenetwork wasonly givenaccessto a fractionof the informationthatenters
into theformationof thedynamicrepresentationsthatunderlielanguagebehavior. It is likely that
in humans,performanceon the sentencetypesthat we testedbenefitsfrom exposureto a broad
rangeof otherstructuresnot includedin thetrainingset.Second,themodel’s architecturelimits its
capacityto representimportantaspectsof thesemanticsof utterances.For example,althoughwe
representthesemanticsof propositionsasa trajectoryof semanticvalues,it is clearly thephrases

4Obviously thesesequencesareonly anomalousrelative to thetrainingset:simpletwo wordsequencessuchasFULL

MISTAKES are lessanomalousrelative to the languageas a whole (we can imaginesentencessuchas Full mistakes
are penalizedlessthan partial mistakes for example)and thereforewould not be expectedto trigger a judgmentof
ungrammaticalityby themselves. Given theknowledgeof the averagehumanspeaker, thespecificsequencetypesthat
provide thebasisfor decidingthatanutteranceis ungrammaticalwill in many casesdiffer from thosethat themodelis
sensitive to, but thesameprincipleswill apply. For example,anomaliesmaybedefinedover longerstretchessuchaswas
full mistakes, wheretheuseof wasforcesa particularinterpretationof full, andwith that interpretationin hand,theuse
of mistakesbecomesananomaloussequence.



SIMULATING GRAMMATICALITY JUDGMENTS 25

Table6: Ungrammaticalexamplesentences.

Type Example
I Strict subcategorization * Hecamemy houseatnoon.
II ParticleMovement * Shewentthestairsup in ahurry.
III Sub-auxinversion * Did theold manenjoying theview?
IV EmptyElements * Thejob wasexpectedFrankto get.
V TagQuestions(PN) * Thelittle boy fell down, didn’t it?
VI Left Branch * Whichold did you invite manto theparty?
VI Gaplessrelatives * Mary atethebreadthatI bakedacake.
VIII PhraseStructure * Thepaperwasfull mistakes.
IX Reflexive agreement * I helpedthemselvesto thebirthdaycake.
X TagQuestions(AUX) * Johnis very tall, doesn’t he?

of languagethatreferto conceptualunits.Similarly, propositionshavesemanticcharacteristicsthat
arecompositional,thatis, built up out of thesemanticsof thephrasesandclausesthatmake up the
form of a proposition. Thereareall sortsof semanticrelationshipsthat occuracrossmulti-word
windows, includingco-indexation,predication,dependencies,thematicrolebinding,andothers.In
many casesgrammaticalityjudgmentsaremadeon thebasisof moreinformationthanis provided
by thesequentialregularitiesof semanticsequencesthatwewereableto representin ournetwork.

In closing,we suggestthatthis modelillustratesanapproachto thinking aboutlanguageac-
quisition,processing,andbreakdown thatshows considerablepromise.Giventhesimplicity of the
model’s architectureandthelimited corpusonwhich it wastrained,it seemsquitesurprisingthatit
wasableto developa basisfor performingthegrammaticalityjudgmenttaskat levelscomparable
to normalandaphasicsubjects.Theclaimthatsubjectscanbasetheirgrammaticalityjudgmentson
statisticalcuessuchassequentialprobabilitiesof wordsclearlydiffersfrom theview thatgrammat-
icality judgmentsreflectaccessto principlesof grammar. Thesedifferencescanbeseenclearlyby
consideringLinebarger’s (1989)discussionof thevariousbasesonwhichsentenceTypeIV (Empty
elements)mightbejudgedungrammatical:

”We might reject”Frank thoughtwasgoingto geta job” for any numberof reasons.If the
empty category is PRO, then it violatesthe requirementthat PRO be ungoverned,so we might
rejectit asaviolationof thebindingtheory. Or wemight take theemptycategory to beanNPtrace
of Frank,assigning[...] the D-Structure” thoughtFrankwasgoing to get the job”; underthis
analysis[theutterance]represents,interalia,aviolationof thethetacriterionsincethemovedNPis
now assignedtwo thetaroles. Recognitionof any of theseprinciplesmight triggera rejection.On
theotherhand,perhapsthesentenceis ultimatelyrejectedbecausethegrammar, – by disallowing
PRO andNP tracein this position,providesuswith no NP for theverbphrase’get the job’ to be
predicatedof, andthesentencesimply’makesnosense’unlessit expresseswhoit is thatis expected
to getthejob.”

We take our resultsto indicatethat many grammaticalityjudgmentsmay be madeon the
basisof knowledgeof sequentialregularitiesof the type that humansapparentlycannothelp but
absorbin thecourseof languagelearning(Saffran et al., 1996).Thedegreeto which this approach
canbeextendedto otheraspectsof linguistic structureis an importantquestionthatremainsto be
answered.
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Appendix

Thecontinuousapproachto activation is approximatedby dividing thenormaltime stepsof
discretebackpropthroughtime (Williams & Zipser, 1990)into ticksof someshorterduration.An
infinite numberof suchtickswouldrepresenttruly continuousactivation.Thenumberof timesteps
per tick (calledthe integrationconstant)changesthe grain at which activation is propagatedand
errorinjectedinto thenetwork.

Underthis approachto approximatingcontinuoustime, theinstantaneouschangein theacti-
vationof eachunit in anetwork is dependentbothon its currentstateandontheinput it is receiving
from otherunits.Ratherthanthemorecommonlyuseddiscreteactivationfunctionthen,changein
theactivity of unitsin thenetwork wasgovernedby theformulagivenin equation2

�  "!$# �&% � ! #('&)+*�,�#.-
(2)

)+*�,/- % * � '&0 ��1 - �32
(3)

where
)+*�,/-

is the outputof the normalsigmoidalactivation function appliedto inputs to
unit

!
(seenin equation3), and

!$#
is the stateof 4 �/5�� # . The final parameter� is a time constant,

alsonormallyrangingbetween0 and1, which multiplicatively alterstherateat which unitsrisein
activation.A valueof � closeto 0 will meanthataunit risesin activationveryslowly, andavalueof
1 wouldmeanthattheunit wouldrisein activity at therateof

�/� 0 ��6
, where

�
is thenumberof time

stepsat which input is providedat a constantrate. In all cases,thereis somerise time associated
with theactivity of aunit.

Theactivationfunctiondescribedin equation2 definesaleaky integratorin whichtheclosera
unit’sactivationis to its goaloutput(definedby theoutputof thestandardsigmoidaltransformation
of equation3), themoreslowly it approachesits target.Useof thissystemallowsusto vary targets
continuouslyover the courseof an example,andto train the network to be sensitive both to the
currentstateof its unitsandto theinputsit is currentlyprocessing.

In orderto applybackpropagationthroughtime to targetswith continuousunits, theback-
ward propagationof error mustalsobe madecontinuous.The network wasthustrainedusinga
variantof backpropagationthroughtime adaptedfor continuousunits (Pearlmutter, 1989)shown
in equation4. After a forwardpass,weightsareupdatedin thedirectionandto a magnitudemade
dependentonhow muchasmallchangein theirvalueswouldaffecterrorin theunitsto which they
areconnected.Moreconcretely, thechangein weightfrom unit

5
to unit 7 is madeproportionateto

thepartialderivative of theoverall errorwith respectto thatweight.
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where
G

is definedby thedifferentialequation6:JLGJ � % �
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Importantly, in this versionof backprop, the � valuesof equation2 werealsoa trainable
parameterof thenetwork, andwerealsomadesensitive to how minutechangesin � at time

�
would

affecterrorrates,holdingeverythingelseconstant,asin 7

8 � % �TS  A@ � # (7)

where
S

is anothersmallconstant(setat .005in oursimulations),and "@ � % � � B
6DE
6DC G  A! # � J � (8)

The � valuesfor all unitsin thenetwork wereinitially setto 1, but (only) thoseof thehidden
unitsandthecleanupunitsweretrained,andthusallowedto takeonvaluesthattendedto minimize
error in thenetwork. In particular, someunitscould rampup quickly while othersrampup more
slowly. Thisaspectof thetrainingregimeiswhatallowsthenetwork to reachbacksomewhatfurther
in time thanthemorestandarddiscretebackpropagationtrainingregimes.


