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Abstract

Learning to communicate is an emerging challenge in Al re-
search. It is known that agents interacting in decentralized,
stochastic environments can benefit from exchanging infor-
mation. Multiagent planning generally assumes that agents
share a common means of communication; however, in build-
ing robust distributed systems it is important to address po-
tential mis-coordination resulting from misinterpretation of
messages exchanged. This paper lays foundations for study-
ing this problem, examining its properties analytically and
empirically in a decision-theoretic context. Solving the prob-
lem optimally is often intractable, but our approach enables
agents using different languages to converge upon coordina-
tion over time.

Introduction

Learning to communicate in multi-agent systems is an
emerging challenge for work in Al. Autonomous systems,

developed separately, interact more and more often in con-

texts like distributed computing, information gatheringep

the internet, and wide-spread networks of machines using
distinct protocols. In addition, systems may be called on
to deal with new situations and information, as autonomy
increases and environments grow more complex. As a re-
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well-understood messages, as in the SharedPlans (Grosz &
Kraus 1996) and PGP (Lessetral. 2004) frameworks, or
the work of Balch (1994) and the KQML standard (Finin,
Labrou, & Mayfield 1997). Evolution of common com-
munication has also been studied from an ALife perspec-
tive, as for example MacLennan’s work (1990) and adap-
tive language games (Steels & Vogt 1997). Recent work
stays within the common-language paradigm, while analyz-
ing tradeoffs between communication cost and the value of
acquired information (Goldman & Zilberstein 2004; 2003;
Nair et al. 2004). In contrast, the work here deals with cost-
free communication in systems where communication is not
completely shared.

Robust decentralized systems will often require agents
to adapt their means of communicating in the face of new
situations, or when mis-coordination arises. Such mis-
coordination can be revealed in practice, or in simulation,
and can serve as a signal to reinterpret messages received.
In the context of this paper, agents attempt to learn correla
tions between languages with pre-existing simple semantic
distinguishing the approach from such as (Wang & Gasser
2002), in which agents collectively learn new shared con-
cepts. The particular language learned will be directly re-
lated to system-utility, rather than to the cost of using tha

SU|t, we foresee the need for autonomous Systems that Can|anguage (Gmytrasiewicz, Summers, & Gopa| 2002) Fur-

learn to communicate with one another in order to achieve
cooperative goals. This raises a humber of difficult ques-
tions, concerning such things as algorithms for learning to
communicate effectively, and the properties of systems and
environments that allow such learning to take place.

We make some first steps towards solving these problems.

Coordination and communication while sharing resources
has been extensively studied, in particular by the multi-
agent systems community, as for example (Durfee 1988;
Smith 1988; Pynadath & Tambe 2002; Peshdiral. 2000;
Mataric 1997). Such work on cooperative planning typi-
cally focuses upon maximizing global objectives, without
deliberation about thealueof communication. Often, sys-
tems resulting from such constrained attention feature no
communication, where for instance agents follow predeter-
mined social laws (Goldman & Rosenschein 1994). On
the other hand are systems allowing free communication of
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ther, agents learn to communicate while attempting to max-
imize some global objective, which need not be the specific
one of learning to communicate itself, as opposed to work
in which agents are specifically rewarded for pre-deterchine
“correct” responses to messages (Yanco 1994).

We assume that agents already possess policies of
action—mappings from states to possible actions—and
leave the more general problem of learning how to act at
the same time as learning to interpret messages for future
work. Agents exchange messages, and interpret them by
deciding upon a course of action after considering their con
tents. In our framework, agents presume that others indolve
in a shared cooperative task are communicating information
relevant to that task. In this particular context, agentsdne
to learn a mapping from the speaker’'s messages to their ob-
servations and actions, and then act based on an existing pol
icy. The case of learning to communicate where agents be-
gin with different possible contexts of communication, and
need to determine when one particular context is inappropri



ate, remains for future work.

The next section gives the formal framework of the prob-
lem, using decentralized Markov decision processes. Fol-
lowing that, we analyze some properties of the learning

where agents utilize partially or completely differentsset
messages, and do not fully understand one another, simple
message-passing is not enough. Rather, agents need to learn
how to respond to the messages that are passed between

process, and make an attempt to characterize properties ofthem—in a sense, learning what those messages mean.

stochastic environments that make learning to communicate
possible in the first place. Lastly, we discuss empirical re-
sults based on an implementation of our ideas, and draw
some conclusions.

The Decentralized Learning Framework

We study the learning problem in the contextdafcentral-
ized Markov Decision Process@ernsteiret al. 2002) with
communication, involving a set of agentsg, . . ., a,.

Definition 1 (Dec-MDP-Com). An n-agentdecentralized
MDP with direct communicatiofGoldman & Zilberstein
2004) is given by the tuple

M = <S7 Aa Pv R7 27 02793 07 T>7
with elements as follows:
« Sis a finite set otates with initial states®.
+ A ={A;]| A, is afinite set ofctionsa; for agentw; }.
* P is a transition function giving the probability

P(s'|s,a1,...,a,) of moving from states to states’,
given actionsiy, . .., a,.

* Ris aglobal reward functiongiving the system-wide re-
ward R(s, a1, ...,a,,s) when actionsiy, ..., a, cause
the state-transition fromto s'.

* ¥ = {%,|%; is afinite set omessages; for «; }.

* Oy : UY; — R is acost function giving the cost of
transmission for any message sent.

o = {Q;|; is afinite set obbservations; for o }.

* O is an observation function giving the probability
O(o1,...,0nls,a1,...,a,,s") that each agenty; ob-
serves o; when actionsaq,...,a, cause the state-
transition froms to s’.

* T is thetime-horizon(finite or infinite) of the problem.

We note an important constraint upon the observation
function O, namely that a Dec-MDP-Com (unlike a Dec-
POMDP-Com) isjointly fully-observable That is, the com-
bined observations of the agents fix the global state. Irrothe
words, there exists a mapping : (21 x --- x Q,,) —

S such that ifO(o1,...,0n | $,a1,...,a,,s") iS non-zero,
thenJ(o1,...,0,) = s'. This does not mean that each agent
alone observes the entire state—the problem is genuinely
decentralized—but that the observations of all agents taken
together suffice to determine that state. Section of thiepap
contains an implemented example Dec-MDP-Com. For fur-
ther analysis of the properties of Dec-MDPs, both with com-
munication and without, see (Goldman & Zilberstein 2004).

While this sense of “meaning” is limited, it is not unin-
teresting. In natural-language contexts, of course, thenme
ing and structure of messages can be highly complex, and
greatly varied—but an attempt to solve the problem of me-
chanical communication in natural language is well beyond
the scope of our approach here. However, even where agents
are limited to communicating about such things as their own
basic actions and observations within the framework of a de-
centralized MDP, learning to correlate messages with appro
priate responses can still be very challenging. Thus, when
we discuss meanings here, we relate them strictly to the ac-
tions agents take in response to receiving messages, and oth
erwise leave them unanalyzed.

We represent the degree to which ageptunderstands
agentn; by a correspondence between messages sent,by
and those that; might itself send. As far as; is concerned,
the meaning of some received message is a distribution over
its own possible messages.

Definition 2 (Translation). Let ¥ andX’ be sets of mes-
sages. Atranslation , betweenX: and X’ is a probabil-
ity function over message-pairs: for any messages’,
7(o, o’) is the probability thatr and ¢’ mean the same.
7';’2, is the set of all translations betweErandy’.

An agent translates between its own set of messages and
another by establishing a probabilistic correlation betwe
them. Each agent may in fact need to consider multiple pos-
sible translations between messages; that is, agentsggosse
beliefs regarding which translation might in fact be the-cor
rect one to utilize in any given situation.

Definition 3 (Belief-state). Let agentsa; and a, utilize
message-sets; and Xs, respectively. Abelief-statefor
agento; is a a probability-functiorg; over the set of trans-
Iationsfgijj (i # 7). That s, for any translation between

Y; andX;, 8;(7) is the probability that is correct.

That is, agents maintain beliefs in the form of probability
distributions over translations, which are themselvedpro
ability distributions over message-pairs. Given any péir o
messagesy;, o), an agenty; assigns that pair a likelihood
of having the same meaning, equal to the weighted sum of
their assigned probabilities for each translation coneide
possible; we write3;" (o;, o;) for that overall probability.

B (o o))=Y Bilr)-7(oi, 7)). 1)
7'67';1_‘2]_

In our model, learning to communicate is therefore the
process of systematically updating belief-states witheet

Obviously, where agents use the same messages to mearto translations. Agent; chooses an actiom,, based upon

the same thing, learning to communicate is not a problem.
Rather, optimal linguistic action is a matter of decidimgat
andwhento communicate, if at all, given its costs relative
to the benefits information-sharing might bring. However,

its local observatiom;, any messages received, and the cur-
rent belief-statef;, about how to translate those messages.
The choice ofa;, along with the actions chosen by other
agents, leads to some state-transition, which in turn tesul



in some new observatiom;. This observation then leads

to an update to a new belief-stat#, further affecting how
later messages are translated, and thus influencing future a
tions. The procedure governing the update from beliekstat
B; to B comprises the agentlanguage-modela function
from actions, messages, and observations, to distrilaition
over translations. Such models may be highly complex, and
the prescribed updates can be difficult to compute correctly
especially where the languages are complicated, or the en-
vironment is only partially observable; our ongoing work
considers a formal framework for learning in the latter case
Here we concentrate upon special—but interesting—cases
for which it is much more straightforward to generate the
probabilities in question.

Properties of the Problem

Optimal solution of Dec-MDPs without communication
(or where communication is costly) is generally in-
tractable (Bernsteiret al. 2002; Goldman & Zilberstein
2004). Thus, we consider problems that are reducible to
a more straightforward multiagent extension of the conven-
tional MDP, first introduced by Boutilier (1999).

Definition 4 (MMDP). A multiagent Markov decision pro-
cesds a 5-tuple:

M = (a, A*, S, P, R),
with each element as follows:
1. a={ay,..., o} is aset ofagents
2. A* is the combined set dhdividual actionsfor those
agents; goint actionis ak-tuple (ay, ..., a;) € A* of
actions, one for each agent.
3. Sis a set ofstates
4. P is astate-action transition functigmeturning the prob-
ability P(s, (a1,..., a;), s') that the system moves to
states’, given joint actior{ay, ..., aj) in states.
R : S — Risthereward function

Simply put, an MMDP consists of a set of agents operat-
ing in a fully- and commonly-observed environment; tran-
sitions between states in that environment depend upon the
joint actionsof all of the agents, and a single, common re-
ward is shared by the system as a whole. Given the common
reward-function, and the fact that all agents can obsere th
full system state at any time, an MMDP with either a finite
or infinite time-horizon can be solved as if it were a single-
agent problem, since the value of a state at any point in time
will obey the usual Bellman equations, solvable using stan-
dard iterative methods (Puterman 1994). TDipimal joint
action, (aq, ..., a)*, at any state and timet is that which
maximizes expected future value, and tpimal joint pol-
icy, 7*, is a function taking each state-time pair to an optimal
joint action for that point in the process.

However, while it is possible for individuals to calculate
an optimal joint policy for such a process offlinderiving
the optimal policy is not the same thing iasplementingt.
Unless agents can coordinate their individual actions in ac
tual practice, there is no guarantee that they can always be
sure of following a jointly optimal course of action (sinee i

5.

his model communication between agents is not allowed, or
is unreliable). Boutilier makes this idea precise as foow

Definition 5 (PIO actions). For agentq; in states of
MMDP M at time ¢, action a; is potentially individ-
ually optimal (PIO) iff there exists some joint action
a* = {(a1,...,a;,...,a) thatis optimal fors att.

If each agent in an MMDP has exactly one PIO action at
each state-time pair, then implementing an optimal policy
is straightforward, once calculated: each agent simplggak
its sole optimal action, and the result is an optimal joirit po
icy. However, where agents have multiple PIO actions at any
point, coordination problems may arise, since not all cembi
nations of P1O actions are themselves optimal.

Definition 6 (Coordination problem). MMDP M contains
a coordination problemiff there exists stata, time ¢, and
actionsa;, 1 < i < k such that each,; is PIO, but joint
action{(as, ..., ax) is not optimal.

An example arises, for instance, in a two-agent MMDP
for which agent 1 has available actions, b; and agent
2 has available actions,, b,, and there exists some state-
action pair for which the joint action&, a2) and (b, bs)
are both optimal, but for which neithéd,, b2) nor (b, as)
is optimal. In such a case, an individual agent may be able
to calculate an optimal policy without necessarily beintpab
to reliably implement it, unless there exists some means of
ensuring that the requisite P1O actions “match up.”

In his own work, Boutilier considers various mechanisms
of coordination, and shows how optimal policies of ac-
tion need to take those mechanisms into account. For in-
stance, he considers free communication between agents
over stochastically noisy channels, allowing them to share
information regarding their intended courses of actiom an
points out how an effectively optimal policy will need to
consider the probability of coordination following a noisy
passage of messages. Other mechanisms are considered, and
he shows how dynamic programming can be extended to cal-
culate optimal policies that take into account the statubef
coordination mechanism, at some cost in efficiency.

Unfortunately, the added burden of computing optimal
policies for domains where coordination is difficult is only
part of the story. In many interesting problems we must
deal not only with agents who must coordinate their ac-
tions, but also with instances where each agent can only
view its own local state-space, and the problem is genuinely
decentralized in such a way as to make solving it gener-
ally intractable. As Goldman and Zilberstein (2004) point
out, however, if agents can communicate among themselves
freely, and hence at every time step, it is possible to reduce
many such problems to the much easier one of an MMDP
without coordination problems. If agents convey their own
intended course of action (or can coordinate those actions i
advance), and if their local views can be combined to form
a global view of the system, communication of those local
views and intended actions provides a means of ensuring
that optimal multiagent policies can be enacted.

In some cases, however, there is an additional complica-
tion, namely that agents are not able to communicate in full,
since they do not understand one another. We are interested



in understanding the general features of multiagent deeisi  agents by message$ ando. Then, for any agent;,
processes that allow agents to learn to communicate and so

to optimize their joint actions. As a first step, we concen- P?(0j] 03, B) (2)
trate upon those decentralized problems that can be reduced; e : , ) o

to MMDPs. For such problems, it is possible to compute an ﬁé@i%ggaﬂgﬁzs;ﬁp:ﬂ Eﬁ'ié?_asttg{@%bss?xﬁ;ig/glven
optimal joint policy offline, under the assumption that agen J ‘ v '

can ir! factco_mmunicate all necessary details. Agents can P? (a; |g}1, 6 (3)
then, in certain circumstances, learn to communicate 2o tha _ . ) ) _
such an optimal policy can be implemented. is the probability thaty; will take actiona;, given mes-

We presume that agents in a Dec-MDP-Com possess sagesy and a;’s current belief-state. Finally, we write
a noise-free channel of communication, and that there is maxy (0;)* andmax? (a;)* for the observation and action
an established protocol for sharing messages before ac-maximizing expressions (2) and (3), respectively (i.ee th
tions are taken. While the issue of noisy communication Observation and action that considersnost likelyfor o).
is interesting, it is beyond the scope of what we can deal
with here; instead, we concentrate upon the case where
agents must learn to deal with messages that they clearly
receive, but do not fully understand. Similarly, learning
policies for when and what to communicate is also an in-
teresting area, but not of concern here (for research on
these latter two issues, see (Goldman & Zilberstein 2003, P?(o; |0}, )Tt 4)
2004)). Given these two presumptions then, we examine .

conditions allowing the reduction of a Dec-MDP-Com to a IS the probability, assigned hy;, that agenty; previously
somewhat simpler problem. observed;, given thato; now observes) and the system

receives reward’. Similarly,
Definition 7 (Fully-describable). A Dec-MDP-Com is

Notation2. Let M be ann-agent Dec-MDP-Com. In some
states, at timet, suppose each ageat; observes; and
takes actioru;, causing a transition to staté, with obser-
vations(o}, ..., o)), and reward”’ = R(s, a1,...,an, §)
at timet + 1. Then, for any agent;,

a 1
fully-describableif and only if each agenty; possesses a Pf(ag|of, ') (5)
languagey’; that is sufficient to communicate botta)@ny is the probability thaty; took actiona; given a;'s current
observation it makes, an@l)(any action it takes. observation and the system-reward.
Definition 8 (Freely-describable). A Dec-MDP-Com is Given these notational conventions, we can now give suf-
freely-describabléf and only if the cost of communicating  ficient conditions for a Dec-MDP-Com allowing each of its
any message is 0. agents to learn the language of the others.
Claim 1. A Dec-MDP-Com is equivalent to an MMDP Definition 9 (Suitability). Let M be any fully- and freely-
without coordination problems ifdj it is fully- and freely- describable Dec-MDP-Com in which agents do not share a
describable; andbj agents share a common language. common language. In any stateat timet, let each agent

«; observeo; and take actioru;, communicating both to

Proof: Straightforward. Since a Dec-MDP-Com is jointly  other agents using messagegsando?, and jointly causing
fully-observable, the observations of each agent toget&er a transition to state’.
termine the global state, and it is possible to calculate an  We say thafl/ is suitablefor learning to communicate iff,
optimal joint policy for each such state offline. Thus, agent  for any agentsy; anda;, if 0; # max?(o;)t, then for any
that can freely and fully communicate their observatiors an  time+ > ¢ at whicha; observes); (the same observation
intended actions in a shared language can also implementas at time),
such a policy, without coordination problems. O , ,

Py (oj|of, r")" 1 > P (max(o;) [ of , ") H, (6)
In what follows, we assume that each Dec-MDP-Com we i
deal with is freely- and fully-describable. In solving such i A o(, \t
problems, agents caassumefor the sake of calculating an and similarly fora; 7 max; (a; )",
optimal joint policy offline, that all agents do in fact share Pf(aj | o, r//)t/+1 > pia(m‘gx(aj)t | o, T”)t”rl. (7)
common language, and that all information about observa- i
tions and actions is shared. However, where agents mustin  That is, in a suitable Dec-MDP-Com, suppose agent
fact learn to communicate, this assumption does not agtuall observes); and communicates that fact using mess@@_e
hold true, and so actuéhplementatiorof such policies re- However, agenty;, based on its current belief-staté, in-
quires more cooperation from the environment. Rather, the correctly considers another observationx? (o)t # o
environment must provide enough in the way of observation ,ost likely fora;. In such a case, at any later étate (injclud-
an_d reward th_at agents can update th_eir tra_mslation_s appPro-ing the next one)y,’s resulting observation” and system-
priately over time. In order to make this notion precise, We award:” “correct” the situation: that is, th%y are such that

introduce some notation. at any later stage of the process, whenever they are observed
Notation1. Let M be ann-agent Dec-MDP-Com. In some  o; will consider the actual observatian more likely than
states, at timet, suppose each ageat observesy; and the incorrect one thought most likely before. (And simiarl

intends to take action;, communicating both facts to other ~ for the actioru; taken byc;.)



We stress that the given definition is but a first attempt to(4) «; takes actiona; after all agentscomplete step (3).

isolate conditions sufficient for agents to learn to communi
cate in a decentralized setting, and make no claim that such
conditions are in fact necessary. However, while suitghili

as given is somewhat difficult to formalize precisely, we do
not consider it to be an overly strong or artificial condition
For instance, domains in which agents have no idea what
actions others are taking, but can positively eliminatedéan

dates by observing their immediate effects, can be suitabl 5)

with respect to those actions (given the proper conditians o
communication): the evidence after any action is taken will
eventually eliminate incorrect candidates, while incregs
the probability of the correct action towards eventual cer-
tainty. Similarly, environments in which one agent observe
some state variable a time step before another can be suit-
able with respect to observation, since the latter agent wil
eventually be given positive evidence allowing the determi
nation of the correct observations. Section contains an ex-
ample implementation of a relatively complicated, but stil
suitable, Dec-MDP-Com.

Our prior work (Goldman, Allen, & Zilberstein 2004)
deals with some relatively simple examples of suitable prob
lems, where agents do not need to communicate their ac-
tions, only their observations. In that domain, two agents
work to meet at points in a grid-world environment, follow-
ing a relatively simple procedure, with each acting in turn,
according to the best estimate of the location of the other.

Messages describing each agent’s location are exchanged,

g

and translations of those messages are updated after eac
step, depending upon whether or not the agents do in fact
meet one another. Since agents are certain after checking
some grid-location whether or not the other agent was in fact
at there, the probability that the other observed that ionat

is either 0 or 1, and the suitability of the Dec-MDP-Com fol-
lows immediately. We now give a more general version of
this process, including actions.

Definition 10 (Elementary action protocol). Let s be a

state of Dec-MDP-Com/, at timet, where agenty; ob-

serves,;. Eachq; follows theelementary action protocol
(1) a; communicates; to the others, using message

(2) «; calculates thenost likely observation sequence

0* = <m§x(01)t, ceey Ofy e m:ax(on)t>

andmost likely states* = J(o*). (Recall that/ is the
function from observations to global states, in accord with
joint full observability; see p. 2.)

(3) Proceeding in turny; chooses an action by:
(a) Calculating thenost likely action sub-sequence

*

a = <m(§X(@1)t7 s m(éx(az'—l)t>-

(b) Choosing actiom; such that some joint action,

*
a , Gy Qj41,--

at ={

- n)

maximizes value for likely state* at timet.
(c) Communicating; to the others by messagé.

(Agents choose actions based upon thservationsof

all others, but theactions of only those that precede
them. The reader can confirm that this allows agents who
already understand each other to coordinate optimally,
avoiding the coordination problems Boutilier sketches.
Agents who are still learning the language act in the way
they believemost likelyto be coordinated.)

The state-transition froms to s’ caused by joint ac-
tion{ay, ..., a,) follows, generating new observation se-
quence(o}, ..., o)) and reward" at timet + 1. Agent
«; then updates its belief-state so that for any messages
ando{ received on the prior time step, and any possible
observatiorv; and actioru;, both:

P (0503, BT = PP(oj | o}, )L (8)

PY(aj|0f, BiTY) = Piag | of, r') )

That is, in the agent’s new belief-state, the probability
assigned an observation or action given the most recently
received messages—i.e., threeaningof the messages—is
identical to the probability that the other agent actualbde
that observation or took that action. It is assumed that the
translation of all other messages from each other agent is
adjusted only to account for normalization factors. Sectio
briefly describes the use of a Bayesian Filtering algoritm t
actually accomplish these sorts of updates in practice.

It is important to note that, for the general case of multi-
ent coordination, such a straightforward procedure tis no
necessarily optimal, nor even necessarily close to optimal
As Boutilier points out, correct choice of action in the pres
ence of unreliable or inaccurate communication must con-
sider how each action may affect that communication, along
with the other more immediate rewards to be had. Thus, in
our case, it might sometimes be better for agents to choose
their actions based not simply upon what they thought the
most likely state might be, but also upon how certain ex-
pected outcomes would affect their translations for future
instances of the problem, perhaps trading immediate reward
for expected long-term information value.

As already discussed, however, computing optimal poli-
cies for legitimately decentralized problems is generially
tractable, and so other methods and approximations foe thes
cases are necessary. (Potential problems with attempts to
solve such problems optimally, even where they can be
treated as MMDPs that are not wholly decentralized, are dis-
cussed briefly at the end of Section .) Furthermore, where
the problem is suitable, the elementary action protocol has
the advantage that agents who follow it can eventually come
to communicate clearly, and so act properly.

Claim 2. Given an infinite time-horizon, agents acting ac-
cording to the elementary action protocol in a suitable Dec-
MDP-Com will eventually converge upon a joint policy that
is optimal for the states they encounter from then on.

Proof: The claim follows from suitability. As agents act,
they choose actions based always on the observations and
actions of others that they consider most likely. Since the
problem is suitable, at any later time step the correct such



observations and actions will be more likely than any par-(g) Q: each agenty; can observe its own inflow duct;,

ticular ones previously thought most likely. Furthermore,

along with all pumpg:. and valves)’ that it controls.

since updates of messages proceed directly in accord withy) (O the observation-function takes any state of the system

these probability assignments, or as required for normaliz
tion, once a correct translation of any message is the mos
likely translation, it will remain so for all future time-eps.

and returns the observable portions for each agent.

t(i) T the problem has an infinite time-horizon.

Thus, since the number of possible actions and observations  While the state-space of such a problem can be quite

for any agent is finite by definition, agents will, when given

large, given the number of variables governing inflow and

enough time, choose the correct entries, since these will be system settings, it is still efficiently solvable from a dig

most probable. Agents will then implement a policy that is
optimal from then on, since they are now acting based upon
the actual states and next actions of the problem. [

Empirical Results

To explore the viability of our approach, we implemented
our language-learning protocol for a reasonably complex
Dec-MDP-Com. Each instance of the domain involves two
(2) agents, each in control of a setropumps andn flow-
valves in a factory setting, with parameter&ndm varied

to generate problem instances of different sizes. At each

time step, each agent separately observes fluid entering the

system from one of two different inflow ducts, along with
the pumps and valves under its own control.

The task is then to maximize flow out of the system
through one of several outflow ducts, subject to the con-
straint that the number of ducts be minimized. Accordingly,
reward is directly proportional to outflow amount, minus the

agent, centralized perspective. By taking the point of view
of one agent observing all states globally, and acting iogla
of both agents simultaneously, the problem is solved offline
using typical dynamic-programming means.

Further, the environment is in fact an example of a
suitable Dec-MDP-Com. The problem is both freely-
describable, by the cost-functiof)(and (for the purposes
of solving the problem) fully-describable, as given by tee s
of messages. Furthermore, agents are aware of the over-
all structure of the pumping system, and can observe certain
basic effects of each other’s actions, by observing how many
units of flow are routed through their own observable pumps
and valves. These observations, combined with the total re-
ward allow them to reason backwards to what those actions
may have been, as well as to the total number of units of flow
entering the system through the other agent’s inflow duct.
While certain actions may fail to have the desired effect,
given pump or valve failure, actions never affect the wrong
pump or valve; furthermore, no pump or valve fails perma-

number of ducts used. Probabilistic effects arise because nently. Thus, the observed effect of any action taken by the
each of the pumps and valves is susceptible to variations in giher agent will either completely confirm which action was
throughput, dependent upon whether the particular compo- taken, or give the agent no evidence to update its translatio

nent was used to route flow in the prior time step. Any ex-

of the last message. Taken together, these conditionseensur

cess flow not routed through the system on a given time step tnat incorrect interpretations are eventually eliminatef-

is considered wasted, and is dropped from consideration.
Formally, we specify the problem as a Dec-MDP-Com:

M= <Sv Aa Pv R7 27 CE,Q, 07 T>7
with elements as follows:

(a) S: the state-set is described by flow through the two in-
flow ducts,in; andins, two sets of pumpspi, ..., pL
andp?,...,p2, and two sets of valves;i,... v}, and

rm
v?,...,v2,. Initially, all such flows are set to zero (0).

A: at each time step each agentchooses one action to
control the pumpg:. (on, off, forward, bacK or the valves

v’ (open shud.

P: the transition function directs flow according to ac-
tions taken; however, pumps and valves fail to respond to
commands probabilistically, based on whether or not they
were used in the prior time step.

R: the total reward is given b§in/out) — d, wherein is
the total units of inflowput is the total units of outflow,
andd is the number of outflow ducts used.

3: each agenty; possesses messages corresponding to
each of its possible actions, identifying labels for every
pump or valve in the system, as well as the observed units
of inflow through ductn;.

(f) Cx :the cost of all messages is zero (0).

(b)

(©

(d)

C

vor of correct translations. While this solution requireatth
agents know the overall structure of the domain, this is sim-
ply the same assumption required for usual optimal offline
methods of solving such problems, and so we consider it no
real defect in our method.

In line with the elementary action protocol, agents swap
messages, choose actions based on their current belidfs, an
act, repeating the process to converge towards mutual-under
standing and optimal action. Using their model of the envi-
ronment, they update belief-states using a two-step Bayesi
Filtering algorithm, first projecting possible belief-&a be-
fore acting, then updating those belief-states given the re
sults. This two-step simple update process is adapted from
its applications in robotics (Thruat al. 2001); our prior
work (Goldman, Allen, & Zilberstein 2004) details the al-
gorithm’s use in communication in a simple grid-world set-
ting; the interested reader is directed to that source faemo
on the specifics of the implementation. The experimental
work in this paper expands upon that prior work, by includ-
ing the language of actions, where before agents could only
speak about state-observations, and by extending it to the
more complicated domain presented here.

Agents interact until each learns the language of the
other—achieved when each agemt achievescertainty;
namely a belief-statg; in which, for any message; re-
ceived from the other agent, there exists exactly one messag
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Figure 1: Reward accumulated as language is learned.

o; such that3;" (o;, o;) = 1. In this work, certainty pro-
vides a useful stopping condition, since the domain is one in
which agents do in fact learn all of each other’'s messages in
the course of optimizing action. We are now investigating
cases in which complete certainty is not necessary, as when
agents do not need to learn every part of another’s language
in order to achieve optimal performance, and convergence
actually happens more quickly than where the entire set of
messages is learned.

Our results show the elementary protocol to converge
upon optimal policies in each of our problem-instances.
Time of convergence depends upon the basic size of the

problem, and thus the vocabulary of the agents necessary to

describe all actions and observations, and also upon the fre
guency of certain rare states or actions. As conditions vary
probabilistically, some states in the environment are enco
tered very infrequently, and agents do not have occasion to
learn related terms in the other’s language. By design, we in
sured that all states and actions are eventually encouhtere
current work also investigates cases where agents do not eve
visit some parts of the state-space, and so whole parts of the
language are unnecessary to optimal action.

The most interesting and suggestive results have to do

of the eventually accumulated reward. By the tifdg5 of

the language has been learned, ne@rB00 steps in, things
have improved somewhat, and so2¥; of the reward has
been earned. As time goes on, the rate of accumulation of
reward actually increases to the point that it narrows the ga
considerably, as agents now know much of what they need
to communicate, and spend more time accumulating reward
in already-familiar circumstances, without learning duiryg

new about the language of the other agent. Essentially the
same curves, although differing in their time of convergenc
are exhibited by problem-instances of all sizes.

It is to be stressed that these results are first steps in
the process of dealing with the problem of learning to
communicate in decentralized settings. In particularehe
are presently no ready candidates for comparison between
different algorithms, since the communication problem is
somewhat new. Our present work involves a detailed com-
parison between our method and the sort of offline optimal
solution techniques proposed by (Boutilier 1999). It is our
thought that a major obstacle to the application of thesie opt
mizing methods is the unavoidable blow-up in problem size.
Essentially, such techniques would involve recreating the
original problem in the form of an MDP with a state-space
comprised of a cross-product of the original states witlheac
possible belief-state. Since the number of latter suclkestat
will generally be exponential in the size of the descriptive
language (and thus in the size of the original state-space),
these methods will, it seems, often prove infeasible; thus,
non-optimal methods may be necessary.

Conclusions and Extensions

We have presented learning to communicate in decentral-
ized, multi-agent environments as a challenging problem fo
Al research. Our work makes some first steps toward a for-
mal and systematic treatment of this problem. While solv-
ing decentralized MDPs optimally is generally intractable
we have shown that the presence of effective, free commu-
nication has the potential to make them much easier. Where
communication is not initially possible, however, agents
must learn to interpret one another before they can act-effec
tively. Solving the problem of optimal action in the presenc

with the rates at which agents accumulate reward, relative of language deficits is at least as hard as solving Dec-MDPs
to how much of the language they have learned. Figure 1 jn general; in response, we show a relatively simple proto-
gives one example, for a problem-instance featuring 100 col that is non-optimal, but can allow agents to converge to
vocabulary-items for each agent. The graph shows the per- gptimal policies over time.
centage of total accumulated reward, and total shared vo- ~ Analyzing the problem in the relatively familiar and rigor-
cabulary, at each time step in the process of learning and ous context of MDPs, the definition of suitability presents a
acting in the Dec-MDP-Com. In such a problem, agents first attempt at identifying those characteristics of déadn
converge upon a complete understanding of one another, andized decision problems that allow some of them to be solved
are able to act entirely optimally from then on, in approxi-  effectively. Our current work investigates such propertie
mately 12,000 time steps, involving only a few minutes of  and when they arise in more detail. Further, our experimen-
computing time. tal results show the possibility of effective techniqudeva

As can be seen, the language-learning process (top, dot-ing agents to learn to coordinate and communicate over time.
ted line) proceeds quite steadily. The rate of reward- We continue to investigate and compare other approaches,
accumulation, on the other hand, grows with time. Initially including analysis of the differences between possible op-
language learning outpaces reward gain given that knowl- timal offline techniques and online learning methods. This
edge, as agents still find many actions and observations of opens the door for further study of the various parts of the
others hard to determine. After ab@uB00 time steps, fully problem. Of particular interest is the possibility for apxyir
25% of the language has been learned, but only just 6%er mation, and we are currently interested in quantifyingerad



offs between the effort to learn another’s language in full,
and the marginal increases in utility such effort may bring.
Lastly, we note that the idea of “translations” has appli-
cations outside of the context of agents who begin from a
blank slate with respect to one another’s languages. The ap-
proach we use in our analysis and implementation does not
require that agents begin with the presumption that they do
not know what the other is saying. Rather, agents can begin
from the position of partial, or even presumed total, under-
standing and proceed by checking and updating translations
as they act, adjusting that understanding only as requiyed b
circumstance. Languadearning can also therefore be a
process of languageerification Atrtificial agents equipped
with the ability to check whether their understanding of wvha
is communicated to them matches up with the observed out
comes of their actions will be more resilient, able to catch
errors in their specifications, and even adjust to them.
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