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Abstract

Learning to communicate is an emerging challenge in AI re-
search. It is known that agents interacting in decentralized,
stochastic environments can benefit from exchanging infor-
mation. Multiagent planning generally assumes that agents
share a common means of communication; however, in build-
ing robust distributed systems it is important to address po-
tential mis-coordination resulting from misinterpretation of
messages exchanged. This paper lays foundations for study-
ing this problem, examining its properties analytically and
empirically in a decision-theoretic context. Solving the prob-
lem optimally is often intractable, but our approach enables
agents using different languages to converge upon coordina-
tion over time.

Introduction
Learning to communicate in multi-agent systems is an
emerging challenge for work in AI. Autonomous systems,
developed separately, interact more and more often in con-
texts like distributed computing, information gathering over
the internet, and wide-spread networks of machines using
distinct protocols. In addition, systems may be called on
to deal with new situations and information, as autonomy
increases and environments grow more complex. As a re-
sult, we foresee the need for autonomous systems that can
learn to communicate with one another in order to achieve
cooperative goals. This raises a number of difficult ques-
tions, concerning such things as algorithms for learning to
communicate effectively, and the properties of systems and
environments that allow such learning to take place.

We make some first steps towards solving these problems.
Coordination and communication while sharing resources
has been extensively studied, in particular by the multi-
agent systems community, as for example (Durfee 1988;
Smith 1988; Pynadath & Tambe 2002; Peshkinet al. 2000;
Mataric 1997). Such work on cooperative planning typi-
cally focuses upon maximizing global objectives, without
deliberation about thevalueof communication. Often, sys-
tems resulting from such constrained attention feature no
communication, where for instance agents follow predeter-
mined social laws (Goldman & Rosenschein 1994). On
the other hand are systems allowing free communication of
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well-understood messages, as in the SharedPlans (Grosz &
Kraus 1996) and PGP (Lesseret al. 2004) frameworks, or
the work of Balch (1994) and the KQML standard (Finin,
Labrou, & Mayfield 1997). Evolution of common com-
munication has also been studied from an ALife perspec-
tive, as for example MacLennan’s work (1990) and adap-
tive language games (Steels & Vogt 1997). Recent work
stays within the common-language paradigm, while analyz-
ing tradeoffs between communication cost and the value of
acquired information (Goldman & Zilberstein 2004; 2003;
Nair et al. 2004). In contrast, the work here deals with cost-
free communication in systems where communication is not
completely shared.

Robust decentralized systems will often require agents
to adapt their means of communicating in the face of new
situations, or when mis-coordination arises. Such mis-
coordination can be revealed in practice, or in simulation,
and can serve as a signal to reinterpret messages received.
In the context of this paper, agents attempt to learn correla-
tions between languages with pre-existing simple semantics,
distinguishing the approach from such as (Wang & Gasser
2002), in which agents collectively learn new shared con-
cepts. The particular language learned will be directly re-
lated to system-utility, rather than to the cost of using that
language (Gmytrasiewicz, Summers, & Gopal 2002). Fur-
ther, agents learn to communicate while attempting to max-
imize some global objective, which need not be the specific
one of learning to communicate itself, as opposed to work
in which agents are specifically rewarded for pre-determined
“correct” responses to messages (Yanco 1994).

We assume that agents already possess policies of
action—mappings from states to possible actions—and
leave the more general problem of learning how to act at
the same time as learning to interpret messages for future
work. Agents exchange messages, and interpret them by
deciding upon a course of action after considering their con-
tents. In our framework, agents presume that others involved
in a shared cooperative task are communicating information
relevant to that task. In this particular context, agents need
to learn a mapping from the speaker’s messages to their ob-
servations and actions, and then act based on an existing pol-
icy. The case of learning to communicate where agents be-
gin with different possible contexts of communication, and
need to determine when one particular context is inappropri-



ate, remains for future work.
The next section gives the formal framework of the prob-

lem, using decentralized Markov decision processes. Fol-
lowing that, we analyze some properties of the learning
process, and make an attempt to characterize properties of
stochastic environments that make learning to communicate
possible in the first place. Lastly, we discuss empirical re-
sults based on an implementation of our ideas, and draw
some conclusions.

The Decentralized Learning Framework
We study the learning problem in the context ofdecentral-
ized Markov Decision Processes(Bernsteinet al. 2002) with
communication, involving a set ofn agents,α1, . . . , αn.

Definition 1 (Dec-MDP-Com). An n-agentdecentralized
MDP with direct communication(Goldman & Zilberstein
2004) is given by the tuple

M = 〈S, A, P, R, Σ, CΣ,Ω, O, T 〉,

with elements as follows:

• S is a finite set ofstates, with initial states0.

• A = {Ai |Ai is a finite set ofactionsai for agentαi}.

• P is a transition function, giving the probability
P (s′ | s, a1, . . . , an) of moving from states to states′,
given actionsa1, . . . , an.

• R is aglobal reward function, giving the system-wide re-
wardR(s, a1, . . . , an, s′) when actionsa1, . . . , an cause
the state-transition froms to s′.

• Σ = {Σi |Σi is a finite set ofmessagesσi for αi}.

• CΣ : ∪Σi → < is a cost function, giving the cost of
transmission for any message sent.

• Ω = {Ωi |Ωi is a finite set ofobservationsoi for αi}.

• O is an observation function, giving the probability
O(o1, . . . , on|s, a1, . . . , an, s′) that each agentαi ob-
serves oi when actionsa1, . . . , an cause the state-
transition froms to s′.

• T is thetime-horizon(finite or infinite) of the problem.

We note an important constraint upon the observation
function O, namely that a Dec-MDP-Com (unlike a Dec-
POMDP-Com) isjointly fully-observable. That is, the com-
bined observations of the agents fix the global state. In other
words, there exists a mappingJ : (Ω1 × · · · × Ωn) →
S such that ifO(o1, . . . , on | s, a1, . . . , an, s′) is non-zero,
thenJ(o1, . . . , on) = s′. This does not mean that each agent
alone observes the entire state—the problem is genuinely
decentralized—but that the observations of all agents taken
together suffice to determine that state. Section of this paper
contains an implemented example Dec-MDP-Com. For fur-
ther analysis of the properties of Dec-MDPs, both with com-
munication and without, see (Goldman & Zilberstein 2004).

Obviously, where agents use the same messages to mean
the same thing, learning to communicate is not a problem.
Rather, optimal linguistic action is a matter of decidingwhat
andwhento communicate, if at all, given its costs relative
to the benefits information-sharing might bring. However,

where agents utilize partially or completely different sets of
messages, and do not fully understand one another, simple
message-passing is not enough. Rather, agents need to learn
how to respond to the messages that are passed between
them—in a sense, learning what those messages mean.

While this sense of “meaning” is limited, it is not unin-
teresting. In natural-language contexts, of course, the mean-
ing and structure of messages can be highly complex, and
greatly varied—but an attempt to solve the problem of me-
chanical communication in natural language is well beyond
the scope of our approach here. However, even where agents
are limited to communicating about such things as their own
basic actions and observations within the framework of a de-
centralized MDP, learning to correlate messages with appro-
priate responses can still be very challenging. Thus, when
we discuss meanings here, we relate them strictly to the ac-
tions agents take in response to receiving messages, and oth-
erwise leave them unanalyzed.

We represent the degree to which agentαi understands
agentαj by a correspondence between messages sent byαj ,
and those thatαi might itself send. As far asαi is concerned,
the meaning of some received message is a distribution over
its own possible messages.

Definition 2 (Translation). Let Σ andΣ′ be sets of mes-
sages. Atranslation, τ , betweenΣ andΣ′ is a probabil-
ity function over message-pairs: for any messagesσ, σ′,
τ(σ, σ′) is the probability thatσ and σ′ mean the same.
τ+

Σ,Σ′ is the set of all translations betweenΣ andΣ′.

An agent translates between its own set of messages and
another by establishing a probabilistic correlation between
them. Each agent may in fact need to consider multiple pos-
sible translations between messages; that is, agents possess
beliefs regarding which translation might in fact be the cor-
rect one to utilize in any given situation.

Definition 3 (Belief-state). Let agentsα1 and α2 utilize
message-setsΣ1 and Σ2, respectively. Abelief-statefor
agentαi is a a probability-functionβi over the set of trans-
lationsτ+

Σi,Σj
(i 6= j). That is, for any translationτ between

Σi andΣj , βi(τ) is the probability thatτ is correct.

That is, agents maintain beliefs in the form of probability
distributions over translations, which are themselves prob-
ability distributions over message-pairs. Given any pair of
messages,(σi, σj), an agentαi assigns that pair a likelihood
of having the same meaning, equal to the weighted sum of
their assigned probabilities for each translation considered
possible; we writeβ+

i (σi, σj) for that overall probability.

β+

i (σi, σj) =
∑

τ∈τ
+

Σi,Σj

βi(τ) · τ(σi, σj). (1)

In our model, learning to communicate is therefore the
process of systematically updating belief-states with respect
to translations. Agentαi chooses an action,ai, based upon
its local observation,oi, any messages received, and the cur-
rent belief-state,βi, about how to translate those messages.
The choice ofai, along with the actions chosen by other
agents, leads to some state-transition, which in turn results



in some new observation,o′i. This observation then leads
to an update to a new belief-state,β′

i, further affecting how
later messages are translated, and thus influencing future ac-
tions. The procedure governing the update from belief-state
βi to β′

i comprises the agent’slanguage-model: a function
from actions, messages, and observations, to distributions
over translations. Such models may be highly complex, and
the prescribed updates can be difficult to compute correctly,
especially where the languages are complicated, or the en-
vironment is only partially observable; our ongoing work
considers a formal framework for learning in the latter case.
Here we concentrate upon special—but interesting—cases
for which it is much more straightforward to generate the
probabilities in question.

Properties of the Problem
Optimal solution of Dec-MDPs without communication
(or where communication is costly) is generally in-
tractable (Bernsteinet al. 2002; Goldman & Zilberstein
2004). Thus, we consider problems that are reducible to
a more straightforward multiagent extension of the conven-
tional MDP, first introduced by Boutilier (1999).

Definition 4 (MMDP). A multiagent Markov decision pro-
cessis a 5-tuple:

M = 〈α, Ak, S, P, R〉,

with each element as follows:

1. α = {α1, . . . , αk} is a set ofagents.
2. Ak is the combined set ofindividual actionsfor those

agents; ajoint action is a k-tuple 〈a1, . . . , ak〉 ∈ Ak of
actions, one for each agent.

3. S is a set ofstates.
4. P is astate-action transition function, returning the prob-

ability P (s, 〈a1, . . . , ak〉, s′) that the system moves to
states′, given joint action〈a1, . . . , ak〉 in states.

5. R : S → R is thereward function.

Simply put, an MMDP consists of a set of agents operat-
ing in a fully- and commonly-observed environment; tran-
sitions between states in that environment depend upon the
joint actionsof all of the agents, and a single, common re-
ward is shared by the system as a whole. Given the common
reward-function, and the fact that all agents can observe the
full system state at any time, an MMDP with either a finite
or infinite time-horizon can be solved as if it were a single-
agent problem, since the value of a state at any point in time
will obey the usual Bellman equations, solvable using stan-
dard iterative methods (Puterman 1994). Theoptimal joint
action, 〈a1, . . . , ak〉

?, at any states and timet is that which
maximizes expected future value, and theoptimal joint pol-
icy, π?, is a function taking each state-time pair to an optimal
joint action for that point in the process.

However, while it is possible for individuals to calculate
an optimal joint policy for such a process offline,deriving
the optimal policy is not the same thing asimplementingit.
Unless agents can coordinate their individual actions in ac-
tual practice, there is no guarantee that they can always be
sure of following a jointly optimal course of action (since in

his model communication between agents is not allowed, or
is unreliable). Boutilier makes this idea precise as follows:

Definition 5 (PIO actions). For agentαi in state s of
MMDP M at time t, action ai is potentially individ-
ually optimal (PIO) iff there exists some joint action
a? = 〈a1, . . . , ai, . . . , ak〉 that is optimal fors at t.

If each agent in an MMDP has exactly one PIO action at
each state-time pair, then implementing an optimal policy
is straightforward, once calculated: each agent simply takes
its sole optimal action, and the result is an optimal joint pol-
icy. However, where agents have multiple PIO actions at any
point, coordination problems may arise, since not all combi-
nations of PIO actions are themselves optimal.

Definition 6 (Coordination problem). MMDP M contains
a coordination problemiff there exists states, time t, and
actionsai, 1 ≤ i ≤ k such that eachai is PIO, but joint
action〈a1, . . . , ak〉 is not optimal.

An example arises, for instance, in a two-agent MMDP
for which agent 1 has available actionsa1, b1 and agent
2 has available actionsa2, b2, and there exists some state-
action pair for which the joint actions〈a1, a2〉 and〈b1, b2〉
are both optimal, but for which neither〈a1, b2〉 nor 〈b1, a2〉
is optimal. In such a case, an individual agent may be able
to calculate an optimal policy without necessarily being able
to reliably implement it, unless there exists some means of
ensuring that the requisite PIO actions “match up.”

In his own work, Boutilier considers various mechanisms
of coordination, and shows how optimal policies of ac-
tion need to take those mechanisms into account. For in-
stance, he considers free communication between agents
over stochastically noisy channels, allowing them to share
information regarding their intended courses of action, and
points out how an effectively optimal policy will need to
consider the probability of coordination following a noisy
passage of messages. Other mechanisms are considered, and
he shows how dynamic programming can be extended to cal-
culate optimal policies that take into account the status ofthe
coordination mechanism, at some cost in efficiency.

Unfortunately, the added burden of computing optimal
policies for domains where coordination is difficult is only
part of the story. In many interesting problems we must
deal not only with agents who must coordinate their ac-
tions, but also with instances where each agent can only
view its own local state-space, and the problem is genuinely
decentralized in such a way as to make solving it gener-
ally intractable. As Goldman and Zilberstein (2004) point
out, however, if agents can communicate among themselves
freely, and hence at every time step, it is possible to reduce
many such problems to the much easier one of an MMDP
without coordination problems. If agents convey their own
intended course of action (or can coordinate those actions in
advance), and if their local views can be combined to form
a global view of the system, communication of those local
views and intended actions provides a means of ensuring
that optimal multiagent policies can be enacted.

In some cases, however, there is an additional complica-
tion, namely that agents are not able to communicate in full,
since they do not understand one another. We are interested



in understanding the general features of multiagent decision
processes that allow agents to learn to communicate and so
to optimize their joint actions. As a first step, we concen-
trate upon those decentralized problems that can be reduced
to MMDPs. For such problems, it is possible to compute an
optimal joint policy offline, under the assumption that agents
can in factcommunicate all necessary details. Agents can
then, in certain circumstances, learn to communicate so that
such an optimal policy can be implemented.

We presume that agents in a Dec-MDP-Com possess
a noise-free channel of communication, and that there is
an established protocol for sharing messages before ac-
tions are taken. While the issue of noisy communication
is interesting, it is beyond the scope of what we can deal
with here; instead, we concentrate upon the case where
agents must learn to deal with messages that they clearly
receive, but do not fully understand. Similarly, learning
policies for when and what to communicate is also an in-
teresting area, but not of concern here (for research on
these latter two issues, see (Goldman & Zilberstein 2003;
2004)). Given these two presumptions then, we examine
conditions allowing the reduction of a Dec-MDP-Com to a
somewhat simpler problem.

Definition 7 (Fully-describable). A Dec-MDP-Com is
fully-describableif and only if each agentαi possesses a
languageΣi that is sufficient to communicate both: (a) any
observation it makes, and (b) any action it takes.

Definition 8 (Freely-describable). A Dec-MDP-Com is
freely-describableif and only if the cost of communicating
any messageσ is 0.

Claim 1. A Dec-MDP-Com is equivalent to an MMDP
without coordination problems if (a) it is fully- and freely-
describable; and (b) agents share a common language.

Proof: Straightforward. Since a Dec-MDP-Com is jointly
fully-observable, the observations of each agent togetherde-
termine the global state, and it is possible to calculate an
optimal joint policy for each such state offline. Thus, agents
that can freely and fully communicate their observations and
intended actions in a shared language can also implement
such a policy, without coordination problems.

In what follows, we assume that each Dec-MDP-Com we
deal with is freely- and fully-describable. In solving such
problems, agents canassume, for the sake of calculating an
optimal joint policy offline, that all agents do in fact sharea
common language, and that all information about observa-
tions and actions is shared. However, where agents must in
fact learn to communicate, this assumption does not actually
hold true, and so actualimplementationof such policies re-
quires more cooperation from the environment. Rather, the
environment must provide enough in the way of observation
and reward that agents can update their translations appro-
priately over time. In order to make this notion precise, we
introduce some notation.

Notation1. Let M be ann-agent Dec-MDP-Com. In some
states, at time t, suppose each agentαj observesoj and
intends to take actionaj , communicating both facts to other

agents by messagesσo
j andσa

j . Then, for any agentαi,

P σ
i (oj |σ

o
j , βt

i ) (2)

is the probability, assigned byαi, thatαj observesoj , given
messageσo

j andαi’s current belief-stateβt
i . Similarly,

P σ
i (aj |σ

a
j , βt

i ) (3)

is the probability thatαj will take actionaj , given mes-
sageσa

j and αi’s current belief-state. Finally, we write
maxσ

i (oj)
t and maxσ

i (aj)
t for the observation and action

maximizing expressions (2) and (3), respectively (i.e., the
observation and action thatαi considersmost likelyfor αj).

Notation2. Let M be ann-agent Dec-MDP-Com. In some
states, at time t, suppose each agentαj observesoj and
takes actionaj , causing a transition to states′, with obser-
vations〈o′1, . . . , o′n〉, and rewardr′ = R(s, a1, . . . , an, s′)
at timet + 1. Then, for any agentαi,

P o
i (oj | o

′

i, r′)t+1 (4)

is the probability, assigned byαi, that agentαj previously
observedoj , given thatαi now observeso′i and the system
receives rewardr′. Similarly,

P a
i (aj | o

′

i, r′)t+1 (5)

is the probability thatαj took actionaj given αi’s current
observation and the system-reward.

Given these notational conventions, we can now give suf-
ficient conditions for a Dec-MDP-Com allowing each of its
agents to learn the language of the others.

Definition 9 (Suitability). Let M be any fully- and freely-
describable Dec-MDP-Com in which agents do not share a
common language. In any states at time t, let each agent
αi observeoi and take actionai, communicating both to
other agents using messagesσo

i andσa
i , and jointly causing

a transition to states′.
We say thatM is suitablefor learning to communicate iff,

for any agentsαi andαj , if oj 6= maxσ
i (oj)

t, then for any
time t′ ≥ t at whichαj observesoj (the same observation
as at timet),

P o
i (oj | o

′′

i , r′′)t′+1 > P o
i (

σ
max

i
(oj)

t | o′′i , r′′)t′+1, (6)

and similarly foraj 6= maxσ
i (aj)

t,

P a
i (aj | o

′′

i , r′′)t′+1 > P a
i (

σ
max

i
(aj)

t | o′′i , r′′)t′+1. (7)

That is, in a suitable Dec-MDP-Com, suppose agentαj

observesoj and communicates that fact using messageσo
j .

However, agentαi, based on its current belief-stateβt
i , in-

correctly considers another observationmaxσ
i (oj)

t 6= oj

most likely forαj . In such a case, at any later state (includ-
ing the next one),αi’s resulting observationo′′i and system-
rewardr′′ “correct” the situation; that is, they are such that
at any later stage of the process, whenever they are observed,
αi will consider the actual observationoj more likely than
the incorrect one thought most likely before. (And similarly
for the actionaj taken byαj .)



We stress that the given definition is but a first attempt to
isolate conditions sufficient for agents to learn to communi-
cate in a decentralized setting, and make no claim that such
conditions are in fact necessary. However, while suitability
as given is somewhat difficult to formalize precisely, we do
not consider it to be an overly strong or artificial condition.
For instance, domains in which agents have no idea what
actions others are taking, but can positively eliminate candi-
dates by observing their immediate effects, can be suitable
with respect to those actions (given the proper conditions on
communication): the evidence after any action is taken will
eventually eliminate incorrect candidates, while increasing
the probability of the correct action towards eventual cer-
tainty. Similarly, environments in which one agent observes
some state variable a time step before another can be suit-
able with respect to observation, since the latter agent will
eventually be given positive evidence allowing the determi-
nation of the correct observations. Section contains an ex-
ample implementation of a relatively complicated, but still
suitable, Dec-MDP-Com.

Our prior work (Goldman, Allen, & Zilberstein 2004)
deals with some relatively simple examples of suitable prob-
lems, where agents do not need to communicate their ac-
tions, only their observations. In that domain, two agents
work to meet at points in a grid-world environment, follow-
ing a relatively simple procedure, with each acting in turn,
according to the best estimate of the location of the other.
Messages describing each agent’s location are exchanged,
and translations of those messages are updated after each
step, depending upon whether or not the agents do in fact
meet one another. Since agents are certain after checking
some grid-location whether or not the other agent was in fact
at there, the probability that the other observed that location
is either 0 or 1, and the suitability of the Dec-MDP-Com fol-
lows immediately. We now give a more general version of
this process, including actions.

Definition 10 (Elementary action protocol). Let s be a
state of Dec-MDP-ComM , at timet, where agentαi ob-
servesoi. Eachαi follows theelementary action protocol:

(1) αi communicatesoi to the others, using messageσo
i .

(2) αi calculates themost likely observation sequence,

o? = 〈
σ

max
i

(o1)
t, . . . , oi, . . . ,

σ
max

i
(on)t〉

andmost likely state, s? = J(o?). (Recall thatJ is the
function from observations to global states, in accord with
joint full observability; see p. 2.)

(3) Proceeding in turn,αi chooses an action by:
(a) Calculating themost likely action sub-sequence,

a? = 〈
σ

max
i

(a1)
t, . . . ,

σ
max

i
(ai−1)

t〉.

(b) Choosing actionai such that some joint action,

a+ = 〈a?, ai, ai+1, . . . , an〉

maximizes value for likely states? at timet.

(c) Communicatingai to the others by messageσa
i .

(4) αi takes actionai after all agents complete step (3).
(Agents choose actions based upon theobservationsof
all others, but theactions of only those that precede
them. The reader can confirm that this allows agents who
already understand each other to coordinate optimally,
avoiding the coordination problems Boutilier sketches.
Agents who are still learning the language act in the way
they believemost likelyto be coordinated.)

(5) The state-transition froms to s′ caused by joint ac-
tion 〈a1, . . . , an〉 follows, generating new observation se-
quence〈o′1, . . . , o′n〉 and rewardr′ at timet + 1. Agent
αi then updates its belief-state so that for any messagesσo

j

andσa
j received on the prior time step, and any possible

observationoj and actionaj , both:

P σ
i (oj |σ

o
j , βt+1

i ) = P o
i (oj | o

′

i, r′)t+1. (8)

P σ
i (aj |σ

a
j , βt+1

i ) = P a
i (aj | o

′

i, r′)t+1. (9)

That is, in the agent’s new belief-state, the probability
assigned an observation or action given the most recently
received messages—i.e., themeaningof the messages—is
identical to the probability that the other agent actually made
that observation or took that action. It is assumed that the
translation of all other messages from each other agent is
adjusted only to account for normalization factors. Section
briefly describes the use of a Bayesian Filtering algorithm to
actually accomplish these sorts of updates in practice.

It is important to note that, for the general case of multi-
agent coordination, such a straightforward procedure is not
necessarily optimal, nor even necessarily close to optimal.
As Boutilier points out, correct choice of action in the pres-
ence of unreliable or inaccurate communication must con-
sider how each action may affect that communication, along
with the other more immediate rewards to be had. Thus, in
our case, it might sometimes be better for agents to choose
their actions based not simply upon what they thought the
most likely state might be, but also upon how certain ex-
pected outcomes would affect their translations for future
instances of the problem, perhaps trading immediate reward
for expected long-term information value.

As already discussed, however, computing optimal poli-
cies for legitimately decentralized problems is generallyin-
tractable, and so other methods and approximations for these
cases are necessary. (Potential problems with attempts to
solve such problems optimally, even where they can be
treated as MMDPs that are not wholly decentralized, are dis-
cussed briefly at the end of Section .) Furthermore, where
the problem is suitable, the elementary action protocol has
the advantage that agents who follow it can eventually come
to communicate clearly, and so act properly.

Claim 2. Given an infinite time-horizon, agents acting ac-
cording to the elementary action protocol in a suitable Dec-
MDP-Com will eventually converge upon a joint policy that
is optimal for the states they encounter from then on.

Proof: The claim follows from suitability. As agents act,
they choose actions based always on the observations and
actions of others that they consider most likely. Since the
problem is suitable, at any later time step the correct such



observations and actions will be more likely than any par-
ticular ones previously thought most likely. Furthermore,
since updates of messages proceed directly in accord with
these probability assignments, or as required for normaliza-
tion, once a correct translation of any message is the most
likely translation, it will remain so for all future time-steps.
Thus, since the number of possible actions and observations
for any agent is finite by definition, agents will, when given
enough time, choose the correct entries, since these will be
most probable. Agents will then implement a policy that is
optimal from then on, since they are now acting based upon
the actual states and next actions of the problem.

Empirical Results
To explore the viability of our approach, we implemented
our language-learning protocol for a reasonably complex
Dec-MDP-Com. Each instance of the domain involves two
(2) agents, each in control of a set ofn pumps andm flow-
valves in a factory setting, with parametersn andm varied
to generate problem instances of different sizes. At each
time step, each agent separately observes fluid entering the
system from one of two different inflow ducts, along with
the pumps and valves under its own control.

The task is then to maximize flow out of the system
through one of several outflow ducts, subject to the con-
straint that the number of ducts be minimized. Accordingly,
reward is directly proportional to outflow amount, minus the
number of ducts used. Probabilistic effects arise because
each of the pumps and valves is susceptible to variations in
throughput, dependent upon whether the particular compo-
nent was used to route flow in the prior time step. Any ex-
cess flow not routed through the system on a given time step
is considered wasted, and is dropped from consideration.

Formally, we specify the problem as a Dec-MDP-Com:

M = 〈S, A, P, R, Σ, CΣ,Ω, O, T 〉,

with elements as follows:

(a) S: the state-set is described by flow through the two in-
flow ducts,in1 and in2, two sets of pumps,p1

1, . . . , p
1
n

and p2
1, . . . , p

2
n, and two sets of valves,v1

1 , . . . , v1
m and

v2
1 , . . . , v2

m. Initially, all such flows are set to zero (0).

(b) A: at each time step each agentαi chooses one action to
control the pumpspi

r (on, off, forward, back) or the valves
vi

s (open, shut).

(c) P : the transition function directs flow according to ac-
tions taken; however, pumps and valves fail to respond to
commands probabilistically, based on whether or not they
were used in the prior time step.

(d) R: the total reward is given by(in/out) − d, wherein is
the total units of inflow,out is the total units of outflow,
andd is the number of outflow ducts used.

(e) Σ: each agentαi possesses messages corresponding to
each of its possible actions, identifying labels for every
pump or valve in the system, as well as the observed units
of inflow through ductini.

(f ) CΣ : the cost of all messages is zero (0).

(g) Ω: each agentαi can observe its own inflow ductini,
along with all pumpspi

r and valvesvi
s that it controls.

(h) O: the observation-function takes any state of the system
and returns the observable portions for each agent.

(i) T : the problem has an infinite time-horizon.

While the state-space of such a problem can be quite
large, given the number of variables governing inflow and
system settings, it is still efficiently solvable from a single-
agent, centralized perspective. By taking the point of view
of one agent observing all states globally, and acting in place
of both agents simultaneously, the problem is solved offline,
using typical dynamic-programming means.

Further, the environment is in fact an example of a
suitable Dec-MDP-Com. The problem is both freely-
describable, by the cost-function (f ), and (for the purposes
of solving the problem) fully-describable, as given by the set
of messages (e). Furthermore, agents are aware of the over-
all structure of the pumping system, and can observe certain
basic effects of each other’s actions, by observing how many
units of flow are routed through their own observable pumps
and valves. These observations, combined with the total re-
ward allow them to reason backwards to what those actions
may have been, as well as to the total number of units of flow
entering the system through the other agent’s inflow duct.
While certain actions may fail to have the desired effect,
given pump or valve failure, actions never affect the wrong
pump or valve; furthermore, no pump or valve fails perma-
nently. Thus, the observed effect of any action taken by the
other agent will either completely confirm which action was
taken, or give the agent no evidence to update its translation
of the last message. Taken together, these conditions ensure
that incorrect interpretations are eventually eliminatedin fa-
vor of correct translations. While this solution requires that
agents know the overall structure of the domain, this is sim-
ply the same assumption required for usual optimal offline
methods of solving such problems, and so we consider it no
real defect in our method.

In line with the elementary action protocol, agents swap
messages, choose actions based on their current beliefs, and
act, repeating the process to converge towards mutual under-
standing and optimal action. Using their model of the envi-
ronment, they update belief-states using a two-step Bayesian
Filtering algorithm, first projecting possible belief-states be-
fore acting, then updating those belief-states given the re-
sults. This two-step simple update process is adapted from
its applications in robotics (Thrunet al. 2001); our prior
work (Goldman, Allen, & Zilberstein 2004) details the al-
gorithm’s use in communication in a simple grid-world set-
ting; the interested reader is directed to that source for more
on the specifics of the implementation. The experimental
work in this paper expands upon that prior work, by includ-
ing the language of actions, where before agents could only
speak about state-observations, and by extending it to the
more complicated domain presented here.

Agents interact until each learns the language of the
other—achieved when each agentαi achievescertainty,
namely a belief-stateβi in which, for any messageσj re-
ceived from the other agent, there exists exactly one message
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Figure 1: Reward accumulated as language is learned.

σi such thatβ+

i (σi, σj) = 1. In this work, certainty pro-
vides a useful stopping condition, since the domain is one in
which agents do in fact learn all of each other’s messages in
the course of optimizing action. We are now investigating
cases in which complete certainty is not necessary, as when
agents do not need to learn every part of another’s language
in order to achieve optimal performance, and convergence
actually happens more quickly than where the entire set of
messages is learned.

Our results show the elementary protocol to converge
upon optimal policies in each of our problem-instances.
Time of convergence depends upon the basic size of the
problem, and thus the vocabulary of the agents necessary to
describe all actions and observations, and also upon the fre-
quency of certain rare states or actions. As conditions vary
probabilistically, some states in the environment are encoun-
tered very infrequently, and agents do not have occasion to
learn related terms in the other’s language. By design, we in-
sured that all states and actions are eventually encountered;
current work also investigates cases where agents do not ever
visit some parts of the state-space, and so whole parts of the
language are unnecessary to optimal action.

The most interesting and suggestive results have to do
with the rates at which agents accumulate reward, relative
to how much of the language they have learned. Figure 1
gives one example, for a problem-instance featuring 100
vocabulary-items for each agent. The graph shows the per-
centage of total accumulated reward, and total shared vo-
cabulary, at each time step in the process of learning and
acting in the Dec-MDP-Com. In such a problem, agents
converge upon a complete understanding of one another, and
are able to act entirely optimally from then on, in approxi-
mately12, 000 time steps, involving only a few minutes of
computing time.

As can be seen, the language-learning process (top, dot-
ted line) proceeds quite steadily. The rate of reward-
accumulation, on the other hand, grows with time. Initially,
language learning outpaces reward gain given that knowl-
edge, as agents still find many actions and observations of
others hard to determine. After about2, 900 time steps, fully
25% of the language has been learned, but only just over6%

of the eventually accumulated reward. By the time50% of
the language has been learned, nearly6, 200 steps in, things
have improved somewhat, and some27% of the reward has
been earned. As time goes on, the rate of accumulation of
reward actually increases to the point that it narrows the gap
considerably, as agents now know much of what they need
to communicate, and spend more time accumulating reward
in already-familiar circumstances, without learning anything
new about the language of the other agent. Essentially the
same curves, although differing in their time of convergence,
are exhibited by problem-instances of all sizes.

It is to be stressed that these results are first steps in
the process of dealing with the problem of learning to
communicate in decentralized settings. In particular, there
are presently no ready candidates for comparison between
different algorithms, since the communication problem is
somewhat new. Our present work involves a detailed com-
parison between our method and the sort of offline optimal
solution techniques proposed by (Boutilier 1999). It is our
thought that a major obstacle to the application of these opti-
mizing methods is the unavoidable blow-up in problem size.
Essentially, such techniques would involve recreating the
original problem in the form of an MDP with a state-space
comprised of a cross-product of the original states with each
possible belief-state. Since the number of latter such states
will generally be exponential in the size of the descriptive
language (and thus in the size of the original state-space),
these methods will, it seems, often prove infeasible; thus,
non-optimal methods may be necessary.

Conclusions and Extensions
We have presented learning to communicate in decentral-
ized, multi-agent environments as a challenging problem for
AI research. Our work makes some first steps toward a for-
mal and systematic treatment of this problem. While solv-
ing decentralized MDPs optimally is generally intractable,
we have shown that the presence of effective, free commu-
nication has the potential to make them much easier. Where
communication is not initially possible, however, agents
must learn to interpret one another before they can act effec-
tively. Solving the problem of optimal action in the presence
of language deficits is at least as hard as solving Dec-MDPs
in general; in response, we show a relatively simple proto-
col that is non-optimal, but can allow agents to converge to
optimal policies over time.

Analyzing the problem in the relatively familiar and rigor-
ous context of MDPs, the definition of suitability presents a
first attempt at identifying those characteristics of decentral-
ized decision problems that allow some of them to be solved
effectively. Our current work investigates such properties
and when they arise in more detail. Further, our experimen-
tal results show the possibility of effective techniques allow-
ing agents to learn to coordinate and communicate over time.
We continue to investigate and compare other approaches,
including analysis of the differences between possible op-
timal offline techniques and online learning methods. This
opens the door for further study of the various parts of the
problem. Of particular interest is the possibility for approxi-
mation, and we are currently interested in quantifying trade-



offs between the effort to learn another’s language in full,
and the marginal increases in utility such effort may bring.

Lastly, we note that the idea of “translations” has appli-
cations outside of the context of agents who begin from a
blank slate with respect to one another’s languages. The ap-
proach we use in our analysis and implementation does not
require that agents begin with the presumption that they do
not know what the other is saying. Rather, agents can begin
from the position of partial, or even presumed total, under-
standing and proceed by checking and updating translations
as they act, adjusting that understanding only as required by
circumstance. Languagelearning can also therefore be a
process of languageverification. Artificial agents equipped
with the ability to check whether their understanding of what
is communicated to them matches up with the observed out-
comes of their actions will be more resilient, able to catch
errors in their specifications, and even adjust to them.
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