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Abstract

In this thesis, I address the problem of how successful communication systems can

emerge between agents who do not have innate or explicitly transferable meanings, can-

not read the minds of their interlocutors, and are not provided with any feedback about

the communication process. I develop a solution by focusing on the role of meanings

within the framework of language evolution, and on communication through the repeated

inference of meaning.

Much recent work on the evolution of language has concentrated on the emergence of

compositional syntax as the crucial event which marked the genesis of language; all the

experimental models which purport to demonstrate the emergence of syntax, however,

rely on models of communication in which the signals are redundant and which con-

tain pre-defined, structured meaning systems which provide an explicit blueprint against

which the syntactic structure is built. Moreover, the vast majority of such meaning sys-

tems are truly semantic in name only, lacking even the basic semantic characteristics of

sense and reference, and the agents must rely on mind-reading or feedback (or both) in

order to learn how to communicate.

By contrast, at the heart of this thesis is a solution to the signal redundancy paradox based

on the inference of meaning and the disambiguation of potential referents through expo-

sure in multiple contexts. I describe computational models of meaning creation in which

agents independently develop individual conceptual structures based on their own expe-

riences of the environment, and show through experimental simulations that the agents

can use their own individual meanings to communicate with each other about items in

their environment. I demonstrate that the development of successful communication de-

pends to a large extent on the synchronisation of the agents’ conceptual structures, and

that such synchronisation is significantly more likely to occur when the agents use an

intelligent meaning creation strategy which can exploit the structure in the information

in the environment.

iii



Motivated by research into the acquisition of language by children, I go on to explore how

the introduction of specific cognitive and lexical biases affects the level of communicative

success. I show that if the agents are guided by an assumption of mutual exclusivity in

word meanings, they do not need to have such high levels of meaning similarity, and can

instead communicate successfully despite having very divergent conceptual structures.
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CHAPTER 1

Introduction

In the study of language, we embrace the very definition of what it means to

be human � � � (Locke, 1993, p. 4)

1.1 Universality and Diversity

The capacity for using language is not only unique to humans, but is also fundamental

to our understanding of what it means to be human. But what is it that speakers of a

language actually know, and how is this knowledge represented mentally? An important

way of studying such issues is through examining the development of children, exploring

how they develop an understanding of the world around them and acquire the language

of the community in which they are raised.

Children, virtually without exception, acquire language at a very early age; the system of

language they acquire is extremely complicated, and yet they acquire it rapidly, with few

(and relatively predictable) errors, without being taught and with only limited experience

of it. Clearly, to some extent, we are all genetically programmed for language. On the

other hand, the specific languages the child acquires are those languages which they hear

spoken by the people they interact with; equally clearly, there are enormous differences

between the languages of the world. Indeed, there are generally reckoned to be between

6,000 and 7,000 different languages in the world today (Nettle, 1999; Song, 2001), al-

though even this could be an underestimate, depending on where the line between a

language and a dialect is drawn. How can we reconcile the universality of language as

a general, distinctively human phenomenon with the diversity of languages seen around

the world?

1
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The nativist theory of language, initially developed by Chomsky (1965), is concerned

with describing a person’s internal knowledge of their language (I-language), or the

mental instantiation of language; this is distinguished from a person’s actual external

use of the language (E-language), or the behaviour produced by the user in response to

a particular set of circumstances. In order to account both for the universality and rel-

ative ease with which language is acquired, in notable contrast to the non-universality

and relative difficulty in the mastering of other cognitive tasks such as playing music,

nativists suggest that all children are innately specified with a domain-specific1 capacity

to acquire grammar, called Universal Grammar (UG). There are a number of powerful

arguments in favour of a universal, innate blueprint for grammar acquisition put forward

by nativists like Chomsky (1965), Wexler (1991), Pinker (1994), Lightfoot (1999), the

most frequently promoted of which is known as the poverty of the stimulus; this runs,

essentially, as follows:

1. A child is exposed to a set of primary linguistic data (PLD) when it is acquiring

language; this data

� is quantitatively finite;

� is qualitatively relatively inaccurate, containing numerous errors (like slips of

the tongue) in comparison with the I-language which generated it;

� contains only positive examples, so the child receives no evidence of sen-

tences which are not part of the language.

2. All human languages are infinitely expressive, so the child must generalise from

this finite set of data to an infinite set of sentences, and so learn to produce and

understand sentences which it never hears.

3. There are an infinite number of possible languages logically consistent with the

PLD; increasing the number of sentences does not reduce the set of possible lan-

guages (Gold, 1967).

4. Only negative evidence will allow a reduction in the set of possible languages, but

negative evidence does not occur very often, if at all (Bowerman, 1988).

5. Despite this insufficient evidence, the child generalises to its mother tongue, (or

more accurately to a very close approximation of its mother tongue which is com-

prehensible to other speakers).
1Domain-specificity, the idea that this capacity to acquire grammar is specific to language and cannot

be used for any other task, is contrasted with domain-general cognitive processes, which can be used for
different tasks across many domains.
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6. Therefore, there must be some constraints on what the child can learn, some “in-

nate ideas and principles of various kinds that determine the form of the acquired

knowledge in what may be a rather restricted and highly organised way” (Chom-

sky, 1965, p. 48); the child’s strategy for creating their internal grammar is known

as the Language Acquisition Device (LAD).

Under the nativist paradigm, language acquisition can succeed despite the lack of suf-

ficient input, because Universal Grammar constrains the hypothesis space from which

the child chooses. The variation among actual existing languages can be redefined as

making choices from within this hypothesis space of possible human languages, or, as

it is often expressed, setting a finite, innate set of parameters through cultural interac-

tion within their particular community as they acquire language. For instance, if children

are exposed to a language like Swahili, in which objects generally follow their verbs

and adjectives follows nouns, they automatically flick the Head-Ordering parameter to

the head-first setting. On the other hand, if they hear the verbs following objects and

nouns following adjectives, as in Japanese, they flick the parameter to the head-last set-

ting (Pinker, 1994). Linguistic research for nativists can now be centred on discovering

the number and structure of these innately-specified parameters, the default and possible

values which they can take, and the triggers which enable them to be set during language

acquisition.

There are, however, difficulties with this approach, which are not helped by the fact that

there is no consensus whatsoever on how many switchable parameters exist, or even that

the principles and parameter thesis is broadly correct; there are indeed numerous differ-

ent competitor linguistic theories, including, in by no means an exhaustive list: Catego-

rial Grammar (Steedman, 2000); Cognitive Grammar (Langacker, 1987); Head-Driven

Phrase Structure Grammar (Sag & Wasow, 1999); Lexical-Functional Grammar (Bres-

nan, 2001); Radical Construction Grammar (Croft, 2001), Role and Reference Grammar

(Van Valin & LaPolla, 1997); and Word Grammar (Hudson, 1984, 1995). Moreover, de-

spite the attractiveness and simplicity of the triggering parameter-setting account of lan-

guage acquisition, little attempt is made to address the very pertinent questions of how a

child hearing an unfamiliar set of words knows which word is the object and which the

verb, what a linguistic head is, or, on an even more basic level, what verbs and nouns

are. In addition, the ‘all-or-nothing’ approach of changing parameters based on trigger

sentences seems to be clearly at odds with empirical results in the field of language de-

velopment, in which the expected discrete changes in behaviour when a parameter is

switched are simply not seen (Tomasello, 2001a).
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In contrast to the domain-specificity favoured by nativists, empiricists assert that lan-

guage acquisition can be explained through domain-general processes. One of the most

prominent and vociferous amongst those who reject the Chomskyan approach is Samp-

son (1997), who asserts that “biological constraints on language are limited to matters

which are ‘trivial’ because they follow from properties of our speech and sense organs

� � � ” (Sampson, 1997, p. 25). Sampson systematically attacks each of the nativist argu-

ments, including the poverty of the stimulus; he finds that, contrary to assertions made

by nativists, the PLD available to children:

� contains remarkably few disfluencies (in fact, almost none at all) (Newport, Gleit-

man, & Gleitman, 1977);

� does contain evidence which allows children to rule out certain hypotheses (Pullum

& Scholz, 2002);

It is unarguable, however, that the input to the child is finite, and that from this it must

generalise to an infinite set, but this too is not the insurmountable problem it might appear.

Connectionist networks, for instance, have been shown to induce patterns from irregular

input, and to generalise these patterns to novel information, as long as the network fo-

cuses on simple sentences first, which provide it with information about categories and

agreement which it can use to learn the more complex sentences (Elman, 1993).

1.2 The Evolution of Language

The transition between using short, finite communication systems to the capacity for an

infinitely expressive language is, according to Maynard Smith and Szathmáry (1995), the

most recent major transition in the evolutionary history of life on earth, but what this

transition involved is still an open question.

Language as an Organ

In their seminal article which re-ignited much of the recent burgeoning interest in lan-

guage evolution, Pinker and Bloom (1990) argue persuasively that “a specialization for

grammar evolved by a conventional neo-Darwinian process”(Pinker & Bloom, 1990,

p.707), suggesting that humans have evolved an innate, genetically specified module

in the brain, which specifies a formal coding of the principles of Universal Grammar.

In this way, language is embodied like any other bodily organ, while still simultaneously
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being assumed to be somehow resident within the brain, with its precise position and con-

stitution unresolved; more importantly, it is taken, in accordance with the nativist view

outlined above, to be specifically tailored to the acquisition and maintenance of language.

But if we accept that language is expressed through the genes, how did this happen?

Pinker and Bloom (1990) are firmly of the opinion that the selective advantage of the

communicative function of language can explain the evolution of the language faculty

itself:

“Language shows signs of complex design for the communication of propo-

sitional structures, and the only explanation for the origin of organs with

complex design is the process of natural selection.” (Pinker & Bloom, 1990,

p.726)

They argue that although no single mutation could have led to an entire universal gram-

mar, a parent with a primitive grammar
�

could have given birth to a mutant offspring

with a slightly more enhanced grammar
���

, and that such a process could have occurred

in repeated increments until the Universal Grammar humans have today was reached.

If we do accept the existence of a complex language organ, it does seem irresistible to

agree that natural selection must have produced it, and “that the LAD evolved as an adap-

tation to acquisition should be our null hypothesis” (Kirby, 1999, p. 124), although we

are still a long way from explaining the conditions which led to its appearance only in

humans. Jackendoff (2002) has recently tried to flesh out Pinker and Bloom’s position

of incremental evolution in much more detail, by putting forward an ordered set of steps

from primate conceptual structure to modern language through the use of symbols out

of context, the availability of an unlimited vocabulary, combinations and concatenations

of sounds and symbols, hierarchical phrase structure, abstract semantic relationships, the

emergence of grammatical categories, and finally inflectional morphosyntax.

On the other hand, Chomsky (1988), perhaps somewhat surprisingly given his introduc-

tion of the very idea of Universal Grammar, argues, as does Lightfoot (1999), that the role

of natural selection in language evolution is very limited, and that the parts of the brain

necessary for language, despite their supposed linguistic domain-specificity, were reap-

propriated (or exapted) by language after having evolved for a separate, unspecified, cog-

nitive purpose. Others have used similar arguments to argue against a language-specific

learning device itself, arguing that particular physical and cognitive characteristics were

selected for, and that the combination of these somehow kick-started language:
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� Dunbar (1996) suggests that language evolved into a sort of verbal grooming, as a

means of maintaining the same system of reciprocal altruism, as the human group

size increased past the point at which all members could be physically groomed.

� Deacon (1997) argues convincingly that the construction of abstract semantic mod-

els, where symbolic representations are linked to other symbolic representations,

made the cognitive breakthrough which allowed language to follow. Crucially, he

also sees the development of language as instrumental in the continued shaping of

the brain, as they evolved together, each re-inforcing the development of the other.

� Bickerton (1998) argues for a single mutation, one which created a connection in

the brain between the social intelligence needed for a system of reciprocal altruism

(such as that found in apes, and maintained by grooming), and a primitive pro-

tolanguage, and which “led directly to a cascade of consequences that would, in

one rapid and continuous sequence, have transformed protolanguage into language

substantially as we know it today” (Bickerton, 1998, p.353).

� Carstairs-McCarthy (1999) proposes that language is a “by-product of a change in

the anatomy of the vocal tract”, coupled with an “expectation that different vocali-

sations should mean different things” (Carstairs-McCarthy, 1999, p.226).

Language As An Organism

An alternative view to the nativist hypothesis focuses not on the biological manifestation

of grammatical rules in a language organ, but instead on linguistic structures themselves

adapting to fit the brain. This approach has been put forward using various appealing

metaphors: language as an organism (Christiansen, 1994); language as a virus, with its

users as hosts (Deacon, 1997); utterances competing for selection (Croft, 2000). Accord-

ing to all these accounts, it is useful to focus on the fact that languages are made up of

utterances, and that these utterances are being repeatedly used by speakers and under-

stood and recognised by hearers. The two distinct manifestations of language which we

recognise from the Chomskyan account are reconfigured as distinct phases in the life cy-

cle of the language: an internal grammar (I-language) forms the basis for the language’s

expression (E-language), which forms the basis for its subsequent recognition and re-

analysis into another internal grammar (I-language); because of this continual cycle of

expression and re-interpretation, languages can evolve culturally, as well as genetically,

and, other things being equal (such as the relative health of the language speakers, the

size of the population etc.), those languages which can be readily re-interpreted by their

hosts are more likely to survive than those which cannot be.
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Human languages, in this paradigm, have adapted to fit human cognitive structure, be-

cause utterances which are well matched to this structure have thriven, while those which

are not suited have not persisted. An example of a part of an utterance which has not,

in general, persisted, is the past participle ‘thriven’ used in the last sentence; this form

has, through its infrequent use, been all but replaced by the analogically regular ‘thrived’.

Computational models which explain the maintenance of irregularities in terms of their

increased frequency of use, while less-frequently used words must be systematised into a

regular paradigm have been proposed by Hurford (2000), Kirby (2001) and others, while

Kirby (1999) has also explored in detail how both parametric and hierarchical language

universals2 described by Greenberg (1966) can be explained elegantly by focusing on

how processing complexity affects the transmission of language between speaker and

hearer. In a similar fashion, Brighton (2002) shows how compositional syntax is likely to

emerge under the specific circumstances of a complex meaning space structure and the

poverty of the stimulus. Brighton suggests that the poverty of the stimulus, rather than

implying the existence of the LAD, as in the Chomskyan position, is on the contrary ac-

tually a necessary pre-condition for the emergence of complex language, or, as Zuidema

(2003) expresses it: “the poverty of the stimulus solves the poverty of the stimulus.”

1.3 Computer Simulations of Language Evolution

Until recently, nearly all theories on the evolution of language have been based on the

intuitions of their authors, and whilst they have been supported by evidence from a wide

range of fields, they are, to a great extent, essentially unfalsifiable. An alternative strat-

egy, and the one which I use in this thesis, is to build a model of a particular real-world

phenomenon, which will allow the validation or contradiction of these theoretical pre-

dictions. Simulations can be run using the model, and if the behaviour exhibited by the

simulation resembles, to a sufficient extent, the behaviour of the natural phenomenon,

then the model on which the simulation is built can be advanced as a possible expla-

nation for the phenomenon. Moreover, at a deeper level, the systems we are trying to

model are dynamic and complex, with many interactions between variables at different

levels; computational simulations explicitly allow experimenters to probe these different

aspects of a complex system, to discover which factors in the model are the important

explanatory factors which the phenomenon depends on, and which are unimportant for

a particular issue. In particular, intuitive philosophical predictions turn out to be notori-

ously error-prone in this kind of theoretical thought experiment. In this vein, there has
2This technical distinction is made between parametric universals, in which a language having prop-

erty � implies also having property � , and having property � implies having property � , and hierarchical
universals, in which having property � implies having property � , but not necessarily vice versa.
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recently been much effort expended to develop models of the evolution of aspects of

human language. In particular, computational models have been developed which shed

light on the evolution of an innate LAD (Yamauchi, 2001; Turkel, 2002), the emergence

of phonological systems (de Boer, 2001, 2002), lexical and vocabulary development

(Hurford, 1989; Vogt, 2000; Steels & Kaplan, 2002), conceptual development (Steels,

1996b; de Jong, 2000; Belpaeme, 2002), the emergence of syntax (Kirby, 2000, 2001;

Briscoe, 2002), and, more specifically, compositionality (Batali, 2002; Brighton, 2002,

2003; Kirby, 2002; K. Smith, 2002a, 2003).

One of the major focuses of work in this field has been, as mentioned above, the evolu-

tion of syntactic structure, on the grounds that it is the crucial event which marks both

the genesis of language and the defining criterion which separates it from animal com-

munication systems. Kirby (2002), for example, demonstrates that syntax can arise from

unstructured communication systems through the simple ability to create general rules

based on coincidental correspondences between parts of utterances and parts of mean-

ings; the general rules can generalise beyond their input, can generate more utterances

than idiosyncratic rules, and so are replicated in greater numbers in future generations.

A similar account is provided by Batali (2002), whose agents hypothesise mappings be-

tween strings and meanings on the basis of exemplars. Batali’s agents are endowed with

the ability to combine and modify phrases, rather than the ability to generalise rules,

but again advantage is taken of coincidental correspondences between utterances and

meanings to develop syntax. These accounts of how syntax emerged are given theoretic

credence by Wray (1998, 2000), who argues that holistic expressions used in ritualised

social situations would have been reanalysed as having compositional semantics, leading

to syntax via a generalisation mechanism similar to that described by Kirby (2002). In

these accounts, language can clearly be seen as a dynamic, self-organising system (Steels,

1996c), within defined parameters such as a tendency to generalise or to find structure in

phrases.

Despite these exciting findings, however, there are some major problems with the as-

sumptions behind simulations such as these, which the model I describe in this thesis

seeks to overcome. Firstly, the ‘emergent’ syntax develops only because the utterances

in the simulations are explicitly coupled with pre-existing, structured semantic represen-

tations. These semantic representations are already compositional and recursive, and the

agents are endowed with a symbolic grammar, so in retrospect it is no great surprise that

the syntax produced by the agents also turn out to be compositional and recursive, stored

symbolically, and essentially a replica of the semantic representation, as Nehaniv (2000)
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and others have argued. Explanations of the origin of such meanings, and of how they

become associated with the signals, are by contrast a major focus of this thesis.

Secondly, the meanings in such simulations are invariably part of the linguistic trans-

fer between the two communicating agents; as well as hearing an utterance, the agent

is given the meaning to which it corresponds, before it analyses the (coincidental) cor-

respondences. This design feature of the simulations ignores one of the most baffling,

and important features in language acquisition: meanings are clearly not explicitly trans-

ferred between speaker and hearer, and yet children do manage to derive the meanings;

this paradox of signal redundancy, where the transfer of the meaning makes the use of

the signal redundant, is explicitly avoided by my model.

In addition, attempts to develop learnt communication systems frequently involve some

sort of reinforcement learning process (Steels, 1999; de Jong, 2000), which has the

primary role in guiding the learning mechanism. Oliphant (1999) points out, however,

that such error signals, which work well on an evolutionary timescale, are less useful over

an individual’s lifetime where failure to communicate might mean immediate death, and

indeed even the very existence of reliable error signals is questioned by many authors

on child language acquisition (Bloom, 2000). A further aim of this thesis is to explore

the conditions under which communication can emerge without the need for error signals

and feedback.

A major guiding principle behind this thesis is that semantic complexity is a pre-requisite

for the emergence of syntax; indeed it has been hypothesised that the need to commu-

nicate semantically complex propositions has itself been the driving force behind the

development of syntax (Schoenemann, 1999). I argue that the construction of meanings,

and then learning which of these meanings are relevant, are fundamental parts of the

language development process which cannot be overlooked or assumed in investigations

into language evolution.

1.4 Outline of Thesis

In this thesis, therefore, I will present a solution to the problem of the development of

successful communication systems which rely on neither innate nor explicitly transfer-

able meanings, neither on the agents being able to read their interlocutors’ minds, nor on

them receiving feedback about the meaning creation and communication processes, by

focusing on the role of meanings themselves within the framework of language evolution,

and on communication through the inference of meaning.
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Chapter 2: I start by exploring the philosophical nature of meaning, and in particular

the difficulty of describing the meanings of words. Four important issues are dealt

with in this chapter: the sense relationships between meanings; their mental repre-

sentation; their referential grounding; and their acquisition. I explore a number of

the general semantic relationships between meanings which I make use of in the

model described later in the thesis, and investigate competing arguments concern-

ing the mental representation of meanings as categories in the brain. Fundamen-

tally, meanings must be grounded in reality by referring to objects and events in the

environment, although this is seldom acknowledged in language evolution models;

given this, I discuss different theoretical models by which grounded concepts can

be acquired.

Chapter 3: I then confront the crucial problem of lexical acquisition, of how the mean-

ings of words are learnt, starting with the philosophical paradox of the indetermi-

nacy of meaning, then moving on to a detailed discussion of the various cognitive

biases which have been proposed by developmental psychologists and linguists

to get round this paradox while still assuming that meaning is inferred from some-

where; in particular, I discuss the anti-synonymy biases of the Principle of Contrast

and the Mutual Exclusivity Assumption which are then explicitly encoded in the

simulations described in chapter 9.

Chapter 4: The work described in chapters 2 and 3 is then brought together by inves-

tigating in detail the semantic nature of recent simulations of language evolution,

both in terms of the representation and creation of meanings. I show that, al-

though a semantic realm is essential to these experiments as a blueprint on which

an emergent syntactic system can be parasitic, the meaning systems therein lack

the most basic ingredients necessary and are actually semantic in name only. From

the review of the meaning representation and creation processes, I justify the model

which I will use in the experiments in later chapters.

Chapter 5: I describe my model of meaning creation, showing how agents can develop

individual and divergent conceptual structures which are yet grounded in their ex-

periences, and exploring the properties of the model in terms of conceptual devel-

opment and the adequacy of the description of the world which it provides.

Chapter 6: The model is then extended to explore communication between agents un-

der various conditions. Firstly, I discuss communication in the abstract, showing

that the division between public and private knowledge is fundamental to a model
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which tries to avoid the signal redundancy paradox. I show the importance of lex-

ical bidirectionality and of accommodating the hearer in building successful com-

munication systems. The model is then brought together with a description of the

lexicon at the heart of the strategy I adopt, which I call introspective obverter.

Chapter 7: The communication model is then tested thoroughly, and I show that agents’

inference of meaning from context produces remarkably high levels of commu-

nicative success. I then explore the relationship between conceptual similarity and

communicative success, and explain why randomly generated conceptual struc-

tures are so similar to each other in practice. Finally, the Gricean nature of the

agents’ communicative procedure is explored, explaining why the levels of com-

municative success in the simulations are regularly higher than the levels of mean-

ing similarity.

Chapter 8: In this and the following chapter, I explore both the meaning creation and

communicative procedures in much more detail, with comprehensive computa-

tional experiments to explore the impact of cognitive biases and the specific en-

vironmental pressures which allow the agents to ground their conceptual struc-

tures. I show that an intelligent meaning creation strategy can produce very suc-

cessful communication, but its impact is primarily reserved for experiments when

the agents live in a structured world, which the intelligent strategy can exploit to

build relevant conceptual structures, which themselves lead to high rates of com-

municative success.

Chapter 9: Finally, I then link the lexical acquisition process back to the communicative

biases discussed in chapter 3, implementing the mutual exclusivity assumption in

the model, to explore its impact on both meaning similarity and communicative

success. I show that the assumption of mutual exclusivity results in consistently

high levels of communicative success, particularly in a structured world.





CHAPTER 2

Meanings

“Man possesses the ability to construct languages capable of expressing ev-

ery sense, without having any idea how each word has meaning or what its

meaning is � � � ” (Wittgenstein, 1921/2001, section 4.002)

2.1 Introduction

At first glance, Wittgenstein’s assertion that humans use words to express meanings,

but yet have no knowledge of what the meaning of a word is, seems strangely counter-

intuitive. Without knowledge of what words mean, no manipulation of them appears

possible, and it appears that successful communication would be impossible and trying to

communicate would be pointless. Indeed, is it really communication at all, if the speaker

of a sentence does not know the meaning of what he says? To take an analogy with

another field of study, could we be said to be doing mathematics, if we had no knowledge

of what the mathematical symbols we used stood for, and what they signified?

On the other hand, if we do try to define the sense of a word, the heart of its meaning,

we quickly find ourselves in another kind of paradox, because we must rely on using

other words to describe and explain the meanings of the original words which we are

trying to define. We use word forms to communicate, to express meanings, because

meanings appear to be, of themselves, inexpressible. Word forms can be uttered, but

they themselves do not have any meaning of themselves. Meanings and word forms

operate in different mediums of thought and expression, and the links between them,

which underpin language itself, are not only arbitrary, as Saussure (1916) pointed out,

but supported only by social convention and repeated use.

13
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It is clear that the sense of a word can be defined by its relationship to the senses of other

words, and that understanding these relationships holds the key to working out what the

words themselves mean. Many such relationships have been identified by semanticists

(Lyons, 1977; Cruse, 1986); in section 2.2, I will briefly discuss a few of the most im-

portant examples, which I will make use of in my model of unguided meaning creation

which is described in detail in chapter 4. In section 2.3, I explore the problem of categori-

sation, and the heated debate around the nature of the mental representation of categories.

In section 2.4, I look at grounding meanings, and at how innate animal communication

systems can come to be shaped by natural selection, before moving on in section 2.5 to

theories of human concept acquisition, both innatist and empiricist.

2.2 The Nature of Meaning

2.2.1 Semantic Relationships

Hyponymy

Hyponymy describes the relationship between one word and another word which has a

more general meaning. For example, if � is a cat, then � is necessarily also a mammal,

and so the word CAT is a hyponym of MAMMAL, and conversely, MAMMAL is a superor-

dinate of CAT. Hyponymy has two interesting features which have implications for how

meaning may be structured. Firstly, it is by its definition in terms of logical implication

non-symmetrical, so that the converse of the logical statement above (if � is a mammal,

then � is necessarily a cat) does not hold. Secondly, it is also transitive, so that if one

word is the hyponym of a second, which is itself the hyponym of a third, then the first

word is necessarily also a hyponym of the third word. We can see this by considering

that if � is a tabby, then � is a cat. Taken together with our original statement, we know

that if � is a tabby, then � is also a mammal.

Hyponymy, therefore, being both a non-symmetrical and transitive relationship between

words, introduces the notion of hierarchy into our model of meaning, with general terms

at the root of a tree which branches out into many more specific hyponyms, which them-

selves can have further hyponyms, as in figure 2.1. This notion of meaning being struc-

tured in a hierarchical fashion which is represented dendritically provides us with a rel-

atively straightforward, yet powerful way to visualise a potentially infinite number of

meanings from any one particular meaning, and which I shall use in chapter 5 to create
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dog cat horse � � �

mammal

tabby siamese � � �

Figure 2.1: Part of a hierarchical model of meaning based on hyponymy.

a flexible system for dynamic meaning creation, in which I will make use of the no-

tion of hyponymy in terms of generalisation (moving towards the root of the tree) and

specialisation (moving towards the leaves of the tree).

Antonymy

Antonymy describes the relationship between a word and its opposite, and appears to be

one of the most basic of semantic relationships. We may not be too surprised to note,

however, that there are many types of opposition, with subtle differences in the way they

behave. Gradable antonyms, such as WET/DRY, HOT/COLD are words which express

meanings on some sort of relative scale, whereas ungradable binary antonyms, such as

ALIVE/DEAD, MALE/FEMALE, express complementary propositions, which entail the

negation of their opposite proposition. For example, a hot day in Scotland is likely to

be considerably cooler in objective terms than a hot day in Tanzania, yet both are still

relatively hotter than their respective cold days. On the other hand, a dead cat is just as

dead in Europe as it is in Africa, and a cat being dead always implies that it is not alive.

A word is the converse of another if they both refer to the same relationship between

two entities, but the nature of the relationship is reversed, so if � is above � , then � is

necessarily below � .

The important feature which unites all these different relationships under antonymy is

that of dichotomy or binary opposition, of dividing the world up into two complementary

meanings. For our purposes, it is not important whether these complementary meanings

are absolute or relative, only that they divide things into two groups.
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“[B]inary opposition is one of the most important principles governing the

structure of languages; and the most evident manifestation of this principle,

as far as the vocabulary is concerned, is antonymy.” (Lyons, 1977, p.271)

If we apply the notion of dichotomy to the hierarchical tree structure described above

which can represent hyponymy, we can develop a tree structure in which every node

has two co-hyponyms, each of which is the antonym of the other1. A binary branching

structure is preferred because of the importance of binary opposition in the organisa-

tion of language, and because it is simpler both conceptually and computationally than

a tree structure with unlimited branching, yet is still infinitely expressive and contains

a straightforward representation of both hyponymy and antonymy. This characteristic

makes it potentially suitable for an abstract, computational model of meaning, provided

that we recognise that binary branching is not meant to be an exact model of how meaning

is actually structured2.

Synonymy

Synonymy is the simplest of relationships between senses, being the identity relationship,

where the two senses are the same3. Despite the simplicity of the idea behind this rela-

tionship, and despite the fact that speakers can readily produce examples of synonymy in

their language, even the existence of natural synonymy is controversial.

The problem is in the identity relation itself, and how rigidly we want to hold to its def-

inition. If we look for hard synonyms, or words which have the same sense as each

other and are interchangeable in all contexts, then it is extremely difficult to find suitable

candidates. For instance, although in English both ‘freedom’ (of Germanic origin) and

‘liberty’ (of Romance origin) appear to have the same sense, and it is just an accident

of history that both are extant in the modern language, they are not truly interchange-

able. One man’s terrorist could not usually be described as anyone’s liberty fighter. Of

course, ‘freedom’ and ‘liberty’ are indeed soft synonyms which have the same sense in

the vast majority of cases, but they are not always interchangeable. Clark (1987), indeed,

argues persuasively that there are no synonyms at all in natural languages, and that every
1In reality, we cannot say that all co-hyponyms are antonyms of each other, as we can readily produce

trees such as DISABLED, with the hyponyms DEAF, BLIND, etc. which are not mutually exclusive.
2Although the tree in figure 2.1 can be converted into a binary branching tree, it can only be done so by

creating many strange categories such as UNDOG, UNCAT. This, however, does not affect the expressivity
of the binary tree, only the plausibility of some of the categories contained within it.

3Logically, we can consider it a special case of hyponymy, where each term is a hyponym of the other,
and so both logical statements “if � is a � , then � is necessarily a � ” and “if � is a � , then � is necessarily a
� ” are true.
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pair of potential or apparent synonyms reflects a contrast in terms of dialect, register or

connotation.

Returning to the hierarchical tree structure which frugally represents hyponymy and

antonymy, it is straightforward to define synonymy tightly using this system: two words

are synonyms if they correspond to the same point on a particular hierarchical meaning

structure.

2.3 Categorisation

The properties which characterise objects are the foundations on which categorisation is

built. In the real world, there are many different suitable types of property which can

be used to help us perform categorisation, the most obvious of which are likely to be

perceptual categories, particularly those based on sight, such as the shape and size of an

object, as well as its smell and any noises which are associated with it. We shall see in

chapter 3 that there is experimental evidence (Landau, Smith, & Jones, 1988) to show

that children use certain perceptual properties, such as shape, as opposed to others like

texture.

When encountering an object, we compare it to categories which have already been cre-

ated, and decide whether or not the new object is a member of any of the existing cat-

egories, or whether a new category must be created to account for the object. In this

way, categorisation is at its most basic a division of things into two sets: things which

are
�

and things which are not
�

. This dichotomy between
�

and
� �

, which underlies

the important semantic principle of antonymy as described above (Lyons, 1977), is the

basis on which many models of categorisation and meaning have been built, with a clear

distinctive boundary between members of the category and non-members. In this section

we will explore different theories about the nature of categories, and what they are made

up of.

2.3.1 Classical Categorisation

Aristotle (350 B.C./1933) made the distinction between the essence of a thing, made of

the properties which define the category, and its accidents, which are incidental properties

not used in categorisation. The essential properties make up, in this classical view, a set of

necessary and sufficient features to define the category, which makes a clear decision on

category membership. For instance, a square is a closed two-dimensional shape of four
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sides which are equal in length and arranged at right-angles, and the property SQUARE-

NESS is necessarily and sufficiently described by these features. If an object does not

have four sides, is not closed and two-dimensional, the sides are not equal in length or

not arranged at right-angles, then it is necessarily not a square. If an object does have

four sides which are equal in length and arranged at right-angles, and is two-dimensional

and closed, then it necessarily is a square. Other features, such as the colour of the ob-

ject, what it smells like, whether it appears and disappears from view, are unimportant

in deciding whether it is a square; the above properties are sufficient for use to make an

accurate decision.

Classical categorisation appears straightforward, elegant and plausible, and is very good

at providing definitions in particular fields, such as mathematics (as we have already

seen), family relations (your sister is a female who has the same parents as you), and law

(theft is the dishonest appropriation of property belonging to another with the intention

of depriving that person permanently of it). All these fields are to some degree technical

fields, in which strict definitions are extremely important, although arguably not always

agreed upon, particularly in the case of legal categories, and these concepts which are

well served by classical categorisation are known as nominal kind concepts (Schwartz,

1980).

In contrast, classical categorisation turns out to be difficult to use in the definition of

natural kinds. For instance, all English speakers understand the category DOG, and un-

derstand that dogs are different from cats, horses and pigs. However, it is notoriously

difficult to come up with a classical definition of a dog. If we observe dogs, and come up

with a description based on their perceptible features, we could start with shape, colour

and texture. But given the massive variation even in terms of these features of objects

which we would categorise as dogs, it is not clear to see how any categorisation based

on the intersection of these features could clearly divide things into dogs and non-dogs,

nor is it easy to see which other features should be added to the list in order for the cat-

egorisation to be any more successful. On the other hand, natural kinds such as dogs

are clearly defined to some extent by their perceptual features, and also by more abstract

features which may correspond to their actions and behaviour, for instance barking and

chasing their tails. We have run into what Wittgenstein (1953) called the vanishing inter-

sections problem. Wittgenstein failed in his attempt to created a feature-based definition

for GAME, and concluded that there was no combination of features which all games

had in common. Instead, however, he proposed that different examples of games were

actually related by having what he called ‘family resemblances’ to each other.



2.3. CATEGORISATION 19

2.3.2 Prototype Categorisation

Other investigators have since strengthened Wittgenstein’s findings about category mem-

bership on the grounds of family resemblance. Rosch (1973) famously showed that cat-

egory membership is in fact graded or fuzzy rather than all-or-nothing, and also that

people are happy to think of some things as better examples of a category than others.

For instance, subjects were quicker to classify a robin as a bird than a duck, and a table

more readily than a stool as a piece of furniture.

Further investigations by Labov (1973) showed that subjects did indeed make use of

features to define categories on man-made artefacts, but that these were not necessarily

just perceptual physical features inherent in the objects, rather they could also be derived

by the language user, such as the presumed purpose of the object4, and projected back

onto the object. For example, subjects were more likely to categorise an object as a cup if

it contained coffee, but would categorise the same object as a bowl if it contained mashed

potatoes. Importantly, no one attribute is decisive in terms of category membership,

but its presence simply increases the probability that the object will be categorised in a

particular way. We can see this also with natural kinds, where even a central attribute

of birds, namely the ability to fly, can be overridden by the presence of enough other

features, so that ostriches and penguins are still included as members of the category

BIRD.

Under this theory, a prototype refers to the best representative member of the category,

and the category membership function is more reminiscent of a probabilistic view or a

weighted sum of properties rather than the straightforward combination of binary features

in the classical view. Another way of looking at the prototypical view of categorisation is

in terms of exemplars corresponding to particular, prototypical, instances of the category,

against which prospective members are measured for similarity, again according to some

function which weights the relevant properties. Prototype categorisation seems to work

well not only for natural kind concepts, but also for artefact concepts such as furniture,

described by Rosch and Mervis (1975), and also moral concepts such as ‘kindness’.

Promising as the prototype view of categorisation is, it also has its own difficulties. For

instance, we appear to make use of prototypes as a model for categorisation even when the

categories are clear and distinct. In addition, an important feature of meaning is the prop-

erty of compositionality, where the meaning of the whole is made up of some function of

the meanings of the parts. The existence of compositionality is one of the distinguishing
4Remember that these objects are all artefacts, and so it is reasonable to assume that there is some

purpose behind their creation.
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features of human language, which explains both its productivity and its systematicity,

and yet prototype concepts can’t apparently easily be composed into complex concepts.

Inappropriate Prototypes

Some nominal kind categories, as we have seen, do have a straightforward classical de-

scription in terms of necessary and sufficient features, particular geometric and other

scientific categories such as triangle or parallelogram, yet equally we can say without

any difficulty that some triangles are more prototypical than others.

Most interestingly, Armstrong et al. (1983) used Rosch (1973)’s methods of judging cat-

egory membership to investigate odd and even numbers. Bizarrely, given the objective

scientific definitions of ‘prime number’, and of the even more familiar ‘odd number’ and

‘even number’, together with the distinct and well-understood membership criteria for

these categories, Armstrong et al. found, for instance, that � is rated a better odd number

than ����� , and a better prime number than � . Even concepts which can be easily defined

by necessary and sufficient features, therefore, also have prototype structure which would

seem to be redundant.

Similarly, fuzzy membership of categories is problematic. Although we can understand

why robins are considered ‘better’ birds than ducks or ostriches, and readily agree that

robins are more central to the category, nobody would actually agree that ostriches are not

birds. There is still a distinct, classical-like boundary between birds and non-birds, and

there is no debate about which side of this boundary ostriches fall, whereas a true fuzzy or

vague boundary would surely lead to differences of opinion about category membership.

Non-compositional Prototypes

Fodor (1998a) attacks the whole prototype-based philosophy of meaning because of their

non-compositionality. One of the most interesting properties of human language is com-

positionality, the fact that each utterance in the language is composed of parts, and the

meaning of the whole utterance is given by the meanings of the parts together with the

way in which the parts are put together. It would seem that any theory of meaning must

be able to account for the compositionality of language, yet Fodor claims that no proto-

types exist for composite concepts, and demonstrates this with two problems in particular,

which he terms the uncat problem and the pet fish problem respectively.
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Firstly, he considers the complex concept NOT A CAT, which is both composed of primi-

tive concepts, each of which has prototypes, and also has satisfiable membership condi-

tions. Despite this, Fodor argues that there is no prototype for the concept NOT A CAT,

nothing which UNCATS have in common except that they do not fall into the category

CAT. He goes on to say that UNCAT can only be defined logically, as part of some theory

of categorisation which includes logical operators and operands, and the means to put

them together. There are of course an infinite number of such logical complex concepts,

made up not only of negations, but also disjunctions TREE OR CAT and implications CAT

IF TREE. It is worth noting, however, that our sketched model of meaning based on bi-

nary opposition, on dividing the world up into two complementary meanings, has logical

negation built into it, so that the definition of any word also provides a straightforward

way to get to the definition of its complement.

There is something artificial and frankly weird about the proposed logical concepts NOT

A CAT, CAT IF TREE and others, which might lead us not to expect that there should be

prototypes of them. Having said that, it may not be strictly true that there is no proto-

typical UNCAT, as illustrated by the following exchange from the television programme

Black Adder the Third, when Edmund and Baldrick are attempting to re-write Samuel

Johnson’s dictionary, which they have accidentally burnt (Curtis & Elton, 1987):

Edmund: “And your definition of ‘dog’ is � � � ?”

Baldrick: “Not a cat.”

Baldrick’s definition is of course not very accurate, but it does capture one crucial part of

what being a dog is about. The set of features making up a prototypical dog does seem to

include something like ‘not a cat’, and this accounts for a large part of the humour in the

above exchange. Certainly in terms of word association, if people are asked to provide an

example of a typical something which is ‘not a cat’, it is very plausible that a large number

will answer ‘dog’. It seems likely, however, that ‘uncat’, and conversely ‘undog’ are

exceptional examples, bound up in their close relationship to human experiences. Cats

and dogs share many syntagmatically normal patterns (they occur in the same position

in the same kind of sentences) and this leads to them having a greater semantic affinity

than between two randomly-chosen nouns (Cruse, 1986). In addition, of course, they

constitute a commonly formed pair, not only in semantic contexts where they both appear

as prototypical pets, but even in fossilised lexical phrases, such as ‘it’s raining cats and

dogs’. This aside, Fodor’s point still stands in general, as it is unlikely that there would

be much of a consensus on what constitutes a prototypical ‘unladder’.
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The second problem raised by Fodor (1998a) is the concept of a ‘pet fish’, which is,

on the face of it, composed straightforwardly out of the intersection of two concepts, or

the overlap between being a pet and being a fish. In terms of prototypes, however, this

compositionality also appears to break down; although we may agree that cats and dogs

are prototypical pets, and trout or salmon are prototypical fish, there is no obvious way to

convert these prototypes into the prototypical pet fish, which would likely be something

like a goldfish. Furthermore, the features of this complex prototype doesn’t seem to be

constructed from the features of the simple prototypes. The features of a prototypical pet

fish might be that it is small, brightly-coloured, lives in a transparent bowl and the like.

None of these features would appear anywhere in a list of features describing either a

prototype pet, or a prototype fish.

2.3.3 Naïve Essentialism and the Theory Theory

So both the classical view of necessary and sufficient features, and the prototype view of

fuzzy membership and measure of typicality are elegant in some respects and problematic

in others. Both kinds of categorisation seem to be used in different circumstances, as

some categories have a straightforward classical definition, while others fall foul of the

vanishing intersections difficulty and can only be defined in terms of prototypes.

Keil (1992) tries to square this circle by saying that there are different kinds of concepts,

and the way in which concepts are represented changes as we develop through childhood.

The two broad classes of things are nominal kinds, which have defining features, as in

the classical categorisation system, and natural kinds, which are more inclined to have

characteristic features, as in the prototype theory. Crucially, for Keil, concepts are em-

bedded in theories, leading to his ideas being labelled the ‘theory theory’. Bloom (2000)

takes this idea further, by suggesting that categorisation originates from a child’s naïve

reasoning about the world, which is bootstrapped by feature similarity measures and the

correlation of particular features in the world, but then expanded on through learning

from interaction with the world, as the child builds explanatory models, or theories, of

how the world works. This naïve essentialism occurs as we notice the similarities of

properties and actions on objects, and try to rationalise them, concluding that there must

be an underlying, imperceptible property, a feature which does explicitly define mem-

bership of the category. The theory theory differs from prototype theory because the

features used are not just those which are perceptible, and categorisation is not based on

some weighted measure of similarity, but instead the features include essence relation-

ships which explain occurrences and correlations in the world.
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There appears to be some potential circularity involved in defining a category in terms

of an imperceptible property which exists only to define the category, and it begs the

questions of which theories (from an infinite set of possible theories about the world) are

actually entertained by the categorising child, why only those theories, and how decisions

between the theories are made. On the other hand, appealing to a property which defines

the essence of the object does account for the shift in conceptual development from using

characteristic features based on perception to using defining features based on essence,

known as the characteristic-to-defining (C-D) shift.

Keil (1992), for instance, experiments with children using cases where objects of nat-

ural kinds are outwardly transformed, but essentially (in their essence) unchanged. He

presents an imaginary raccoon which has been dyed black, with a white stripe down its

back, and implanted with a sac of smelly odour, so that it looks and behaves like a skunk,

even a prototypical skunk. Interestingly, younger children categorise the animal as a

skunk, relying on the characteristic features with which they have been presented. Older

children, on the other hand, insist that the animal is still a raccoon, relying on ‘essential’

features to make a decision, even though the children are only presented with character-

istic features. On further questioning about why the animal is a raccoon despite all that

has happened to it, the older children insist that, because it is alive, its essence cannot be

changed.

Furthermore, Keil (1992) found that this dramatic developmental shift in children is grad-

ual and occurs at different times for different types of concepts, even into adulthood, as

opposed to Vygotsky (1934/1986)’s earlier assertion that there was a universal develop-

mental shift across all types of concepts, from the child’s use of exemplars to the adult’s

use of definitions. It is also claimed that this kind of C-D shift is used more generally, in

that we are likely to use characteristic features to make an educated guess at categorising

an object, though if forced to make a final decision we would insist on waiting until the

defining features were known.

It appears also to be true that as we collect information about the world and investigate

more properties of the objects in the world, we can and do revise our decisions about cat-

egory membership. This occurs not just on the timescale of an individual’s lifetime, but

over longer timescales, as the collective knowledge of a community grows and changes.

For instance, Quine (1969) gives the example of fish, which would have included, until

recent scientific discoveries, whales and dolphins amongst their members. Many such

cultural categories recur across different languages, and indeed all language communi-

ties structure their thought about plants and animals. Many of these taxonomies are made

up of essence-based species-like groupings and rankings of groups, which often do not
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bear any great resemblance to the current Western scientific taxonomies (Atran, 1998),

yet others are classified according to how the animals and plants fit into the lives of

the people. In the Kalam language spoken in Papua New Guinea, for example, animals

are divided into many groups, including kopyak, or rats and mice found near homesteads

which are considered dirty and disease-carrying; as, including frogs and some small mar-

supials and rodents; yakt, which consists of flying birds and bats, and kmn, a generic word

for all marsupials and rodents, excluding dogs, pigs and mammals in the other categories

mentioned (Pawley, 2001).

On the other hand, Western scientific taxonomies are often ignored by the general pop-

ulace, even if they are scientifically accepted and uncontroversial. For instance, Dupré

(1983) claims that there is no scientific distinction between onions, garlic and lilies, as

they are all part of the same family liliaceae5. Despite this botanical similarity, Dupré

also is quite correct in emphasising, however, that there is a substantial difference in

most Western cultures between sending someone a gift of white flowers and a set of

onions. Even if there is no scientific basis for a distinction to be made between lilies

and onions, or between small marsupials and larger marsupials, we can find numerous

examples where humans create essence-based folk distinctions between groupings which

are culturally important.

Keil (1992) concludes that the creation, modification and entrenchment of theory-based

categorisation is used even by very small children, who despite the C-D shift, do not

categorise solely on the basis of perceptible features. Ontological judgements about what

kind of object a thing is become the basis for the theories we create to explain what

features might be necessary to distinguish objects of that kind.

2.4 A Web of Meaning

As we have already briefly discussed, if asked what a word ‘means’, we naturally turn to

other words, with which we try to paraphrase our target word, to make it clearer by the

use of more intelligible words. Even this straightforward task, the clarification of words’

meanings through other words, however, is much more difficult than might initially be

imagined. The following definition of ‘sneeze’ is taken from the Oxford English Dictio-

nary (OED Online http://oed.com/cgi/entry/00229097) (Simpson & Weiner, 1989):
5Actually, it is rather strange to say that there is no scientific distinction; although in the same family,

if we go down a level of classification, onions and garlic on the one hand are in the genus allium, while
lilies are in the genus lilium. Dupré’s point that non-botanists do not think of them as related still stands,
however.
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sneeze, v. To drive or emit air or breath suddenly through the nose by an

involuntary and convulsive or spasmodic action, accompanied by a charac-

teristic sound.

I suggest that it would be quite surprising if very many speakers of English would be

any the wiser if they were reading this definition in a state of ignorance, trying to un-

derstand what ‘sneeze’ meant. Many of the words used in the definition (e.g. con-

vulsive, spasmodic, involuntary, emit) are much less familiar and therefore probably

less intelligible than ‘sneeze’ itself. On looking up ‘convulsive’, we find it defined

only as ‘characterized by convulsion’, which is itself defined as follows (OED Online

http://oed.com/cgi/entry/00049329) (Simpson & Weiner, 1989):

convulsion, n. (usually plural) an affectation marked by involuntary contrac-

tions or spasms of the muscles � � � ,

which refers back in a circular fashion to derivatives of two of the less familiar words

(involuntary, spasm) in the original definition of ‘sneeze’. Not only are the words used

more confusing than clarificatory, but certain parts of the definition rely on the user under-

standing the target word in the first place in order to make any sense at all. The ignorant

reader of the first definition, for example, is told only that a sneeze is accompanied by ‘a

characteristic sound’, but is given no details at all as to the nature of this sound, or how

to recognise it.

Goddard (1998) gives many similar examples of circular definitions found in all mono-

lingual dictionaries, where one word is explained in terms of another word, which is in

turn explained in terms of the first word. Sometimes these chains are longer than two

words, but in the end they are inevitable, if we assume, as is generally the case, that the

purpose of dictionaries is to try to describe every word in a language. It should be clear

that this is an impossible task without circularity.

An alternative to circularity would be to relax the aim of describing every word of a lan-

guage in a dictionary, and instead to leave a core of undefined fundamental words, whose

meaning is assumed and which can then form the building blocks for other definitions in

the dictionaries. Of course, we would like the number of words in this undefined core

to be as small as possible, yet expressive enough that all other words can be defined in

terms of only these words and others defined from them. Wierzbicka (1996) has de-

veloped to this end a universal natural semantic metalanguage from a universal list of

semantic primes, the exact composition of which is still under debate and revision, but
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certainly including primes such as you, the same, good, below, because, a long time. It is

claimed that the simplest sense of all these words or phrases are lexically universal and

can therefore be matched across every human language by either a word, a phrase or a

bound morpheme.

However, many people are sceptical of attempts like Wierzbicka’s to find universal se-

mantic primes, and we shall see later, in chapter 3, that in certain well-defined semantic

domains, such as the organisation of spatial relationships, which has been studied cross-

linguistically at great depth, it is very difficult to find any common ground between all

languages, even those which are closely related to each other.

2.4.1 Entering the Web

Meanings, therefore, exist in a complicated web, where each meaning is related to, and

connected to, many others. The connections between the nodes on this web correspond

to different kinds of semantic relationship. As previously mentioned, the fundamental

problem in trying to work out what utterances mean is that the word forms themselves

don’t appear to have an intrinsic meaning and exist in a different medium to that of mean-

ing. If we assume that a word token (‘mortgage’, for example) is inherently meaningless,

how can rephrasing it in terms of other meaningless symbols (‘loan’,‘interest’, etc.) ex-

plain the meaning to us? We are just moving around our web of meaning in circles, and

although we can do this effortlessly, as popular word association games show, it does

not help us to work out how we get into the web in the first place, so that we can be-

gin to forge the links between words and meanings. It seems that there are two obvious

possibilities:

1. either (some of) the web of meaning is innate and already in our brains, so we don’t

need to get into it;

2. or (some of) the meanings are grounded somewhere in the real world.

2.4.2 Innate Meanings in Animals

The predictability of the environment in which an animal has evolved, and the repre-

sentation of that environment which it has found useful over an evolutionary timescale

would seem to provide an initial starting point to investigate whether it is plausible that

meanings could be innate. After all, every animate creature has to have some kind of
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Predator Sound Response

Snake Chutter cluster together and stare into grass
Eagle Cough run into bushes for cover
Leopard Bark/Chirp run up into trees to ends of branches

Table 2.1: Vervet Monkey Calls and Responses (after Cheney and Seyfarth).

model of the world and things they encounter in it, whether they are born with this model

or build it themselves.

Bickerton (1990) reports experiments in which some monkeys, raised in isolation, show

signs of alarm when they first come into the vicinity of anything which bears some resem-

blance to a snake, strongly suggesting that they have an innate representation of snakes.

It is clear why such an adaption would be useful from an evolutionary point of view:

other things being equal, baby monkeys who did not need to learn to avoid snakes would

be more likely to survive and reproduce their genes than those who had to discover the

danger from experience and ran the severe risk of being killed. Could an innate repre-

sentation system such as clearly exists in these monkeys be the basis for the conceptual

system on which human language is built?

One of the most famous studies of non-human communication systems was made by

Cheney and Seyfarth (1990) in their study of vervet monkeys referred to by Bickerton

above. Cheney and Seyfarth discovered that the monkeys make different calls in response

to different predators. The vervets have three main groups of predators: snakes, eagles

and leopards and other cats. On seeing a predator, the monkeys emit a particular cry,

which alerts the rest of the group. Crucially, the vervets’ escape strategy needs to be

different for each predator, and they do indeed react differently to each signal to evade

the predator, as shown in table 2.1. The monkeys clearly have some kind of representation

of each of their predators, and they also seem to use arbitrary calls which stand for these

representations. The alarm calls could be called signals, which mean ‘snake’, ‘eagle’

and ‘leopard’. Alternatively, we might like to give the calls less noun-like meanings, and

instead say that they mean holistic expressions such as ‘cluster together and look in the

grass!’, ‘run for a bush!’ and ‘run for the end of a branch!’.

Furthermore, Cheney and Seyfarth claim that while the representation is innate, it is

also tuned by experience. Young vervet monkeys make the same calls as the adults,

although initially they bark whenever anything is approaching on foot, and cough when

large leaves fall from the sky. Only later do they narrow down the range of ‘meanings’
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which are appropriate to each call. From a more sceptical point of view, Budiansky

(1998) points out that youngsters making errors will stand out to observers, while it is

difficult to observe them making the correct call, simply by sheer weight of numbers;

moreover, when a real predator arises, it is more likely that it will be an adult who first

notices the intrusion and sounds the alarm.

Similar phenomena have been noted in other animals, who also make different calls to

respond to different situations. Morton and Page (1992) describe how ground squirrels

have two main predators: birds of prey like hawks and mammals like badgers, which

rely on stealth to catch the squirrels. In the same way as the vervets, ground squirrels

need different strategies for avoiding their predators: for badgers, they need only to stand

tall, displaying that the predator has been spotted, but for hawks they need to dash for

cover as quickly as possible. As we might expect, the squirrels also have different calls to

respond to each of these predators, and these calls have been therefore been interpreted

as meaning ‘hawk’ and ‘badger’.

Indeed, animal calls have often been taken as proof of representational capacity (Cheney

& Seyfarth, 1990; Schoenemann, 1999), though this is not uncontroversial. There are, in

fact, qualitative differences between the animal systems and human systems. An impor-

tant difference is that animals do not use the calls without the predators being present

(Burling, 1993), nor without an audience of other conspecifics (Cheney & Seyfarth,

1990). The animals’ use of signals, therefore, could be profitably compared to humans

using the signal of a sneeze to symbolise pepper. Whenever our noses come in close

contact to pepper, we sneeze, alerting others that there is pepper in the vicinity. But

sneezing is involuntary and cannot be controlled, so we cannot refer to pepper by sneez-

ing when it is not there. Likewise, the vervet and ground squirrel calls are a reflexive

response to certain conditions in the environment. Budiansky (1998) points out that the

ground squirrel’s ‘hawk’ call can just as easily be interpreted as an evolved mechanism

for confusing the hawk; the calls interfere with the attacking hawk’s locating of its prey.

Hawks are generally very good at locating the source of a call, pinpointing it almost in-

stantaneously, but the appropriate ground squirrel calls actually make the hawk look 90

degrees in the wrong direction, the hawk’s temporary confusion giving the squirrel vital

seconds to make its escape.

Furthermore, Budiansky makes the important point that giving an alarm call when you

are alone just draws attention to yourself, setting yourself up to be killed, but in the com-

pany of others you can use the call to recruit others to repel the predator by mobbing (as

the vervets do with snakes), or to create pandemonium by all running for cover at once,

thus making your own escape less conspicuous (as the vervets do with both eagles and
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leopards, but to different destinations). The fact that vervet monkey calls are only used in

these circumstances, in the presence of both the predator and an audience, strongly sug-

gests that the vervets’ concept of ‘eagle’ is only brought to mind, as it were, by sensory

recognition, rather than by any process which we might term thinking about eagles.

To conclude, then, vervet monkeys, ground squirrels, and other animals do indeed appear

to have evolved a strategy for predator avoidance which involves alerting other vervet

monkeys, but it isn’t a system for communicating ideas, in contrast to human language.

One vervet monkey is not trying to communicate the idea of EAGLE to another one, like

English speakers do when they use the word eagle or Hungarian speakers with the word

sas, but instead the first monkey is automatically reacting to the sight of the predator,

and the second monkey is, in turn, automatically reacting to the sound the first monkey

makes. On the other hand, vervet monkeys certainly do seem to have an innate repre-

sentational system. Given the evolutionary development of humans and monkeys from

a common ancestor, and the massive sharing of genetical material, could some kind of

innate representational system be present in humans?

2.5 Human Concept Acquisition

There is, however, an obvious difficulty in the size of the human representational system

of meaning. We can accept that the vervets calls are innate, and even theorise plausibly

about the origin of their representations through basic evolutionary principles of predator

avoidance; the human representational capacity, on the other hand, is enormous. Explain-

ing the existence of each of this vast set of human concepts is impossible, yet even if there

were a finite limit to our capacity, it would be undesirable to go through each concept in

turn, and finding a suitable explanation for its existence; instead, it is the capacity for

concept acquisition itself which must be explained.

The origin of meaning has been debated for many centuries, and the crucial dichotomy on

which the debate hinges is the problem of concept acquisition, or how we come to know

what we know. As we saw in chapter 1 with relation to theories of the nature of language,

the two sides of this somewhat rancorous debate are known as nativism and empiricism.

Nativists believe that concepts are somehow genetically-determined, and are acquired by

being triggered by experience, while empiricists believe that they are created inductively,

on the basis of learning through experience, by forming and testing hypotheses about

category membership.
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2.5.1 Nativism

One of the most plausible arguments for the innateness of meaning is the apparent inter-

translatability of all human languages. For instance, the words woman, donna and nő all

have the same meaning, and can be directly replaced with each other when translating

between English, Italian and Hungarian. It is arguable that all concepts can be trans-

lated into identical concepts in other human languages. And yet, even though this claim

appears reasonable, it massively underestimates the richness of human language. Every

language encodes untranslatable concepts, which only ‘make sense’ in the particular cul-

tural setting in which the language was born. We have already seen how Kalam-speakers

linguistically classify the fauna in their surroundings, yet can we really come up with a

satisfactory English or Swahili translation of a Kalam word like kmn, without resorting

to an enormous explanatory paraphrase, or, worse, a list of all the animals which are cov-

ered by the word and another list of those which are excluded? Goddard and Wierzbicka

(1994) demonstrate persuasively, and arguably at odds with their hunt for the universal

semantic primes which they believe all meanings can be decomposed into, that this prob-

lem is not just one of translation, but also of the ease by which particular thoughts are

available in particular languages:

“ � � � thoughts related to [Russian] duša, for example, can be formulated

in English only with great difficulty and at the cost of cognitive fluency,

whereas in Russian they can be formulated more or less effortlessly.” (God-

dard & Wierzbicka, 1994, p. 59)

We will see in chapter 3, that, at the very least, it is undeniable that the ways in which

languages divide up the available semantic space differ greatly, and that many concepts

which appear initially to be plausible primes are not used at all by speakers of some

languages.

Fodor (1975, 1998a), one of the strongest proponents of nativism, argues against empiri-

cist claims by means of what he amusingly calls the ‘Standard Argument’. Firstly, he

assumes that most lexical concepts6 have no internal structure. If concept learning is an

empirical process, then in order to create the concept, the learner needs to formulate and

modify a hypothesis about category membership. Fodor concedes that this is possible
6Fodor (1998a) uses ‘lexical concept’ to refer to a concept expressed as a word rather than a phrase.

This distinction between words and phrases is not particularly useful, especially if it is based solely on data
from one language. Wierzbicka (1996) shows how many Australian languages, for example, use a suffix
to express a concept which would need a whole phrase such as for the sake of in English.
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for categories which have easy classical definitions, like BACHELOR, which, he assumes,

expresses the same concept as that of UNMARRIED and MALE7. But, he argues, it is im-

possible to learn primitive, unstructured concepts this way. Essentially, it is impossible

to form a hypothesis about the meaning of a concept like RED, without using the concept

itself in the formation of the hypothesis. This clearly falls into a circular argument, as

we must presuppose the availability of a concept in the explanation of how that concept

is acquired. Primitive categories, therefore, cannot be learnt and must be explained in

some other way. This point is accepted by many, indeed Jackendoff (1990) proposes that

we are born with a set of primitive concepts, and the means to combine these concepts

to form an infinite set of complex concepts. Fodor’s main point, however, is not just that

primitive concepts are unlearnable, but that most concepts are unstructed, primitive, and

therefore unlearnable.

Radical Concept Nativism

This theory of massive innateness, or radical concept nativism is controversial, to say

the least, as it requires that all primitive concepts are innate. Given that Fodor (1998a)’s

definition of a primitive concept is so broad and all encompassing, we are left with the

frankly bizarre conclusion that even concepts like MODEM and QUARK are innate. Even

worse, we can of course invent new names for objects and actions at will, and yet Fodor

appears to believe that there is some limit to this ability, that at some point our potential

stock of names will be exhausted. If this has not stretched plausibility to breaking point,

then we find ourselves, from an evolutionary perspective, back in a situation where we

need to explain the existence of each and every concept in turn, unless we can find a

reasonable story for the general acquisition of concepts. Although Fodor (1998b) is

critical of evolutionary explanations for these kind of phenomena, he is well aware of the

general unpalatability of radical concept nativism, and so develops a concept acquisition

method which is not based on learning through rational hypothesis generation and testing,

but is instead ‘brute-causal’, and based on what Fodor terms triggering.

Although a nativist account might seek to downplay the role of experience in concept

acqusition, this is not how Fodor (1998a) views things. Indeed, in his earlier work on

the language of thought (Fodor, 1975), he emphasises that expressions have extensional

semantic properties, that they denote objects in the world. Fodor (1998a) tries to square

this circle by appealing to the ‘triggering’ of innate concepts. This notion is as simple as

it sounds; certain specific inputs trigger the availability of certain (pre-defined) concepts.
7Of course, BACHELOR and UNMARRIED MALE do not denote exactly the same category, as can be

seen if we try to decide whether a baby boy, a tom-cat or the Pope is a bachelor. But Fodor’s argument
does not rest on this point.
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Under this mechanism of acquisition, the whole process is emphatically not rational, but

is ‘brute-causal’. Acquiring a concept is the mind becoming locked to the property which

that concept expresses.

Fodor’s idea of triggering appears to be reminiscent of the phenomenon of imprinting in

very young animals. Lorenz (1966) discovered how young ducklings and goslings learn

to follow their parents soon after they are hatched. The young birds respond to visual and

auditory cues from their parents, and these cues trigger a brute-causal response which

affects the behaviour of the young birds for the rest of their lives. Lorenz discovered, in

fact, that the birds respond to the first conspicuous moving object they are exposed to;

Lorenz himself imitated the call of a mother goose in front of newly hatched goslings,

whereupon they followed him around as if he was their mother. Imprinting occurs only

in a very short critical period soon after hatching; once the duckling has identified the

features of its mother through imprinting, it discriminates all other objects from the fa-

miliar one, which causes it to shrink away from the other objects and towards the familiar.

Young birds are imprinted not only with the characteristics of their mother (filial imprint-

ing), but also with those of their siblings (sexual imprinting), which influences their mate

preferences when they are adults. Ducks who are imprinted on human experimenters,

therefore, will try in adulthood to mate with humans8. It certainly appears, therefore, that

ducklings have at least one innate concept, which we could anthropomorphically describe

as MOTHER, and that this concept is triggered by the ducklings’ experience of a certain

input, through a process which is certainly not rational. This seems to be a similar sce-

nario to that suggested by Fodor (1998a) for human acquisition of concepts, although on

a much larger scale; rather than the triggering of one or two concepts through particular

experiences, we must remember that Fodor argues that most of the enormous number of

human concepts are acquired in this way.

So how does experience of a particular stimulus cause the human mind to become locked

to the particular property? Under the brute-causal approach, experience causes the ac-

quisition of concepts, but this is not based on confirmation or denial of any semantic hy-

potheses, and it is therefore arbitrary. The problem for a truly brute-causal, non-rational

approach is that there is an infinite set of causal relations which could therefore theo-

retically trigger concept acquisition. Only certain of these causal relations, however, do

apparently lead to concept acquisition; worse still, those relations which do lead to con-

cept acquisition do actually appear to be extractable from the environment on some kind

of rational, empirical basis.
8In a non-experimental scenario, of course, ducks who imprint on things which are not members of

their species will be extremely unlikely to survive anywhere near long enough to reach sexual maturity.
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This problem manifests itself famously as the doorknob/DOORKNOB (d/D) problem: why

is it experience with doorknobs which lead to the acquisition of the concept DOORKNOB,

rather than experience with giraffes or whipped cream (Fodor, 1998a)? The rather un-

convincing answer to the d/D problem, according to Fodor, is that doorknobs end up

being things which have the property which cause human minds to acquire the category

DOORKNOB.

“[D]oorknobhood is the property that one gets locked to when experi-

ence with typical doorknobs causes the locking and does so in virtue of the

properties they have qua typical doorknobs” (Fodor, 1998a, p.137, emphasis

in original).

Typical doorknobs, of course, characteristically cause the acquisition of the concept

DOORKNOB, leaving the argument, despite his protestations to the contrary, and despite

his logical manœuvres through (proto-)typical doorknobs, decidedly circular and unin-

formative. The sheer scale of the number of trigger receptors which must be, according

to Fodor’s account, waiting for the appropriate trigger in order that they make a concept

available, make this kind of brute-causal acquisition unrealistic.

A further problem to Fodor’s brute-causal acquisition of concepts is that many con-

cepts are not actually acquired through experiences of the ‘things-which-cause-concept-

locking’. Instead, concept acquisition is mediated in many cases, very probably most

cases, through language. We cannot seriously entertain the suggestion that the con-

cept QUARK is acquired through experience with quarks. Many people have no concept

QUARK, but this is not because they haven’t experienced quarks, rather that they have not

had the information, via a book or lecture or via language of some other sort, of what

quarks are9. On the other hand, many people do have the concept GOD, and although

most would argue that their having the concept has indeed come about through experi-

ences which may have triggered the availability of the GOD concept, others would deny

that Fodorean triggering is possible with this kind of concept, yet would allow that people

do possess the concept10.

Putnam (1975) shows interestingly how there are also many concepts which we have

some knowledge of, but nothing like enough to actually use. He gives the example of

ELM and BEECH; although he knows that both refer to different types of tree, he does not
9Arguably, most people who do have the concept QUARK probably have no more defined a concept

than ‘some kind of (sub-atomic) particle’.
10Indeed, atheists, although denying the existence of gods, must have the concept GOD in order to deny

that it exists.
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know how to discriminate one from the other. Even given two trees, an elm and a beech,

he could not (and neither could many people) indicate which was which, with anything

greater than chance accuracy. His proposal for how such a system works is through a

division of labour, whereby people use terms without knowing their full meaning, while

acknowledging that the meaning does exist somewhere in the language community.

Boyer (2000) has investigated the evolution and creation of religious concepts in cultures

throughout the world in terms of their connection to inuitive ontology. In particular, he

shows how very common religious concepts such as ‘there is an omnipotent person who

knows everything we do’ include explicit violations of how the world works, as well as

activating a background of default expectations which are not violated. For example,

‘there is an omnipotent person who knows everthing we do, but then forgets it imme-

diately’ is not an appropriate religious concept, though it is of course supernatural and

not obviously absurd. Cultural concepts such as these, which are very prevalent in hu-

man society, cannot be acquired through any kind of triggering experiences, but must

instead be acquired by some other mechanism of connection with the concept’s referent.

It seems plausible that language is the most obvious candidate for the mechanism which

has made possible this phenomenon, which has been called reference borrowing (Devitt,

1981), and symbolic theft (Cangelosi & Harnad, 2000). Importantly, it is distinctly ra-

tional or psychological in origin, therefore posing a serious problem for the brute-causal

mechanism of concept acquisition espoused by Fodor (1998a) which rejects any form of

rationalism in concept development.

2.5.2 Empiricism

In contrast to nativism, empiricists claim that concept acquisition is based on interaction

between the learner and the environment, and that there is no feedback from any other

human, who might be regarded as a teacher. If there is any sharing of categorisations,

then these are due to both the cognitive architecture of the brain, and the biases present

in the environment, both in the structure of the world and in the particular exposures of

a learner. We shall see in chapter 8 how these environmental effects can indeed have a

large impact on both sharing of meanings and on the success of communication systems.

Instead of concept acquisition by triggering, which essentially maps certain experiences,

or generalisations of experiences, to innate concepts, empiricists would contest that con-

cept acquisition is more accurately represented as concept creation. Introducing this

notion immediately forces us to confront two important questions: how are concepts cre-

ated; and which concepts are created? Fortunately, there are straightforward answers to
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both questions: concepts are created to allow an individual to make sense of the world, to

recognise and discriminate situations from each other; and the particular concepts which

are created are those which are useful in some way to those who create them, because

they allow the discrimination of situations and objects. We can appeal to the development

of these capabilities on straightforward evolutionary grounds; the ability to distinguish

predator from inanimate object is clearly of utmost importance, and a creature unable to

do this will not survive to pass on its genes.

Human concepts are, of course, characterised by their variety and flexibility, which poses

difficulties for a nativist account of their origin. If we imagine a group of human babies

living on Mars (assuming they could survive), then we could all imagine how they would,

without doubt, develop words for Martian situations and objects, and how they wouldn’t

have need for concepts like TREE or WATER, which refer to things which don’t exist on

Mars. We can see that if meanings are formed through triggering in the environment,

the children would never obtain meanings for TREE and WATER, but we return again

to the problem of the trigger receptors which must be ready to make Martian meanings

available, just in case the children had happened to be born on Mars.

As we have seen, however, concepts are not just created in response to our environ-

ment, but also as a result of communication and interaction between humans, mediated

through language. Cangelosi and Harnad (2000) present a model world where agents

interact with mushrooms to discover whether they are poisonous, where agents who are

allowed to ‘steal’ symbolic categories through reference borrowing, substantially out-

perform agents who have to learn the hard way through experience alone. Although the

initial categories are acquired by trial-and-error, and are grounded in the world, once the

categories are named, the authors suggest a situation where the new categories can be

swapped by conversation, allowing both parties to increase their knowledge, and their

view of the world, much faster than by trial-and-error alone. Cangelosi and Harnad show

that symbolic theft has a selective advantage, although interestingly they point out too

that symbolism alone is unstable — if there are no toilers in the population to get the

symbols from, then the symbolisers cannot get any knowledge and their flexibility is in

vain.

These results would suggest that a system of symbolic knowledge, which is initially

grounded in reality, is the best of both worlds. Language users can boot their systems by

acquiring them with reference to the world, and then new categories can be built from the

grounded categories, assuming we allow for the composition of categories. The crucial

insight which enables the development of languages is that of symbolisation (Deacon,

1997), although how symbolisation first occurred remains a matter of much conjecture.
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Cowie (1999), one of the foremost empiricist philosophers of meaning, gives ground

to nativism by accepting that some concepts might be innate, but is insistent that most

‘higher-order’ concepts are learnt. She argues persuasively that there are highly sophisti-

cated psychological processes going on by which we grasp the meaning of some concepts

like XYLOPHONE and PLATYPUS, which Fodor (1998a) claims are triggered. We learn

from our experience, and use existing, innate, concepts in order to construct definitions

and prototypes, and to learn how to use reference transfer. These kinds of intentional

mechanism are necessary, as we have seen, to account for the acquisition of concepts

such as QUARK and GOD, which it is implausible to try to account for in terms of brute-

causal triggering by the environment.

Definitions and prototypes, therefore, together with reference transfer, once created from

basic concepts, serve to allow the construction and learning of further concepts, and so

the process of concept development continues indefinitely. To some extent, Cowie and

Fodor, despite their withering criticism of each other, are arguing for the same position,

i.e. there are some basic concepts which are innate, and other, more complex concepts

which are learnt. The difference is one of degree: Fodor claims that nearly all concepts

are primitive, while Cowie claims that most concepts are structured.

Cowie (1999) makes a distinction between intuitive meaning (what you need to know in

order to have a concept) and technical meaning (semantic properties which fix the con-

cept’s reference in the world), in order to overcome Fodor (1998a)’s objection about the

non-compositionality of prototype meanings. Having made this distinction, she argues

that prototypes are the intuitive part of meaning, they are the things you need to know to

have the concept, but they do not fix the concept’s reference. They are non-compositional,

as Fodor (1998a) argues, but this compositionality does not apply to the intuitive part of

meaning. Although it is plausible that in order to have the intuitive concept of BIRD,

you need to have a prototype which is built up of more basic concepts (namely is feath-

ered, can fly, etc.), it is not true that this prototype fixes the reference of BIRD. As we

have already seen, there are feathered things which can fly which are not birds, and vice

versa. Crucially, although the prototype of BIRD is made up of other concepts, it does not

presuppose the existence of the concept BIRD, and so it can be learnt.

Again, we discover that classical and prototype approaches to meaning both have their

place, and so it seems reasonable to adopt Cowie (1999)’s argument that concepts are

made up of both an intuitive part, which is based on prototypes, and a technical, reference-

fixing part, which is based on classical definitions.
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2.6 Summary

In this chapter, I have looked at the nature of meaning, the web in which meanings exist

and the relationships which hold this web together. I have looked at different models of

categorisation, and conclude that despite the difficulties in explicitly defining category

membership in terms of necessary and sufficient features, by proximity to a prototype,

or on the basis of some imperceptible essence, categorisation itself is as solid a rock as

we can find on which to build a model of meaning creation. I have explored the na-

ture of concept acquisition, looking at the competing claims of nativism and empiricism.

In principle, it is possible to have some innate concepts, (indeed, even the most ardent

empiricist (Cowie, 1999) would agree that some concepts are innate) if the things they

referred to were guaranteed to be of use for the vast majority of people. These meanings

might not necessarily refer to particular things like TREE and WATER, but could be more

basic ideas of self, objects, events, individuals and kinds.

On the other hand, I would argue that the majority of meanings are neither innate, nor

triggered in a Fodorean brute-causal manner by the environment, but are instead created

in response to experience. It is clear that the precise details of our human brain are crucial

in determining the concepts we acquire, as are the precise experiences that we have in the

world. With this in mind, the argument between nativism and empiricism begins to be

a little more one of emphasis than of incompatible positions, and it can be characterised

broadly as the empiricist’s more active meaning acquisition and rational construction

being opposed to the nativist’s more passive meaning acquistion through brute-causal

triggering.

In chapter 3, we will look in more detail at the nature of language acquisition as opposed

to concept acquisition. I will investigate how words are attached to concepts so that they

can be used in language, and will investigate how these two processes interact with each

other. I will, in chapter 5, describe a model of experience-based meaning creation based

on the perceptible features of objects and situations. In the end, as Harnad (1990) points

out, concepts must be grounded in reality; they must eventually, if we go round the web

of meaning long enough, be able to be used to pick out objects and actions which can be

pointed at. Because my model of meaning creation and communication will be based on

identifying objects and situations in the world, it is natural, while acknowledging that the

nature of meaning is more complicated than simple reference-fixing, that it concentrates

more on the technical, classical description of meaning, in order to build meanings which

agents can use to communicate about things in their world.





CHAPTER 3

Learning What Words Mean

“ ‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it

means just what I choose it to mean — neither more nor less.’ ” (Carroll,

1872/1998, p.190)

3.1 Introduction

This chapter will investigate the problem of language learning, in particular the problem

of how meanings become associated with words. Firstly, in section 3.2, I give a gentle

introduction to the problems of deciphering unknown symbols and of the paradox of

meaning induction in general, then move in section 3.3 onto a discussion of proposals

which have been put forward in the developmental psychology and linguistic acquisition

literature to account for the fact that learning language actually comes very naturally to

children; these proposals include specific constraints on word learning such as the shape

and whole-object biases, and the principle of contrast, as well as more general proposals

on the socio-pragmatic development of the child such as understanding the intentions of

others and the phenomenon of fast mapping. Finally, in section 3.4, I discuss some more

linguistic aspects to the learning task itself, showing how difficult it is to provide any

sort of unified, universal account of the semantic system underlying all human language,

and how a complete account of language acquisition must also explain how the learner

manages to induce the particular linguistic system which must be learnt, in addition to

actually doing the learning.

39
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3.2 Codebreaking

The creation and development of a conceptual structure which allows us to categorise

and distinguish situations and events in our world is only part of the story. As prospec-

tive learners of a language-like system, the main problem we face is trying to work out

what all these strange sounds mean. Imagine being transported to a foreign country, and

being unable to understand the people around you. The sounds they use all appear to

sound the same, and moreover they are very difficult for you to pronounce; many of the

sounds you can make easily don’t appear to be used at all in their speech. But fortunately

they are friendly people, and keen to communicate with you, so to help you learn their

language, they very kindly provide you with a dictionary; the only problem is that the

dictionary is monolingual, explaining words in their language in terms of other words in

their language.

Everything is unfamiliar to you as a learner of this language, except that the people are

speaking a language, and that the writing in the dictionary and the sounds in their speech

both represent that language in different ways. How on earth do you break the code and

work out what the sounds and signs mean, what systems lie behind their use?

3.2.1 Deciphering Unknown Symbols

The problem described above is very similar to that faced by the first modern scholars of

ancient Egyptian, who were trying to decipher the hieroglyphics without a clear idea of

what they stood for. After many false starts, an interpretation only became possible after

the discovery of the Rosetta Stone, on which a description of King Ptolemy V’s coro-

nation was inscribed in two languages, and in three different scripts: in hieroglyphics,

in Demotic, and in Greek. Once it was discovered that the Demotic and Greek sections

of the stone were translations of each other, it was possible for the French translator

Jean-François Champollion to begin to decipher the third script, and work out what the

hieroglyphs represented.

Even with this discovery, however, deciphering the hieroglyphics was not straightfor-

ward. The researchers were aided by discoveries such as the convention of writing royal

and divine names with surrounding ovals, or cartouches. These discoveries provided a

starting point for the codebreaking, which then opened up further avenues to pursue. The

deciphering would, however, have been impossible without the Rosetta Stone or a sim-

ilar bilingual document. Robinson (2002) describes the same problem which still exists

today under different circumstances; many languages, famously including among others
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Etruscan and the language of Easter Island, remain undeciphered, simply because there

is no starting point from which the code can be broken.

But let us move back a stage. Even before we find a helpful bilingual text, including a

language we do know, to help us start the codebreaking procedure, we need to gain an in-

sight which now appears obvious, but is in truth at the heart of language: the hieroglyphs

stand for something. Language is a form of symbolic communication, in which a signal

stands for a concept, to which it is not related in any way, save for the very fact of the

linkage through symbolism itself. For instance, there is nothing in the sound of the word

chair which suggests any aspect of its meaning; nothing in the word seat which suggests

its meaning, or the fact that their meanings are related to each other. A chair, indeed, is

known as cadira, kiti or szék by speakers of Catalan, Swahili and Hungarian respectively;

none of these words have any relation either to each other or to the meaning of chair.

This arbitrary linkage of form and meaning in the symbolic sign, as described by Saussure

(1916), is at the core of modern linguistics, and is arguably one of the crucial differences

between human and non-human communication. The concept of the signifier and sig-

nified being joined in a sign is then developed further to produce the notion of duality

of patterning, where sets of intrinsically meaningless phonetic items are arranged using

a system into a mass of complex, meaningful units. Duality of patterning allows tens

of thousands of distinct words to be created from a small set of phonemes1, and this in

turn accounts for the enormous expressive power of human language, which is lacking in

other semiotic systems.

Importantly, our human minds are so attuned to this kind of symbolism that it is very

difficult to envisage a world without symbols, where the only structure in the world which

we can discover is related to the co-occurrence and correlation between objects.

3.2.2 Problems of Meaning Induction

The symbolic insight is a crucial insight, but we are still a long way to working out exactly

what an unknown symbol stands for. If we look specifically in terms of language, word

learning seems like a very straightforward process, one which is, after all, successfully
1The size of a particular language’s phoneme inventory also varies considerably; there are, for instance,

languages with as few as 11 phonemes like the Papuan language Rotokas (Firchow & Firchow, 1969).
An upper bound to this range is more difficult to ascertain; the oft-quoted 141 phonemes for the Khoisan
language !Xũ or !Kung (Snyman, 1970) has been questioned by Traill (1985), who argues convincingly
instead for a cluster analysis of Khoisan consonants, thereby reducing the number considerably. If we
accept Traill’s analysis, then it is difficult to find more than around 85 phonemes for the recently extinct
Caucasian language Ubykh (Catford, 1977).
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and effortlessly completed by very small children, and yet we have seen that words and

their meaning are only related through some arbitrary symbolic mechanism. The linkage

between form and meaning must clearly be learnt and is not genetic, as we know that

children grow up learning the particular languages to which they are exposed, not the

languages their parents spoke (although of course in many cases these are the same).

The problem of inducing the meaning which a signal is being used to convey was most

famously illustrated by Quine (1960), who presented an imaginary anthropologist, who

observes a speaker of an unfamiliar language uttering the word “gavagai” while pointing

to a rabbit. How does the anthropologist know what “gavagai” means? On first glance,

we might assume that the word means RABBIT, but why do we make this assumption?

Quine shows that, logically, this assumption is not correct, and that in fact “gavagai”

has an infinite number of possible meanings, including ANIMAL, WHITE, RABBITNESS,

UNDETACHED RABBIT PARTS or DINNER!

Given all these possible meanings, then, how does a logically-minded anthropologist

decide between them? He may look for confirmation of the meaning, perhaps by pointing

at other objects, and questioning the native speaker as to whether they, too, are covered by

the extension of “gavagai”. By collecting more information through further questioning,

the anthropologist can reject some hypotheses from those with which he started. But

Quine (1960) proves that this will not actually help, because there will always be yet

more logical hypotheses which will be consistent with the new set of data; the set of

hypotheses which the anthropologist is seeking to reduce is infinite. Quine refers to

this as the indeterminacy of translation: no matter how much evidence is collated, the

meaning of “gavagai” will never be determined.

A very similar philosophical problem was described by Goodman (1954), which is known

widely as the grue paradox. Goodman presents the problem of two people who have both

been exposed to a number of emeralds, all of which have been coloured green. One forms

the hypothesis that “emeralds are green”, while the other the equally logically plausible

“emeralds are grue”, meaning “all emeralds have been green up until this moment, and

they will all be blue hereafter”. Of course, the grue hypothesis can never be disproved

by experience, and so will always be, logically, just as plausible as the green hypothesis.

We can easily imagine any number of similarly bizarre yet unrefutable hypotheses, and

Goodman shows that, under inductive learning, that there is always an infinite set of

logical generalisations which can be made, each of which is consistent with the data

experienced, no matter how much evidence is accrued.
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This problem of meaning induction is exactly that faced by a child acquiring its native

language. How does the child know which of the possible meanings are plausible, and

reach the correct conclusion from the infinite set of possibilities? In reality, we know that

when faced with these kinds of tasks, children react by reducing the number of possible

meanings to which they give credence. It is quite possible, indeed, that Quine’s set of

possible meanings might reduce in practice to RABBIT, without any further evidence

being required. But on what grounds does this reduction of possible meanings take place,

so that we can overcome the Quinean problem of meaning induction?

This chapter considers the problem of learning how to associate a form with an unrelated

meaning, or how to learn the meaning of an unfamiliar word. We also investigate many

of the suggested solutions to this problem, and discuss how these fit into our model of

the evolution of communication.

3.3 Constraints on Word Learning

In the following sections, I will consider many of the suggested solutions to these learning

problems, before looking at how to implement them in our model. Firstly, I will investi-

gate the intuitively attractive proposal that children learn by being taught by their parents,

particularly through being corrected when they make mistakes. Then, I will move on to

the hypotheses that children have particular biases or predispositions to disregard some

theoretically possible meanings, or to prefer some possible word meanings over others.

These biases would serve to greatly reduce the set of possible meanings, and crucially

thereby make it finite, and therefore the problem itself soluble. In particular, I will focus

here on the whole-object bias, the shape bias, the taxonomy bias, the mutual exclusivity

assumption, and the principle of contrast. Finally, I will present proposals which appeal

to general cognitive principles rather than specific constraints.

3.3.1 Negative Evidence

One common suggestion for how children learn the meaning of words is that they are

explicitly taught by parents and teachers. Under this scenario, a child is given feedback

on its use of words: if it uses a word in the correct manner, it receives positive feedback

to encourage further use; if it uses a word incorrectly, it receives negative, or corrective

feedback to discourage further use. This kind of learning process is often called rein-

forcement learning, because the learner’s actions are reinforced by the feedback from the

teacher.
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Despite the simplicity of this idea, and its intuitive appeal, the existence of negative evi-

dence is extremely controversial, both in the acquisition of lexical items and of grammar,

as can be seen in Morgan and Travis (1989)’s review of psycholinguistic evidence on the

matter. Brown and Hanlon (1970) demonstrated that parents did not correct their children

when they produced ungrammatical sentences, but did correct them when they produced

sentences which were not true, apparently providing some evidence in favour of the ex-

istence of corrective feedback at least in some instances. Such occurrences, however, are

by no means culturally universal; Lieven (1994), for instance, describes cultures in which

parents do not even speak to their children in the initial stages of acquisition, much less

provide them with either encouragement or discouragement about their use of words.

Bloom (2000), furthermore, describes a study on children who were unable to speak,

so could clearly not receive feedback on their speech, and yet do still develop language

normally.

Even when negative evidence is shown to appear, therefore, it is clear that it does not ap-

pear very frequently, nor is it culturally universal, contrasting markedly with the learning

of words itself, which occurs remarkably quickly and universally, even under the most

restricted and deprived of circumstances. Because negative evidence from an external

party, such as a parent or teacher, is not able to explain the paradox of word learning, re-

searchers have explored the existence of other constraints within the learners themselves,

and it is to these that we turn in the following sections.

3.3.2 Whole-Object Bias

Macnamara (1972) argues that children naturally represent their environment in terms of

the objects within it. When learning words, they automatically assume that the new word

refers to the whole object, rather than particular parts or properties of the object. For

instance, Macnamara (1982), in common with many researchers into language acquisi-

tion, describes the development of his child’s vocabulary. His son was taught many of

the objects involved in the washing and grooming process, such as soap, toothbrush and

toothpaste. The child then associated the word shave, which he had not been explicitly

taught, to Macnamara’s razor. It seems plausible that the child had decided that the unfa-

miliar word must refer to the only other salient object in the event. It is interesting to note

further that, in contrast to the very rapid learning of other words, it was very difficult for
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the child to overcome the association shave � RAZOR which he had made2. Macnamara

hypothesises that this is because changing shave to its adult meaning involves thinking

not in terms of objects, but actions. The whole-object bias leads the child both to create

the initial association, and also to resist rejecting it, only doing so very reluctantly.

Macnamara rightly points out that this bias is not just present in children, but is also still

present in adults. Firstly, it is particularly apparent when adults teach the names of things

to children through ostensive definition. This kind of teaching through pointing at an

object and naming it will only work if the teacher can correctly predict the interpretation

that the child will give to a new word. In chapter 6, I will show how communication

success is considerably improved if the speaker chooses words which are likely to be

understood by his interlocutor; the speaker must put himself in the hearer’s shoes, and

take into consideration the interpretation which a hearer would give to the word. We must

be aware, however, that putting yourself in someone else’s shoes and deciding what they

would think is a sensible strategy only if you are using the same kind of cognitive biases

and processes as the other person.

Secondly, Macnamara (1982) gives the example of (adult) learners of foreign languages,

who, while beginning to learn the foreign language, use the whole-object bias in order

to learn the names of objects as a first step. The language learning process is grounded

(Harnad, 1990) on the objects in the world, to which the learner’s first words are attached.

This particular parallel between first language acquisition and second language acquisi-

tion is perhaps not too surprising, and this is, of course, the same scenario as Quine

(1960) presented with his imaginary anthropologist hearing “gavagai” while the native

speaker pointed to a rabbit. Macnamara would contend that the whole-object bias is the

very reason why we assume that “gavagai” must mean RABBIT.

It has been claimed (Markman, 1989) that the whole-object bias is specifically tailored to

word learning, but this is controversial, and Bloom (2001) points out that it is additionally

found in a number of non-linguistic domains, such as counting, tracking, categorisation,

addition and subtraction. There are further difficulties with the question of what counts

as an object, particularly in tricky areas such as meronymy (which deals with part-whole

relationships) and temporary attachment. For instance, does the windscreen of a car or
2It is interesting that the word which Macnamara’s son associated with RAZOR was shave, rather than

shaving. Indeed, in the appendix, Macnamara (1982) records his son as using the word shaving to refer to
an action a month later than he made the shave � RAZOR association. This could point to the child making
use not only of the whole-object bias, but also the general linguistic context, plausibly having already
discovered that words ending in -ing normally refer to actions rather than objects. Bloom (2000) provides
a detailed discussion of this phenomenon and other ways in which children appear to use syntactic content
to guide them to the meaning of unfamiliar terms.
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the tail of a cat count as an individual object, or as a part of another object? In the case

of a jockey riding a horse, is the whole rider-horse entity one object or not? Intuitively,

we know that all these could count as objects in certain circumstances, but equally that,

generally, we would not think of them in those terms. But on what basis do we make these

decisions? This notion has recently been explored by Spelke (1994), cited in Bloom

(2000), who has developed a set of principles which, she argues, we use to decide on

whether something is an object. Objects must, according to Spelke, be cohesive, solid

and continuous. Spelke further argues that these principles are likely to be innate, and

contrast with other principles related to objecthood, such as the fact that unsupported

objects fall, which need to be learnt. Bloom (2000) takes this analysis further, making

an important distinction between these three of Spelke’s object properties, in that solidity

and continuity describe the expected behaviour of objects, and as such fit into a prototype

based definition of OBJECTHOOD. The principle of cohesion, on the other hand, is a more

central, classically necessary feature of the definition; things which are not cohesive are

not objects3.

3.3.3 Shape Bias

Useful as the whole-object bias is in explaining how children might bootstrap their lan-

guage acquisition, it is not a sufficient explanatory tool for the larger problem, and so

many researchers have demonstrated additional restrictions, in order to account for more

complex facets of word learning. An important discovery in this vein was that children

are more likely to categorise new objects in terms of their shape, rather than other per-

ceptual features. Landau et al. (1988) performed an experiment in which they presented

children with an unfamiliar object which they explicitly name: “This is a dax”. The ex-

perimenters then go through a number of test objects, asking the child with respect to

each: “Is this a dax?”.

In general, children used the new name with objects which were the same shape as the

original object, but did not pay attention to size and texture. Perhaps surprisingly, even

in cases where the test object was 100 times bigger than the original object, or made of

very different substances, the children still chose to name objects on the basis of shape.

Armed with these results, Landau et al. propose that children have an innate shape bias,

or a preference to categorise in terms of shape.
3Strictly speaking, it is also possible to override the principle of cohesion in deciding on objecthood;

although a child would surely parse a bikini as two objects, the vagaries of fashion determine that it is a
single object to adult speakers, despite its being made up of two unconnected parts.
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L. Smith (2001) rightly points out that a shape bias is a useful general attentional bias,

which secondarily promotes the learning of common nouns, as they typically refer to ob-

jects of similar shape. Although the shape bias is clearly not the same as the whole-object

bias, they are nevertheless related; organising things in terms of their shape necessitates

being able to sort them into objects in the first place, and as shape is such a salient feature

of object membership, attending to shape implies attending to objects.

Interestingly, as well as asking them to confirm whether a new object was named with

the same term as the target object, Landau et al. also asked children to find objects which

were like the target object, rather than named using the same term, and found that in this

case, children did not appear to base their decisions on shape alone, but rather overall

similarity was based on the aggregation of a number of perceptual features. This leads

them to conclude that the shape bias is used specifically in the domain of word learning.

On the other hand, if there is such a bias, then it is not merely a straightforward ‘shape

bias’ as was originally suggested. Instead, it has been shown that children focus on dif-

ferent properties, which depend both on the linguistic context and the specific properties

of the object itself. For example, L. Smith (2001) also reports further studies in which

children pay special attention to the texture of the object in addition to its shape, but only

if the object appears to have eyes. Soja, Carey, and Spelke (1991) varied the rigidity

of objects in their experiments with children’s word categorisations. When the named

object was rigid, then the word was generalised to things of the same shape, as we have

already seen. But when the named object was not rigid, but instead made of something

like foam, then the children generalised the word to objects of the same material. So if

we assume that the shape bias does exist, how does the child know when to apply it, and

when to apply what we might facetiously call the non-rigid material bias?

We might argue that the properties of having eyes and of rigidity can be seen as impor-

tant and plausible in an evolutionary context, in that they point to informative biological

distinctions. But L. Smith (2001) also gives details of her replication and extension of

the eyed-object study, where objects were additionally shown with trainers. Clearly, an

evolved mechanism for naming generalisation which is particularly sensitive to whether a

thing wears trainers is totally implausible. Nevertheless, the results showed that children

did attend to texture when naming objects, but only if the object was portrayed as wearing

trainers. It appears that not only are children very good at making generalisations based

on objects’ properties, but they also seem to learn which of these properties are useful

to attend to. Domain-specific learning biases, like the shape bias, might well be used by

children in word learning, but it seems possible that the biases themselves may actually

be shaped by general development processes, rather than being innately specified.
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3.3.4 Taxonomic Bias

Taxonomic organisation is the grouping together of objects of the same type, and is often

contrasted to thematic organisation, or the grouping of things on the basis of the relations

between them. For instance, objects with similar properties (e.g. feathered things which

fly) would be grouped together taxonomically, while groupings which are spatially or

causally related, like book/table (related by ON) or ball/window (related by BREAK), are

organised thematically. Thematic relations are clearly very important in making sense

of the world around us, and yet adult categories are not based on thematic relationships

(Markman, 1989). The fact that deer leave footprints on the ground allows hunters to

track them, but although the deer and the footprints are clearly related4, they would never

be classified as the same type of thing.

Researchers have investigated the variable use of thematic and taxonomic schemes of

categorisation in childhood by asking children to sort objects into groups. Broadly speak-

ing, young children (up to 6 years or so) use thematic relations, while older children use

taxonomic categories. Different interpretations of these results have caused much con-

troversy, with many researchers (e.g. Vygotsky (1934/1986)) claiming they prove that

young children lack the ability to categorise taxonomically, while others would prefer to

regard young children as having a preference for, or a heightened interested in, using the-

matic relationships for this kind of task. Markman (1989) shows that the consequences of

children being unable to categorise taxonomically would be dramatic and bizarre, as they

might have, for instance, ball and window as part of the same category. Markman also

claims that an extreme form of thematic categorisation would mean that a category such

as ANIMAL would encompass not only dogs, cats, cows, horses and so on, but also things

related to them, like a dog lead, cat food, grass and a bridle. But this doesn’t happen:

children do not find it hard to distinguish cows from grass, and would not entertain the

thought that a bridle can run around.

In fact, Markman and Hutchinson (1984) have shown experimentally that children use

taxonomic and thematic methods of categorisation differently, depending on whether

they are learning words. For instance, when there are no words involved, children will

group a car and a car tyre together thematically. When the car is called “dax”, however,

and the children must try to find another thing named “dax”, then the children are much

more likely to find the taxonomically related bicycle. Markman and Hutchinson explain

these results by proposing a special constraint on word learning. This constraint leads
4Indeed, Peirce (1897/1955) would call this kind of linkage indexical, one step removed from a basic

iconic mapping, where the signal resembles the signified, but not arbitrary enough to be a true symbolic
mapping.
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children to suppress their normal, thematic way of interacting with the world, in favour

of a taxonomic point of view, if they believe they are learning words. Despite the fact

that children like organising things on a thematic basis, Markman and Hutchinson suggest

that they have implicit hypotheses about language, and in particular word learning, which

differ from the way they like to structure objects in their environment.

The taxonomic bias, therefore, would appear to be specific to the domain of language.

It also works particularly in tandem with the whole-object bias (q.v.), so that children

interpret unfamiliar words as referring both to whole objects, and also to objects of the

same kind. These biases appear to have different timescales, as the whole-object bias is

overridden more readily than the taxonomic bias; although children do prefer to allocate

unfamiliar words to whole objects, they do eventually learn words for the objects’ prop-

erties. In contrast, the taxonomic bias appears very strong even into adulthood, so that

adult categories too are organised taxonomically and almost never thematically.

3.3.5 Mutual Exclusivity Bias

As we have seen, although the whole-object bias and taxonomic bias are useful explana-

tory tools, they are not the whole story. Although it is important for the child as an

inductive learner to be able to reduce the number of possible hypotheses, and so begin

to learn the meaning of words, they must also be able, in the end, to learn things which

violate these biases, which refer, for example, to parts of things and non-shape properties

of things. Markman (1989) puts forward a further principle, the assumption of mutual

exclusivity, in order to overcome the limitations of these biases.

This principle is very straightforward, and states that the extensions of categories are

distinct sets which do not overlap. Crucially, however, Markman assumes that mutual

exclusivity applies particularly at the privileged basic level of categorisation, so that an

object cannot be both a dog and a cat. Referring back to figure 2.1, the basic level

category would be cat, rather than its superordinate mammal or its hyponyms tabby and

siamese. Rosch and Mervis (1975) have demonstrated the importance of basic level

terms, which are used most frequently, and which are most inclusive. Bloom (2000) states

that, at the basic level of categorisation, people judge objects to be more similar, and

interact with them in similar ways. Murphy and Lassaline (1997) suggest that the basic

level is a compromise between a very specific meaning which can uniquely identify and

object, and a very general meaning which is relatively uninformative, as its denotation

is too large. It is important to note, however, that the basic level categories like cat and

apple are at the centre of a hierarchical structure of meaning, not at the bottom of a
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chain. Most importantly of all, from the view of word learning, basic level terms are

simply those which are used most often by adults, and are among the first words which

are learnt by children.

Indeed, it is fair to say that Markman assumes that children only have the basic level of

categorisation, initially at least, as it is clear that the mutual exclusivity assumption must

be broken in order for any kind of hierarchical semantic structure, such as that described

in chapter 2, to emerge at all. Markman does recognise this problem with a strong version

of the mutual exclusivity bias, and so she modifies her claim such that children assume

that terms are mutually exclusive, until they are presented with overwhelming evidence

to the contrary. Assuming we can run with a somewhat vague notion of ‘overwhelming

evidence’, it is at this point that mutual exclusivity is violated, and the child creates the

appropriate category.

Markman also discusses a hierarchy of cognitive biases which might apply to the child

which is learning unfamiliar words. Although she assumes that the whole-object and

taxonomic biases have a higher priority than mutual exclusivity, if an unfamiliar word

is applied to an object which already has a word attached to it, then mutual exclusivity

steps in to avoid the wasteful accumulation of many synonyms to refer to the same thing.

The child assumes that each meaning has only one label, and so finds some other salient

property to which the term is applied. Mutual exclusivity therefore continues to restrict

the number of possible meanings in a very important way, by ruling out those for which

the child already has a word. As the child’s lexicon develops and the number of words

acquired increases, new words have to find new meanings, a process which leads to

innovation and the creation of novel meaning.

Regier (1995) uses the principle of mutual exclusivity with limited success in a connec-

tionist simulation of the acquisition of spatial terms. Although mutual exclusivity can,

to a certain extent, obviate the problem of no negative feedback, by assuming that every

positive instance carries with it a set of implicit negative instances for all other meanings,

it is only of limited value, as it also necessarily produces false implicit negative evidence.

In the basic task of learning names for objects, we have seen that Markman’s mutual

exclusivity cannot account for the learning of taxonomies or meaning hierarchies. A neat

solution to this problem is not so easy to find in Regier’s spatial model either. An object

can be both above and outside a landmark, yet every occurrence of above will be taken as

implicit negative evidence for outside and vice versa. In effect, Regier’s learning model

based on mutual exclusivity succeeds only when the spatial terms actually are mutually

exclusive (like inside and outside); in all other cases, the strict implementation of implicit

negative evidence means that terms cannot be learnt satisfactorily.
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3.3.6 Principle of Contrast

A similar proposal to Markman’s mutual exclusivity assumption is the principle of con-

trast, proposed by Clark (1987). According to Clark, any difference in form marks a dif-

ference in meaning, and moreover this is crucial in enabling children to make reasoned

choices as they try to learn the meaning of words. She makes a number of predictions

about language acquisition which follow from the notion of contrast, as detailed below

(Clark, 1987, p.10):

1. Children assume words contrast in meaning.

2. Children give priority to known words.

3. Children assign novel words that they hear to gaps in their lexicon, and, to fill such

gaps, they coin new words themselves.

Evidence that these predictions do in fact occur comes from a variety of areas. Children

are prone to over-extend the meaning of words when they are first learnt, so dog initially

applies not only to dogs but also to cats and other four-legged animals. But when a child

who has over-extended dog acquires a new word cat, the meaning of which was originally

covered by dog, the child then carves out a new meaning for the new word, narrowing

down the meaning of dog so that it does not conflict with the new meaning. This nar-

rowing of meaning also results in the creation of lexical fields, or terms for particular

semantic areas.

Clark claims that different forms are always allocated a different meaning of some sort

by children, so that the one-to-one mapping between form and meaning is maintained.

We have already seen how the number of possible meanings to be induced is infinite, so

it may not be surprising that the contrasts made by children are not always the same as

those in adult language. Clark (1993) gives examples of children establishing a contrast

between duck, bird, chicken, apparently on the grounds that they swim, fly, and walk.

Similar examples are found cross-linguistically: MacWhinney (1985) demonstrates ex-

amples of children learning Hungarian, who contrast the nominative and accusative forms

of common nouns, but interestingly not in terms of their thematic roles, as in the adult

language. Instead, the children have picked up on the fact that adults often use the ac-

cusative forms (ending in -t) in questions such as Kérsz teát? (‘Do you want tea?’), and

have generalised this distinction, so that they come to use nominative forms to name

things, and accusatives to ask for things.
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Children also do indeed give priority to known words, as can be seen when, in the ini-

tial stages of acquisition, they reject multiple labels for an object. They do not have an

organisation of meanings into hyponyms and superordinates, which allows different lev-

els of labelling, and so cannot accept both cat and animal as labels for the same object

(Clark, 1987). Interestingly, the converse phenomenon occurs in adult learners, who do

allow multiple labels, but because of this do not allow exclusive disjunctions of mean-

ings related by hyponymy. For instance, Hurford (1974) marks “John is an American or a

Californian” as badly-formed, because John is a Californian entails John is an American,

or Californian is a hyponym of American. On the other hand, we could hypothesise that

young children who reject animal as a label for a cat would likely accept the similar sen-

tence “Daisy is a cat or an animal”, were they to understand logical disjunction, because

in their conceptual structure, which rules hyponymy out, Daisy is a cat does not entail

Daisy is an animal.

Furthermore, children have great problems in working out the meaning of nonsense

words which are synonymous with words they already know, despite the fact that they

acquire new words voraciously (Clark, 1993). In contrast, if the nonsense words are re-

placed by gaps, then the children can easily find the words which should be inserted.

Finding existing words, of course, does not breach the principle of contrast, but, on the

other hand, synonyms are explicitly ruled out by it.

This multi-labelling problem also occurs, of course, in multilingual children, who ini-

tially reject equivalent terms from a second language when one already exists in another

language. The children create a single lexicon, and words in this lexicon, which would

be considered translations of each other (e.g. English no and Estonian ei) in adult lan-

guage, have different referents in the child’s language. Vihman (1996) describes how her

son used no in many contexts, but ei only for self-prohibition. Clark (1987) hypothesises

that the point at which synonym ‘doublets’ are allowed in the bilingual child’s lexicon

may coincide with the time at which it can distinguish the two languages phonologically;

as they realise that they are dealing with two systems, they can then naturally accept

words in both systems. Within each system, the Principle of Contrast still applies, but the

children can acquire a high number of doublets (Clark, 1993).

On the other hand, Deuchar and Quay (2000) report the results of a comprehensive study

of a Spanish/English bilingual child, which appear to clearly contradict Clark’s claims for

how the principle of contrast interacts with the acqusition of two languages at the same

time. Deuchar and Quay show both that the child in their study had equivalent terms,
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for example bye/ tatai, más/more and zapato/shoe5, and also that at no stage does she

appear to reject equivalent doublets. More damagingly for Clark, these doublets occur

from an early age, even under eighteen months, and certainly well before the age of two

years, which has been suggested as the time at which children appear to be aware of

phonological differences (Vihman, 1996).

Deuchar and Quay (2000)’s study of bilingual acquisition does indeed pose problems for

the principle of contrast, which Clark (1993) has already anticipated when she appeals to

an analogy with linguistic registers or a situation of diglossia (Fasold, 1984). Diglossia

occurs when people use two distinct codes or registers of language in two completely

different situations. Prestigious, or high registers are characteristically used in formal,

religious, and legal contexts, while low registers are used in informal, casual contexts.

Diglossia is a very widespread phenomenon. There are, for instance, a large number of

low varieties of Arabic across North Africa from Morocco to Egypt, through the Middle

East and the Gulf States, which are used in most informal, everyday contexts and are

frequently mutually unintelligible. In order to be understood across the Arab world,

children are taught to read and write the higher variety of (Modern) Standard Arabic.

Still more prestigious, and regarded even as sacred, is the highest form, Classical Arabic,

found in the Qur’an6 and in political communications. Diglossia also occurs historically,

and with varieties that are clearly different languages, such as in England in the three

centuries following the Norman Conquest, when the high register Norman French and

the low register Middle English existed together.

Clark (1987) claims that words from different registers or varieties are not true synonyms,

because of the different functional situations in which they are used. Analogously, the

bilingual child’s synonyms are, according to Clark, not true synonyms, but merely trans-

lation equivalents like horse and the Czech kůn, but Deuchar and Quay point out that this

assumption holds only if we additionally agree that the bilingual children know that they

are learning two languages. Because of the nature of the developmental process, it is ac-

tually very difficult to draw any conclusions at all about how many linguistic systems are

concurrent. Phonological and syntactic evidence for a distinction between Spanish and

English, such as the distinct use of particular language-specific phonemes or of grammat-

ical agreement categories, arrives much later than the occurrence of the doublets in the

child’s lexicon, casting doubt on Clark’s assertion that synonyms are only possible after

the original language system has been divided into two separate systems.
5The doublets are given in order of acquisition by the child, with the Spanish terms in bold.
6Because of the religious significance of Classical Arabic, many speakers of Arabic regard Classical

and Standard Arabic as one and the same, and the local varieties as impure, corrupted languages.
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The problems of pinning down what is actually happening in bilingual acquisition notwith-

standing, the principle of contrast also predicts that children will assume that an unfamil-

iar word will refer to a gap in their lexicon, a meaning without a word, and that, in

production, they will construct words to fill these gaps. The original study which looked

at the designation of unfamiliar words was by Carey and Bartlett (1978), who introduced

children to a new word by asking them to find a chromium cup or tray. The new word was

contrasted with a familiar colour term (either red or blue, depending on the object), and

most of the children decided, in accordance with the principle of contrast, that chromium

must mean the unfamiliar colour. Interestingly, most of them asked for some confirma-

tion about which object the experimenters wanted, having clearly marked chromium as

an unfamiliar word.

When children want to express meanings for which they have no word, some process of

innovation occurs. Clark (1993) shows that children’s preferred forms in word coinage

are those options which are productive within their speech community, so they learn how

to make words as part of the language acquisition process. Children can find smaller units

inside larger words, and after exposure to several instances of these smaller units, can map

some meaning to them. The small form-meaning unit can then be used productively by

the child in the creation of innovative forms.

This kind of analysis and decomposition of signals into smaller units of meaning is used

by Kirby (2002) in a computer simulation of the emergence of compositional syntax.

Agents in the simulation, whose role is analogous to children learning a language, take

advantage of coincidental matches between parts of utterances and parts of meanings

to create general rules. When the agents come to attempt to produce utterances for

meanings, these general rules can necessarily produce more utterances than idiosyn-

cratic, holistic rules, and so the utterances created by general rules are more likely to

be produced, and maintained in the population.

Some kinds of meaning-form pairs are easier for a child to induce than others7, and indeed

there are large differences between languages in the degree of transparency in areas such

as nominal and verbal inflectional morphology. Hungarian, for instance, has a very rich

set of locative suffixes which are added to all noun phrases, some of which are shown in

table 3.1 attached to the root ház (house). We can divide Hungarian locatives easily into

three main sub-groups, representing the broad spatial relationships denoted by IN, ON

7In simulations such as those by Batali (2002), Brighton (2002), Kirby (2002), the meanings are not
actually induced at all, but are instead given to the learning agent. We will investigate an alternative to this
approach in the communication system described in chapter 6.
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IN ON AT

a házban a házon a háználAT
in the house on the house at the house

a házba a házra a házhozTO
into the house onto the house to the house

a házból a házról a háztólFROM
from in the house from on the house from the house

Table 3.1: Some Locative Expressions in Hungarian

and AT, each shown in a column of the table. Each column is further divided into three

rows, representing location at, motion towards, and motion from.

In Slavic languages such as Serbo-Croat8, on the other hand, these and similar locative

meanings are marked by both prepositions and endings on the noun. Many of the prepo-

sitions take more than one case, depending on the meaning, and the same case can also

occur with different prepositions, again dependent on the meaning; some examples of

these are given in table 3.2, using the equivalent noun kuća, which also means house

(Schmaus, 1961).

It is clear that there is not such a straightforward mapping between form and meaning

in this area of Serbo-Croat as there is in Hungarian. Does this difference in the form-

meaning mapping make any difference to the children learning the languages? Slobin

(1973) shows that it does: Hungarian/Serbo-Croat bilingual children produce the Hun-

garian locatives correctly at the age of two years, while the same children leave out

prepositions and use cases inconsistently when using Serbo-Croat, not mastering the less

straightforward system until around the age of five.

The transparency of the Hungarian system, with roots always being followed by the loca-

tive markers, and with small parts of words having distinct and consistent meanings (in

table 3.1, for example, all the endings in the IN column begin with ‘-b-’, and all the end-

ings in the FROM ROW end in ‘-ól’), means that children can generalise successfully more

easily, using the principle of contrast, and innovate to fill gaps in their lexicon. The prin-

ciple of contrast is less immediately useful in learning Serbo-Croat locatives, because
8Since the break-up of Yugoslavia and the concomitant wars during the 1990s, it has been politically

expedient to regard Serbian and Croatian as separate languages, but linguistically the differences between
them are minor, being restricted in the main to individual vocabulary items and (most notably) the script in
which they are written.
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Same preposition, different cases:

u kuću Accusative into the house
u kući Locative in the house

Same case, different prepositions:

kod kuće Genitive at home
blizu kuće Genitive near the house

Table 3.2: Some Locative Expressions in Serbo-Croat

there is no straightforward mapping between the relevant morphemes, and so no easy

way to make contrasts between expressions; children consequently make more mistakes

when producing innovative sentences in Serbo-Croat.

The principle of contrast, therefore, and more specifically the assumption of mutual ex-

clusivity, appears to be a very important process in the acquisition and maintenance of

language. Its essence, that every change in form is reflected by a change in meaning, is

simple and powerful in helping learners escape from the Quinean paradox of meaning

induction, as I show experimentally in chapter 9.

3.3.7 Word Learning without Specific Constraints

In the previous sections, we have investigated many specific constraints on word learn-

ing, which have been proposed to account for experimental evidence regarding children’s

achievements in language learning. Bloom (2000, 2002) and Tomasello (1999, 2001b)

separately propose alternatives, in which children do not have to be endowed with con-

straints which are specific to word learning. Bloom (2000) makes it clear that this does

not return us to the Quinean paradox of an infinite set of possible meanings, because

children clearly are constrained somehow in the meanings which they will consider. The

main problem, according to Bloom, is that these constraints do not need to be specific to

the domain of language learning, and are more profitably and parsimoniously explained

in terms of general ideas about how children think and learn. Tomasello (2001b) suggests

also that children’s learning of words does not occur via specific hypothesis testing, but

instead is part of a general, social-pragmatic development of cultural skills and conven-

tions:
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“Children learn words as an integral part of their social interactions with

other persons, an important part of which are their attempts to understand

what adults are trying to get them to do and their attempts to get adults to do

things.” (Tomasello, 2001b, p.136)

Tomasello and his collaborators have, over the last couple of decades, published details

of many experiments which attempt to show that the word-learning constraints we have

been looking at in this chapter are not necessarily the best explanation of how words are

learnt. In all cases, the experiments are set up so that children and adults are interacting,

and unfamiliar words are dropped into the conversation naturally. Pragmatic cues are pro-

vided to the children to see whether they are sensitive to them, and attempts are made to

neutralise the possible confounding impact of the word learning constraints themselves.

For example, Tomasello and Barton (1994) set up a study in which the experimenter

would say to the children: “let’s go find the toma”. Both then approached five buckets, all

filled with different, unfamiliar objects. On some occasions, the adult went straight to the

appointed bucket, took the target object, and gave it to the child; on others, she searched

through the buckets, extracting objects, scowling at them and replacing them, until she

found the target object, again giving it to the child thereafter. Later, the child was shown

the object, and asked its name; under both circumstances, the children learnt the new

word equally well. Tomasello and Barton suggest that the children could use neither cues

such as “the object the adult is looking at while saying the word”, but must instead have

understood the adult’s intention to find a particular object, and have been able to evaluate

the adult’s fulfilment of their goal. A similar study by Akhtar and Tomasello (1996)

used variations on the same experimental theme, except that one of the buckets was very

distinctively different from the others, and the children were primed with non-linguistic

games so that they would discover which object was in the distinctive container. The

experimenter would then try, and fail, to get into this container, in which the child knew

the mystery “toma” was located. The experimenter could therefore never actually find the

object, and only ever showed disappointment at not doing so, and yet, even despite the

fact that the goal of finding the object was never fulfilled, the children still successfully

learnt the name of the hidden object, showing that children use a flexible and diverse set

of strategies to work out the communicative intentions of their interlocutors.

Carey (1978) proposes the notion of fast mapping, whereby learners accurately learn

the meaning of a word based on hearing them as little as a single time. We have already

discussed her experiment with children learning colour terms with respect to the principle

of contrast (Carey & Bartlett, 1978), but the children’s learning that chromium means
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olive-green is also evidence in favour of fast mapping. After six weeks in which the

word was never again used, the children were shown an olive-green object and asked to

describe it. Most of them remembered the word they had heard just once, and the others

all used a different colour name (e.g. grey, brown), which they had not yet stabilised in

terms of reference.

Bloom (2001) describes an extension of Carey and Bartlett’s experiment, in which both

children’s and adults’ capacity for fast mapping was tested (Markson & Bloom, 1997).

The subjects were exposed to an unfamiliar word koba, which referred to one or more

unfamiliar objects. As a separate experiment, they were also exposed to another object,

which was referred thematically, either by the use of a phrase which referred to another

linguistic entity (“my uncle gave these to me”) or by explicit visual demonstration (“this

goes here”). Across all age groups, the subjects remembered which object was referred

to by koba over half the time. Interestingly, they also did so for the linguistically pre-

sented facts, but did not do so for the visually presented ones. Bloom (2000, 2001) uses

these findings to argue that fast mapping is a general purpose mechanism, not used just

for word learning; not only does the process occur in other contexts than word learning,

but adults have the ability as well as children, so it is not part of any specialist lan-

guage learning apparatus which disappears after the critical period (Hurford, 1991) for

language acquisition.

Instead, Bloom (2000) argues for a combination of the different, general, cognitive adap-

tations we have discussed: an ability to see the world in terms of objects, events, relations,

kinds and individuals; the ability to generalise (and, crucially, to make the right general-

isations); an insight into the intentions of others (also known as a theory of mind), and

an understanding of what they are referring to; an understanding that some categories

are not reducible to their observable features (see the discussion on naïve essentialism

and the theory theory in section 2.3.3); and the ability to count. Interestingly, given his

co-authorship of the seminal article which argued the case for the natural selection of the

Chomskyan Language Acquisition Device (Pinker & Bloom, 1990), Bloom now argues

that there is no need to posit the existence of any specific ‘language-learning module’, at

least in terms of learning words. Related to the use of general cognitive faculties is the

use of heuristics in order to get round the problem of an infinite search space. Gigerenzer

and Todd (1999), for example, show how the use of simple heuristics can often provide

simple and elegant answers to such problems, without the need for costly and specialised

cognitive architecture.

Bloom (2001)’s alternative proposal twists the cognitive biases we have previously dis-

cussed on their heads, saying that we perceive a whole-object bias for word learning
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because whole objects are salient, and count nouns refer to kinds of individuals; a shape

bias because words refer to kinds of objects, and we often categorise on the basis of

shape. These are very general cognitive heuristics, which have nothing explicitly to do

with word learning. In this respect, Bloom’s argument is not so very far from L. Smith

(1999)’s position that although there are specialised learning mechanisms like the shape

bias, these are constructed from general learning processes, in an analogous fashion to

the specialisation in cell development which leads to the differentiation between liver

cells and brain cells, for instance. Both argue that the source of the biases is domain-

general rather than domain-specific, but Bloom would go further, and deny that there is

any benefit in saying there is a bias at all.

Finally, support for the fast mapping theory of word learning may be found in a recent

neurological study by van Turennout, Ellmore, and Martin (2000), in which they provide

evidence of long-lasting plasticity in different parts of the brain, notably the occipitotem-

poral cortex, left inferior frontal and left insular cortex. Interestingly, the left inferior

frontal is considered part of Broca’s area, a part of the brain well-attested in syntactic

and phonological processing (Deacon, 1997)9. In their study, van Turennout et al. (2000)

suggest that initial naming of an unfamiliar object, as in fast mapping, is dependent on

Broca’s area, but that during the repeated retrieval of an object’s name, when the process

becomes more automatic, Broca’s area is used increasingly less, with a corresponding

increase in activity in the left anterior insula.

3.4 The Nature of the Learning Task

We have discussed in some detail the problem of meaning induction demonstrated by

Quine (1960), and many of the proposals which seek to explain how children overcome

the problem with such ease. Related to this problem is the more complicated issue of

what learners actually do learn when they learn the meaning of a word. In other words,

what kind of mapping is the learning task they perform?

Although all languages map words onto meanings, and although we must assume that

the set of possible meanings available to humans is universal and potentially accessible

to speakers of all languages, the way in which languages divide up this semantic space is
9Although Broca’s and Wernicke’s areas are the most commonly mentioned areas of the brain which

have a ‘specialisation for language’, there is in fact a vast literature claiming more and more different areas
with specialist language functions. Beaken (1996), for instance, lists almost two dozen different areas
which have been proposed. Despite all this work on linguistic neurology, we cannot reliably identify the
area of the brain containing either the Language Acquisition Device or the ‘language controller’; in neither
case can we pinpoint any small area of the brain, which, if destroyed, would inhibit language competence.
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very different. The following brief examples show how even in some of the areas which

humankind has most in common, remarkable differences can be seen in the semantic

organisation of different languages. For example:

� We have already seen in sections 2.3.3 and 2.5.1 how Kalam-speakers classify

the wildlife in their surroundings, and how it is impossible for an English-speaker

to translate a word like kmn, without resorting to an enormous explanatory para-

phrase, or, worse, a list of all the animals which are covered by the word and

another list of those which are excluded;

� Wierzbicka (1997) explores in great detail how even apparently basic cultural cat-

egories such as the notion of ‘friendship’ differ dramatically in three related Euro-

pean languages: English, Polish and Russian.

But differences in classification systems which deal with the animals found around where

you live, and with cultural concepts, however universal they might seem, are not neces-

sarily so strange. More surprising is that differences in the division of semantic space are

found even in areas which are unquestionably universal:

� A simple concept such as my brother can be translated straightforwardly into Hun-

garian in many different ways: öcsem, my younger brother; bátyám, my elder

brother; fívérem, literally a ‘son of my blood’; and most generally testvérem, my

sibling, the latter being used much more commonly than its English equivalent

might suggest.

� It is hard to think of a more common human experience than the human body it-

self, and if meaning is based on experience, we might imagine that classification

and categorisation of body parts should be universal. Although I know of no lan-

guage which does not have distinct words for body parts such as head, most Slavic

languages such as Czech use a single word (ruka) for the whole of the arm, includ-

ing the hand, and similarly a single word (noha) for the whole of the leg, including

the foot; it is interesting and instructive to read in a English dictionary for Czech

speakers that ‘arm’ is glossed as ‘ruka above the wrist’, and ‘hand’ as ‘ruka below

the wrist’.

In other languages, such as Hungarian and Albanian, a distinction is made between

arm and hand, but not between leg and foot, where one word is used for both
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Table 3.3: Language-specific differences in the categorisation of body parts

Family Language ‘Arm’ ‘Hand’ ‘Leg’ ‘Foot’

Albanian krah dorë kâmbë
Indo-European Czech ruka noha

Dutch arm hand been voet
Finnish käsi jalkaFinno-Ugric
Hungarian kar kéz láb
Swahili mkono mguuBantu
Xhosa ingalo isandla umlenze unyawo

concepts. Differences in the classification of limbs are actually reasonably well-

attested, and as we can see from table 3.3, occur both across and within language

families.

The task facing the human language learner, therefore, is not as straightforward as simply

mapping between words and meanings. As we saw in chapter 2, we must also explain

where the concepts come from, as well as how they are linked to words. The massive dif-

ferences in meanings across languages, which we have only touched upon in this section,

seem to imply that at the very least, there must also be some kind of mapping between

word meanings and some units of conceptual or semantic space.

3.4.1 Language-specific Categorisation

And yet we find that the semantic units from which this conceptual space must be built

are themselves apparently not made up of any easily accessible cognitive primes. Brown

(2001) and de León (2001) give very interesting accounts language-specific semantics in

the spatial terms of the related Mayan languages Tzeltal and Tzotzil, which are spoken in

the Chiapas highlands of Mexico. These languages use a system of describing location

which is completely foreign to an English speaker. Speakers of Mayan languages appear

to regard the whole world as if it were tilted down northwards, so they speak of the

‘uphill’ end of a table. Levinson (2001) gives the following example from Tzeltal:

(3.1) pachana

bowl.put.CAUSE.IMP

bojch

gourd.bowl

ta

at

y-anil

its.downhill

te

the

kartone

cardboard.DEIC

‘put the bowl behind the box’
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In order to translate the English concept behind, Tzeltal speakers use the term y-anil,

which literally means ‘its downhill side’. Although the two sentences can be good trans-

lations of each other, this hides a great difference in the conceptual systems of the lan-

guage. Levinson (2001) draws a distinction between the following three strategies for

specifying the spatial position of an object:

intrinsic, in which the object is located in a domain specified by the Ground (Talmy,

2000) object.

e.g. ‘behind the box’

relative, in which the object is located relative to the speaker.

e.g. ‘to the left of the box’

absolute, in which the object is located according to a fixed, geographical frame of ref-

erence.

e.g. ‘to the north of the box’

As we can see, the English preposition behind is, using Levinson’s terms, an intrinsic

direction term, which locates one object in a domain specified by the object which serves

as the argument of the preposition. By using behind in a translation of y-anil as in exam-

ple 3.1, the speaker means that the box should end up between herself and the bowl. If

the positions of speaker and bowl are reversed, the English speaker can still use behind to

refer to the situation, because their positions relative to the Ground object (the box) are

the same. In Tzeltal, on the other hand, y-anil is a cardinal or absolute direction term, in

which the frame of reference is fixed according to the local landscape. In the second sit-

uation, with the positions of speaker and bowl reversed, a Tzeltal speaker could now not

use y-anil, but would instead be obliged to use y-ajk’ol, meaning its uphill side (Brown,

2001).

Clearly, spatial concepts in Tzeltal are very different to those in English, and transla-

tion between the two is not straightforward, as much additional contextual information

is required for an accurate translation. How, then, do children manage to build such

different conceptual systems and induce appropriate meanings for the words they hear?

Brown (2001) shows that semantic units which had previously been considered as uni-

versal building blocks, such as VERTICAL, do not provide Tzeltal children with a set of

concepts onto which they can map words as they induce their meanings from context;

instead, they appear to develop the concepts themselves through the process of learning

words in context.
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Choi and Bowerman (1991) provide further evidence of language-specific categorisation

in children, in their study of English- and Korean-speaking children categorising spa-

tial events in spontaneous speech. Choi and Bowerman focused on English and Korean

because of the notable differences between the languages in categorising actions relat-

ing to the positioning of one object relative to another. English is a ‘satellite-framed’

language10, in which the path of the action is determined by the satellite, and Korean is

a ‘verb-framed’ language, in which the path is determined by the verb (Talmy, 2000).

For instance, Choi and Bowerman show how English makes a fundamental distinction

between contact with an external, supporting surface (putting on), and putting into a con-

tainer (putting in). This distinction is unknown in Korean, and instead a distinction is

drawn between putting two objects into a close-fitting, interlocking relationship (kkita),

and putting two objects into a loose-fitting relationship (nehta). For instance, putting a

ring on a finger, a top on a pen, a cassette in its case, and closing a filing cabinet drawer

are all covered by kkita, while putting an apple in a fruit bowl or a quoit over a pin are

covered by nehta.

Choi and Bowerman’s most important finding with respect to the way that children learn

to categorise spatially was that the children in different language communities cate-

gorised spatial events language-specifically; they did not use any universal or basic set

of semantic concepts, but instead the English-speaking children used the categorisation

scheme of adult English, and the Korean children the different system of adult Korean.

Bowerman and Choi (2001) suggest persuasively that this language-specific learning has

already started by the second half of the second year of a baby’s life, and that the chil-

dren’s sensitivity to their language-specific distinctions begins to develop in comprehen-

sion before production.

These results, then, pose difficulties for accounts of acquisition which rely on universal

spatial primitives or units of conceptual space. An important insight which may shed

some light on how to explain this problem is that many apparently diverse linguistic

categories can actually form continua. Schlesinger (1979) shows how the comitative

case, which expresses TOGETHER WITH and the instrumental case, which expresses BY

MEANS OF can be regarded as the two ends of the same conceptual continuum, which

just happen to be usually expressed using the same preposition in English, as can be seen

in his ordered list of ten simple English sentences, reproduced below:
10A satellite is a non-nominal complement to a verb root, like the verbal particles in, out in

‘He went in/out’ and the German or Hungarian verbal prefixes with similar meanings (‘Er ist
hinein/hinausgegangen’,‘Be/Kiment’).
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(3.2) a. The pantomimist gave a show with the clown.

b. The engineer built the machine with an assistant.

c. The general captured the hill with a squad of paratroopers.

d. The acrobat performed the act with an elephant.

e. The blind man crossed the street with his dog.

f. The officer caught the smuggler with a police dog.

g. The prisoner won the appeal with a highly paid lawyer.

h. The Nobel Prize winner found the solution with a computer.

i. The sportsman hunted deer with a rifle.

j. The hoodlum broke the window with a stone.

Schlesinger presented the set of sentences to speakers of languages which do not use the

same form for the comitative and instrumental meanings, and found that although differ-

ent languages divided this continuum at different points, the ordering of the continuum

itself was never broken. A language like Swahili, for example, used the preposition na in

sentences a-f, and the preposition kwa for sentences g-j, but he found no language which

used the same word for sentences c-e and also h-i, for instance.

Bowerman and Choi (2001) describe a previous study (Bowerman & Pederson, 1992) in

which a similar spatial continuum from support (cup on a table) to containment (apple

in a bowl) was demonstrated. Again, languages divided this continuum up in different

ways, and again it is interesting to find that they always maintain the integrity of the

continuum itself. Dutch, for instance, uses op for support and adhesion (a plaster on a

leg), aan for attachment (a picture on a wall) and suspension (an apple on a twig), and

in for containment, while Spanish uses en for all these relationships. Bowerman and

Choi hypothesise from these studies that children might use similarity gradients to guide

semantic learning, using these kind of continua to generalise systematically.

These detailed studies show us, therefore, that an accurate model of word learning needs

to include not only an associative module which links words and meanings, but also a

mechanism for the construction of meaning, created in response to the learner’s experi-

ences in its environment, and a way for the learner to work out which of the meanings it

can create, should be used in the language it is learning. It looks uncomfortably likely

that we need to expand the learning task yet again, to include not only mappings between

words and word meanings, and word meanings and universal concepts, but also another

level of mapping between universal concepts and cultural semantic parameters.
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3.4.2 Linguistic Relativity

The scenario outlined by Bowerman and Choi (2001), Brown (2001), and de León (2001)

can be seen as giving support to the weaker variant of the (in)famous Sapir-Whorf hy-

pothesis, known as linguistic relativity, in which language is held to influence thought

directly. The stronger version of the hypothesis, or linguistic determinism, stating that

language constrains the thinking of people has been regularly, and mercilessly, attacked

as an object of ridicule, for instance by Pinker (1994), yet despite Whorf (1956)’s own

rather mystical observations, the recast, weaker version of the hypothesis appears rela-

tively sensible given all the evidence we have seen about the language-specific differ-

ences in semantic structure, and indeed it is often unwittingly supported by many people

who claim to disagree with it. The Sapir-Whorf hypothesis remains a contentious topic

of debate, yet still far from conclusively proven or discounted. Indeed, Cowan (1997)

describes the grammar of lojban, a language which was designed specifically to test the

hypothesis, by allowing the full expressive power of a natural language but with differ-

ences in structure and with a grammar based on the principles of logic. For the moment,

however, until a diverse international community of lojban speakers emerges, we must in-

vestigate the influence of language on concepts by looking at existing human languages.

Firstly, let us look at the popular and relatively successful movement to rid languages

of sexist terminology (Lakoff, 1976; Maggio, 1989) such as the generic use of ‘he’ and

words such as ‘chairman’, ‘policeman’ and so on. Even in this realm of promoting lin-

guistic equality, there are intriguingly different strategies for the coinage of replacement

words which appear to depend explicitly on the coding of gender within the language.

We can consider two main types of gender system, following Corbett (1991), as follows:

semantic gender systems, in which nouns are assigned to a class based on their mean-

ing. For instance, Tamil has a strict semantic system, in which nouns are assigned

gender based on the sex of their referents, as does Modern English, where man is

masculine, and is referred to with the pronoun he, while woman is feminine, and

all inanimate nouns are neuter11. Also included here are also predominately se-

mantic systems, such as Dyirbal, in which each gender has a clear semantic basis,

but there are numerous exceptions because the bases are not mutually exclusive;
11In English, however, there is a degree of confusion about the gender of nouns denoting children and

animals, and a possible exception with ‘ship’, which is often feminine.
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although fish are generally in class I as non-human animates, poisonous fish are in

class II, perhaps due to association with fire and other harmful substances.

formal gender systems, in which nouns are assigned to a class based on morphological

and phonological reasons, which may have no relation to the sex of the noun’s

referent. In Old English, for example, two of the words for ‘woman’ were not in

the feminine gender: the ancestor of our modern word wı̄fmann was masculine,

while another word wı̄f was neuter, as is also reflected in its German cognate das

Weib.

In languages with a natural gender system, like English, the mechanism for rooting out

sexist terminology is to create gender-neutral forms: ‘chairperson’ replaces ‘chairman’

and ‘police officer’ replaces ‘policeman’. These replacement forms can be referred to

with masculine, feminine, or often generic gender-neutral pronouns such as ‘they’. In

languages with grammatical gender, on the other hand, gender-neutral forms are often

not permitted in the language, and with this avenue excluded, innovators instead resort

to coming up with feminised forms of sexist terms, which of course are just as sex-

ually exclusive as the original offending term. In French, for instance, new coinages

include écrivaine and auteure to describe explicitly female writers, because the standard

terms (écrivain, auteur) are grammatically masculine and cannot be made gender-neutral

(Pauwels, 1999). It is hard to see how these two diametrically opposed strategies can be

reconciled without acknowledging that the main pressure for choosing one over the other

comes from the explicit coding of gender within the language itself, thus providing clear

supportive evidence for Sapir-Whorf. Indeed it is reasonable enough to ask what the pur-

pose of the ‘linguistic equality’ movement is, if language does not have any influence on

the thoughts of its speakers?

One way in which people have sought to investigate linguistic relativity is to choose a

small, well-defined domain, and then look at how it is organised in various languages.

The most famous of these studies, undertaken by Berlin and Kay (1969), discovered,

after investigating speakers of twenty different languages, that basic colour categories

were universal, that there was a great deal of agreement on the examples, or focal points

referred to by each basic colour term, and moreover that there was a specific hierarchical

order to the emergence of these colour terms. Basic colour terms are, in Berlin and

Kay’s terminology, both general and salient, that is, they apply to diverse classes of

objects, and are readily available to most speakers of the language. This has been taken as

compelling evidence against linguistic relativity and in favour of a nativist specification

of semantic categories, though given the well-understood nature of the human visual
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system (see Belpaeme (2002) for a detailed discussion), it would be better to think of it

as an exploration of the innate visual biases which lead us to divide up the colour space

into semantic categories.

Although Berlin and Kay’s claims are widely reported, their methodology has been the

subject of much criticism, and indeed they are often accused of making the data fit the hi-

erarchical sequence which they proposed. In particular, Sampson (1997) has investigated

the details of the data on which their conclusions were drawn, and found a number of

problems which cast doubt on their reliability. Firstly, the data was gathered by students

on one of their courses, who chose a language, learnt about its colour terms as best they

could, and reported their findings as coursework. In a number of cases, the information

reported by the students is unsurprisingly wide of the mark. Sampson reports a particu-

larly entertaining example where Berlin and Kay report colour terms in Ancient Greek,

but somehow fail to find the very common word melas, which means BLACK and is even

now used relatively productively in deriving scientific English words from classical roots

(e.g. melanoma, a cancer consisting mainly of black pigment). Unfortunately, however,

BLACK and WHITE are the first two terms on the colour hierarchy, and the authors there-

fore are in need of a word. They settle on the obscure glaukos, which actually had little

or no colour reference in Ancient Greek12, though it denotes a blue-green-grey colour in

Modern Greek. Sampson (1997) also shows how Chinese loan colour terms are excluded

from the Korean set of colours, which then fits the hypothesis, but they are included in

the Vietnamese list, which would not fit without them (and is only a marginal case even

with them).

There is also much criticism of an apparent cultural bias towards American English in

Berlin and Kay (1969)’s work, and an inherent assumption that the colour categories in

American English are at the ‘highly-evolved’ end of an evolutionary scale. There are in

fact more basic colour terms than the eleven they name; Russian, for instance, has at least

twelve (Goddard, 1998), and there may even not be any basic colour term present in all

languages, nor are the best examples of each category quite as predictable as Berlin and

Kay would have us believe (Dedrick, 1998).
12Sampson (1997) appears to be exaggerating with his claim that glaukos had no colour reference at all,

as Liddell and Scott (1980)’s standard Greek-English lexicon shows its primary meaning as ‘gleaming,
glancing, bright-gleaming’, with a secondary meaning of ‘pale green, bluish-green, gray’ in the restricted
field of reference to the colour of olives, willows and vines.
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3.5 Summary

In this chapter, we have investigated the problem of how children learn the meanings of

unfamiliar words. We have seen that there is a very real problem of meaning indetermi-

nacy if we assume simple inductive learning, because there is always an infinite set of

possible meanings, no matter how much evidence is collated.

To try to get round this problem, many innate cognitive biases, which allow the learner

to reduce the set to a finite one, have been proposed and explored. In particular, we

have seen experimental evidence for the whole-object bias, the shape bias, the taxonomic

bias, the mutual exclusivity assumption and the principle of contrast. We have seen

further how different languages divide up semantic space in different and incompatible

ways, and seen that a complete account of the learning of words must include not only

the learning of a mapping between words and their meanings, but also a way to work

out what kind of semantic organisational structure is used by the language being learnt.

Semantic categories are not shaped directly by conceptual biases, but only in interaction

with this semantic organisational structure.

In the next chapters, I will describe my model of experience-based meaning creation and

communication, and then go on to investigate how the inclusion of cognitive biases such

as those discussed here can affect the conceptual structure of agents and their success in

developing a mutual communication system.



CHAPTER 4

The Representation and Creation of Meanings

“It is difficult to design and motivate empirical studies on concept acquisition

without first committing oneself to a set of assumptions about what concepts

are and how they are represented.” (Keil, 1992, p.25)

4.1 Introduction

In chapter 2, we explored the nature of meanings and how concepts can be acquired,

then in chapter 3 we investigated the particular problem of how learners can learn the

meanings of unfamiliar words. In this chapter, these two strands will be linked to the

wider field of evolutionary linguistics as discussed in chapter 1, as I take a look at recent

simulations of the evolution of aspects of human language, and in particular at the models

of meaning representation and meaning creation which have been put forward in the

literature, and the model which I will adopt for the simulations in this thesis.

The linguistic competence of a language user falls naturally into three different, but mu-

tually connected major subsystems: phonology describes the linguistic coding of the

signals which are heard and uttered, semantics describes the coding of the meanings

which are expressed and understood, and syntax can be regarded as the mapping between

phonology and semantics. Although many linguistic theories choose to ignore or gloss

over some of these subsystems, it is clear from the last four decades’ work in linguistics

that a comprehensive theory of language must address all three subsystems, as well as the

interactions between the three. Keil’s concerns in the epigram at the start of this chapter

with respect to empirical studies with children are no less true when designing models

69
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for investigations using agents1. In order to be implemented on a computer, all three

subsystems of language must be represented symbolically, and in different ways, so that

they can then be interpreted by researchers as in some way ‘phonological’, ‘semantic’ or

‘syntactic’. The way in which these systems are implemented is heavily dependent on

the theoretical assumptions of the designers of the simulations, and it is to these methods

that I now turn my attention.

In this chapter, I explore in detail representations of meaning and mechanisms of mean-

ing creation which have been put forward in evolutionary linguistic simulations, and

then, building on the conclusions I draw from this, in chapter 5, I present my own model

of semantic representation and meaning creation, which is used in the experiments in

subsequent chapters. In more detail, section 4.2 is a discussion of the various semantic

representations which have been used in recent simulations of aspects of language evolu-

tion in a little detail, discussing in particular how they relate to the famous dichotomy of

meaning between sense and reference (Frege, 1892), and investigating the assumptions

which have been made about how meanings are acquired and how they spread through

a population of agents. In section 4.3, I then move on to look at the same simulations

from the point of view of meaning creation, investigating the mechanisms which have

been put forward to adapt internal semantic representations, and will suggest a suitable

method for grounded, individually created semantic representations.

4.2 The Representation of Meanings

4.2.1 Predicate Logic

In the models of Kirby (2000, 2002), Hurford (2000) and Batali (2002), meanings are

based on variant representations of first-order predicate logic, probably the most widely

used knowledge representation language for describing the semantics of both simple

propositions and fairly complex facts about the world which are derived from the simpler

facts by standard formal rules of inference.

In the earliest of these evolutionary models, Kirby (2000)’s meanings each have three

attributes, as shown in 4.1. He glosses them with standard linguistic theory as agent,

patient, and predicate, while rightly emphasising that it is important to remember that
1In this thesis, I am not using the term agent in its usual linguistic sense of the logical subject of a

transitive clause (see Song (2001) for an exposition of how the agent role is realised in different languages),
but instead in its very common artificial intelligence sense, where it simply means a ‘simulated individual’.
Under this umbrella term I include all simulated individuals, whether they exist only inside a computer or
are physically implemented as robots.
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these glosses do not exist in any way inside the simulations; they are simply a mnemonic

which helps us to understand the structure of the meanings, which in effect are presented

as a straightforward representation of a sentence containing a transitive verb with a sub-

ject and object. Kirby’s three attributes are further classified, again in accordance with

standard practice in this field, so that agents and patients are classed together as subsets

of objects, while predicates are classed as actions. There is, therefore, a very precise

typed structure to the meanings in Kirby (2000)’s semantic model; a particular object can

appear in either of the two attributes which are available to it, namely as agent or patient2,

but it is impossible, for instance, for an action to occur as either agent or patient, or for

an object to occur as the predicate.

Meaning � � Objects� ��� �
Agent � Patient � Actions� ��� �

Predicate �(4.1)

In Kirby (2002)’s extension of this research, which focuses on the emergence of com-

positionality and recursion, the concepts are similar, as shown in 4.2, although there is a

crucial extension. There are now two types of predicates: the first identical to that shown

in 4.1; the second is a new type of predicate, which instead of an object as its second

argument, takes another meaning representation. There are no further restrictions on the

type of this embedded meaning: it can contain either a normal predicate or an embedding

predicate, allowing in principle for unlimited recursion and an infinite number of mean-

ings. This recursion is only possible, however, in the second argument position; only

objects are allowed as the first argument to a predicate.

Meaning �

�	�

� Predicate � (Object, Object) �� Predicate � (Object, Meaning) �(4.2)

Hurford (2000)’s semantic model is in a similar vein, based on a simple world of hu-

mans and animals, first described by Cann (1993). In Hurford’s model, there is further

expansion of the types of predicates which can be found, this time not just in terms of

the type of patient they take, but also in terms of their valency, or the number of argu-

ments they can take. In addition to the dyadic predicates which can be read as transitive

verbs, as in Kirby’s simulations described above, Hurford also has monadic relationships
2It seems that there is a further implicit restriction in the model, which ensures that the same object is

never allowed to appear in both places of the predicate. For instance, there are no ‘reflexive’ meanings like
<Agent=Zoltan, Patient=Zoltan, Predicate=Finds>
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such as HAPPY and triadic relationships such as GIVE. Recursion is also implemented,

but this time through not a whole class of embedding predicates, but just by one special

SAY-predicate, which makes the further requirement that its agent must be human3. A

description of Hurford’s semantic model can be seen in 4.3.

Individual �

�	 
 Human

Animal
(4.3)

Meaning �

�������	
������

� Predicate � (Individual) �� Predicate � (Individual, Individual) �� PredicateSAY(Human, Meaning) �� Predicate � (Individual, Individual, Individual) �

Batali (2002)’s semantic model differs slightly from those of Kirby and Hurford, in its

use of variables, although the representations are clearly still based on predicate logic.

Batali’s representations are called formula sets, and are composed of a predicate and

variables, or arguments, as shown in 4.4. Batali distinguishes two kinds of predicates,

analogous to those shown in 4.3: monadic predicates, which he calls properties, and

dyadic predicates, or relations. Two formula sets can be combined into another formula

set by simply juxtaposing any number of them4 (represented by the Kleene star notation

in 4.4), and further manipulated by altering the mapping of the variables within them, to

create more complex meanings. Batali deliberately chooses not to implement recursion

directly, but nevertheless the repeated combination of formula sets produces in principle

an infinite set of possible meanings.

Meaning �

����	
���

� Predicate � � �� Predicate � � � �
(Meaning)

�
(4.4)

Having looked at the predicate logic representations used by Kirby, Hurford and Batali,

it is interesting to investigate their semantic models in terms of their semantic content. In

particular, what do the predicates and arguments refer to, and what sense-relations do the

meanings have with each other? We might assume that the meaning of the predicates is
3All other predicates in Hurford appear to be able to take any individual, either human or animal, as

any of their arguments.
4Batali has imposed an arbitrary limit of seven formula sets per meaning, for ease of implementation.
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that of the common English words which are written identically to them, and that they are

used to refer to actions in the model’s imaginary world just as the English words are used

to refer to actions or objects in the real world. But here we stumble across an important

problem which recurs in many of these evolutionary simulations: the agents do not use

the meanings to refer to actions or objects in their world, because there is no way in the

experiment for the agents to access their world5. There is, therefore, nothing useful we

can say about the reference of the predicates and arguments in these models; they have

no denotation at all, because there is no external semantics in the models over which any

denotation must be specified.

In order for us to be able to regard a meaning representation as encoding sense rela-

tions, at the very least there must be some structure in the representation, so that some

relationship, however tenuous, between different elements (meanings) in the represen-

tation can exist. There are, therefore, some distinctions made in the models which we

could arguably interpret as sense distinctions, particularly the hierarchical division of IN-

DIVIDUAL into ANIMAL and HUMAN in Hurford (2000)’s simulations, which of course

finds a parallel in the semantics of many natural languages. Crucially, however, we find

that these ‘sense’ distinctions are not available to the agents in Hurford’s model, who in-

stead merely have two pre-defined, arbitrary classes of names, one of which can be used

as an argument to any predicate, and the other which can be used as an argument to any

predicate except SAY.

Overall, therefore, although each experimenter has implemented a structured represen-

tation which they have called ‘semantic’ in these models, there is very little about these

representations which relates to sense and reference, and thus very little about them which

can be sensibly regarded as in any way semantic, apart from the name itself. Instead, the

purpose of the ‘semantics’ in these models is actually to serve as a blueprint for the syn-

tax, which will then appear to emerge from the simulations. The agents’ task is to learn a

mapping between representations in two mediums: an existing, unchanging code which

the experimenters call semantics, and a new, modifiable, emergent system which they

call syntax. As Nehaniv (2000) has pointed out, syntax only develops successfully from

unstructured signals in these cases because the signals are coupled with meanings which

are already structured, and it is no coincidence that the emergent ‘syntactic’ structure

directly parallels the pre-existing ‘semantic’ structure.
5Indeed, in Batali’s model, there is no mention of an external world at all.
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Table 4.1: Kirby (2001)’s model of meaning as a two-dimensional matrix with five dis-
crete meanings on each axis.

4.2.2 Vectors and Matrices

The models discussed in this section use a different semantic representation,which is

more abstract and less obviously based on a well-known formalism like predicate logic,

but yet with meanings that still display a certain amount of the structure necessary for us

to discern sense relations between meanings.

Kirby (2001) moves away from explicit predicate logic by introducing meanings which

are vectors in two dimensions � and
� 6. Each dimension can range over a specified

number of discrete values, and so the whole set of meanings, or the meaning space, can

be thought of as a matrix, with a finite number of possible meanings, as can be seen in

table 4.1, where there are 25 discrete meanings. Kirby (2001)’s model described above

is very similar in its representation of meaning to one which was first presented by Steels

(1996a). In this model, as in Kirby’s, meanings are represented in terms of discrete

values of features. Steels explicitly names both the features WEIGHT, SIZE, SHAPE and

their respective values7, but as in previous models, the names are merely mnemonics to

help in understanding the model. The only real difference between the meaning space

representations is merely that while Kirby’s is a two-dimensional matrix with five discrete

values on each dimension, Steels’ is a three-dimensional matrix with three discrete values

on each dimension. Kirby, therefore, has slightly reduced both the dimensionality and

the number of possible meanings in the simulations, or cells in the matrix of meaning

(25 ( 	 � ) compared to 27 ( � � )), but otherwise the models’ meaning representations are

identical.

Brighton (2002), in a paper showing how compositional syntax arises under cultural pres-

sures, extends the representations of both Steels (1996a) and Kirby (2001), by creating
6The two parts of the meaning could of course still be interpreted as predicate and argument, but this

interpretation is no longer built in to the model.
7The possible values of the attributes WEIGHT, SIZE, SHAPE are � oval, round, square � , � tall, small,

medium � and � heavy, light, average � respectively.
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Figure 4.1: The relationship between the situations in the environment and points in the
agent’s meaning space, from Brighton (2002). The agent’s meaning space is constructed
as a multi-dimensional matrix, in � dimensions (here � � � ), with � discrete values
possible on each dimension.

a more general meaning space, which is defined by two parameters: the number of fea-

tures, or dimensions � , and the number of possible discrete values which can occur on

each feature � , as shown in his diagram, which is reproduced as figure 4.1. Both the

previous models, therefore, should be considered as specific instantiations of Brighton’s

more general model of meaning as a multi-dimensional matrix: Steels’ can be defined

with � � � and � � � , while Kirby’s can be defined with � � � and � � 	 . It is

important to point out, however, that figure 4.1 is potentially misleading in its depiction

of the meaning space; despite its portrayal with apparently continuous axes, the meaning

space is indeed constructed as a multi-dimensional matrix, with each dimension � � � � �
��� made up of a fixed, finite number ( � ) of discrete values.

Brighton (2002) also introduces an explicit external environment to the model, which

consists of a number of communicatively relevant situations. These situations in the en-

vironment correspond in turn to distinct points in the discrete, multi-dimensional mean-

ing space, as is portrayed by the dotted lines in figure 4.1. This mapping is specified

randomly at the start of the simulation, and never changes thereafter. This representation

of meaning as vectors clearly has a different underlying semantic model from the models

of Kirby (2000) and Hurford (2000) discussed in the previous section. There is here an

explicit external environment, and the meanings therefore appear to have reference to ob-

jects, or situations in this environment. The meaning space is also explicitly structured,

so we can consider relationships between particular meanings, and it might be argued that

the meanings do have some kind of sense, if we take a rather broad definition of sense as

a relationship of any sort between meanings. For instance, meaning ��� � � � ��� is related

to meaning ��� � � � ��� by virtue of the fact that it differs only in the first dimension, being
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identical in the second and third8. On the other hand, neither of these possible sources of

semantic representation are quite what they seem; although the meanings appear to have

reference, on closer inspection this turns out to be illusory, and although we do find some

kind of relation which could be called a sense relation, this is not as great as might at first

be envisaged by Brighton’s notation.

Moreover, Brighton’s generalisation algorithm itself is interesting, because of its great

power based on extrapolating from chance correspondences to whole dimensions of

meaning space on the basis of feature value identity and difference. We might imagine,

for instance, that meaning � 	 � � � � � could be considered as ‘nearer’ to meaning � � � � � � �
in terms of Euclidean distance than it is to meaning � � � � � � � , and therefore that dis-

tances relatively near to each other are more likely than distant ones to be considered as

the ‘same’ meaning, but in fact this relationship is surprisingly not used in Brighton’s

model9. If an agent meets two meanings � 	 � � � � � and � � � � � � � , both associated with

the same signal, it does not use a simple generalisation, marking one signal with both

meanings it has met (like ��� � 	�� � � � � � 10), nor does it even generalise across a contiguous

portion of the meaning space, bounded by the meanings it has met (like ��� � - 	�� � � � � � ), but

actually it generalises across all possible meanings in the dimension where differences

occurred ( ��� � � � � � ), as shown in table 4.2. To take a real-world example of features with

discrete values, let us imagine that the objects in Brighton’s model represent chemical el-

ements, and the first dimension represents the atomic number of the elements. When an

agent meets two objects with the same signal, one of which is lithium (atomic number 3)

and the other of which is boron (atomic number 5), Brighton’s generaliser chooses not to

mark the signal with a simple generalisation (lithium or boron), nor a spatial generalisa-

tion including the element which stands between lithium and boron in the periodic table

(lithium or beryllium or boron), but generalises dimensionally across all elements, as-

suming that the atomic number, and the identity of the chemical element, is an irrelevant

distinction for this signal. This is a legitimate, if very powerful, generalising strategy,
8This much, of course could also be said about the predicate logic representations discussed in the

previous section: HAPPY(x) differs from HAPPY(y) only in its argument, as both expressions use the same
predicate.

9 In Brighton, Kirby, and Smith (2003)’s related model, on the other hand, the authors do indeed make
use of this distance relationship in the meaning space to derive their measure of compositionality.

10The notation I use both in this paragraph and in table 4.2, is taken from the language of regular
expressions (Friedl, 2002). In particular, I will make use of the following three expressions:

�
	 � ��� represents either � or �
�
	 � – �
� means either � or � or any other possible value between � and �
� and � is a wildcard which matches any one possible value.
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Table 4.2: Various methods of generalising over two meanings � 	 � � � � � and � � � � � � �
Type Notation Members of Generalised Meaning

Simple ��� � 	�� � � � � � ( � � � � � � � , � 	 � � � � � )
Spatial ��� � - 	 � � � � � � ( � � � � � � � , � � � � � � � , � 	 � � � � � )
Dimensional ��� � � � � � ( ��� � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � )

which focuses on the similarities between two meanings and generalises over the dif-

ferences, but it is important to note that Brighton’s agents take account neither of any

‘distance’ between meanings, nor of how many possible meanings they are generalising

over, and therefore that the number of meanings which this merged meaning ��� � � � � �
corresponds to, and so the power of the whole generalising algorithm, are both explicitly

determined by the particular value of � in each experiment. If � is relatively high, such

as in the number of known chemical elements (currently 113)11, then exposure to just

two different values in one dimension causes the agent to assume that all different values

of that dimension are expressed in the same way.

There are indeed some relationships between the meanings in Brighton (2002)’s model,

which might charitably be interpreted as sense relations (although in truth they bear little

resemblance to any traditional sense relations such as hyponymy and antonymy), but do

these meanings have reference? The environment, and in particular its relationship to

the agents’ meaning representations, is not as important as it first seems in these models.

Although the environment is explicitly linked to the meaning structure, by being defined

as the source of the meanings, and represented as such in figure 4.1, on closer inspection

we can see that the relationship between environment and meaning actually plays no

role at all in the simulations; the agents never interact with the environment in any way,

and the environment actually appears to be more of an obfuscatory factor in the model.

We have seen in the previous section how the presence of an external environment is

necessary for the development of a real semantic system, but now Brighton (2002)’s

general model shows us that the mere presence of an environment is not enough: it is

also necessary for the agents to have some interaction with their environment; without

this, there is no way in which the meanings can have reference.

A direct extension of Steels’ vector-based method of meaning representation is described

by de Jong (2000), whose model is inspired by Cheney and Seyfarth (1990)’s study of

vervet monkeys, and consequently whose agents’ semantic ‘state-action’ space has three
11The apparent synthesis of element 118 has been retracted by Ninov et al. (2002), its purported discov-

erers.
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state dimensions, representing the presence of a particular predator (
� � ), and the agent’s

horizontal (
� � ) and vertical (

� � ) positions, together with two action dimensions, corre-

sponding to movements horizontally ( � � ) and vertically ( � � ). The meanings described

by de Jong, which he refers to as situation concepts, or patterns in the history of an

agent’s interaction with its environment, do not fit straightforwardly into Brighton’s gen-

eral model, because his meaning structure is not sufficiently uniform to be defined in

simple terms with the two parameters � and � used by Brighton. Although the number

of features ( � ) in de Jong is clearly five, the number of values on each features ( � ) is not

uniform; after all, this model is tailored towards the specific problem of modelling the

vervet communication system, rather than the more general problem of meaning creation.

For instance, the predator (
� � ) feature has four possible values, representing the three

specific predators and the absence of any of them. The other features fall naturally into

two pairs, representing the horizontal (
� � and � � ) and vertical (

� � and � � ) positions, but

each works slightly differently: The vertical positioning feature (
� � ) has three possible

values, and the vertical action feature ( � � ), which defines a new vertical position for the

agent, likewise has the same three possible values. The horizontal action feature ( � � ),

on the other hand, is represented explicitly in terms of movement relative to the current

position: either to stay still, or to move one step to the left or to the right, again making

three possible values. Because the horizontal action feature does not choose an absolute

position, but instead defines its actions relative to the current position, the number of

values on the horizontal position feature (
� � ) is in principle unlimited12, although in

practice, when the predators appear in the world, they must be sufficiently near to the

agents, in terms of their horizontal position, or else the agent’s predator sensor does not

detect them.

The model described by de Jong, nevertheless, has elements of both sense and reference

relations in its meanings. The categories in the state-action space are related to each

other using a hierarchical relationship, as we shall see in section 4.2.4, and they are also

explicitly grounded in the agents’ external world through the extraction of feature values.

4.2.3 Word Webs

Hashimoto (1997, 2001) presents a very different semantic model which is based on

sense relationships between words. His focus is on the sense-making process and on
12In fact, the space used by de Jong (2000) is bounded, but I have been unable to find the limits to the

horizontal plane which he used in the experiments.
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Figure 4.2: Semantic representation as a dynamic word-web, from Hashimoto (2001).
The acceptance of the sentence by the agent triggers modification of its word-web.

language as a truly dynamic system, which is modified and remodelled after every com-

municative or linguistic episode. Interestingly, Hashimoto actually makes no distinction

between words and word meanings, which are represented using an enormous word-web,

implemented as a dynamic matrix, which models the relationships between words based

on patterns of word usage and collocation in particular utterances and in larger texts of

utterances, as shown in figure 4.2.

Hashimoto’s semantic representation is clearly based on sense relations, although it is

worth noting that the only relationship which is actually modelled is an amalgamation

of word similarity (a measure of the frequency with which words are used in the same

sentence) and word correlation (a measure of the patterns of word appearance in texts);

there is again no modelling of even basic hierarchical sense relations, such as those we

discussed in chapter 2. As a purely sense-based system, whose relationships are built

from word usage patterns, we are not surprised to find that there is no reference at all in

Hashimoto (2001)’s model. Again, there is no environment or world outside the agents,

so there is no possibility that the words can refer to anything in this external world. This

may also hold a clue to the lack of basic semantic notions such as hyponymy in this model;

there is no way for the agents to discover that the set of referents referred to as CAT (its

extension) is a subset of those referents referred to as ANIMAL, and in fact there is no

way in which such a relationship can be represented in the basic word-web in figure 4.2,

without further modifications which could potentially specify the type of the relationship

represented by the connections between words.
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s0 s1 s2 s3 s4

Figure 4.3: Steels’ (1996) representation of meaning on discrimination trees. The dis-
crimination trees are built on sensory channels (s0-s4), and are shown with the root of the
tree at the left. Each segment of the tree shows the bounds between which it is sensitive.

4.2.4 Trees

In Steels (1996b), however, a different approach is put forward, which has been further

developed in Steels (1997, 1999) and Steels and Kaplan (2002), and has been extended

by many researchers since, including the work in this thesis: instead of defining a set of

meanings which will be used by the agents in their language games, Steels simply defines

a framework for representing meaning, on which the agents build their own individual

representations. These semantic representations can be represented as a discrimination

tree, with each segment showing the bounds between which it is active, as shown in figure

4.3. This semantic representation described by Steels can be clearly seen to have a rea-

sonable number of sense relationships built into it; although not as comprehensive in its

inclusion of multiple relationships between meanings as Hashimoto’s word-web, Steels

(1996b)’ meanings have an obvious hierarchical structure, allowing the representation of

semantic relationships such as hyponymy (one segment being a subset of another seg-

ment higher up the tree). As we saw in chapter 2, a binary tree structure also allows the

implicit representation of antonymy, as each segment which has been refined into two

subcategories necessarily has two co-hyponyms, which can each be regarded as the other

one’s antonym.

Steels’ model is also closely bound to the environment in which the agents are situated,

and, as we shall see in section 4.3, it is actually the main driving force behind the creation

of meanings. Each segment on the tree, or category in the semantic representation, is

abstract, and yet it also explicitly refers to a group of objects in the external world, namely

those objects in the world whose feature values fall into the range to which the particular

segment is sensitive. The bounds which define each category do not overlap, so the
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membership of a category is clear and distinct; for each feature value, at each level of

the tree, there is only one branch which can be chosen, and only one possible meaning.

Of course, because the tree is clearly hierarchical, the same feature value can still have

different meanings at different levels of the tree, so a value which falls within the category

defined by the upper quarter of a particular tree at the second level will automatically also

fall into the category defined by the upper half of the tree at the first level13, just as in

our actual representation of meaning, the subcategory HERON is automatically also part

of the larger category BIRD.

The meanings in de Jong (2000)’s model, which I discussed briefly in section 4.2.2, can

also be thought of in terms of discrimination trees in a space, although the important

difference between de Jong and Steels (1997) is that de Jong’s meanings are each defined

in all five dimensions of his meaning space at once. By contrast, although the agents

in Steels’ model do have multiple sensory channels on which discrimination trees are

built, the channels are not related to each other multi-dimensionally (although segments

on them can be combined to create compound meanings), and meanings are defined in

one dimension alone, on each channel individually. Just as Steels’ subcategories can

be represented as ever smaller one-dimensional lines on the tree in figure 4.3, so de

Jong’s subcategories can be thought of as ever smaller five-dimensional subspaces on a

multi-dimensional tree. Clearly, meanings which are represented as multi-dimensional

subspaces are very difficult to represent graphically, and I will not try to do so here, but

it is important to note that this multi-dimensionality of meaning has implications for the

creation of meaning in de Jong’s model, as I will discuss further in section 4.3.2.

We can see, therefore, that the meanings in Steels (1996b)’ original model and its subse-

quent manifestations (Steels, 1997, 1999; Steels & Kaplan, 2002) and modifications (de

Jong, 2000) clearly have both sense relations and reference relations, and are therefore

the most truly semantic of any of the representations we have seen so far.

4.2.5 Prototypes

Vogt (2000), has implemented a model of meaning which bears some relation to de Jong’s

model, but with two main differences: it has been physically situated in actual robots, and

the categories are the first to be based on the prototype model of meaning rather than the

classical model, recalling our discussion in chapter 2. Vogt’s categories are regions in

a four-dimensional meaning space, and a particular meaning is defined by its relative
13Every value also falls into the category defined by the root of the tree, but this category is usually

ignored, because it is of no practical use in helping the agents make sense of their world, as we shall see in
section 4.3.
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Figure 4.4: A representation of meaning as hyper-rectangles in a four-dimensional space,
based on vicinity to prototypes, from Vogt (2000). Only two dimensions of the four-
dimensional meaning space are shown, with the location of the prototypes marked by (x)
and the names of the categories they form by (c1-c6).

vicinity to one of the existing prototype points in the space, as shown in figure 4.4, which

depicts just two of the four dimensions in order that the structure of the categories can

be easily shown. The regions in Vogt’s meaning space always have a hyper-rectangular

shape, just as in de Jong (2000)’s model, so there is one important way in which Vogt’s

model of meaning necessarily deviates from an ideal prototype model; the boundaries

between one category and another are clear and distinct, rather than fuzzy, making his

model in this respect a compromise between a classical and a prototype representation.

There is clearly some sense-like structure in the multi-dimensionality of both de Jong’s

and Vogt’s meaning representations using subspaces, which is perhaps to be expected

in structures which are derived explicitly from that of Steels (1996b). We can also see

that the meanings represented inside both de Jong’s computer agents and Vogt’s physi-

cal robots have explicit reference to situations and objects which are encountered in the

agents’ environment.

Finally, I will investigate another different kind of meaning representation, in which

meanings are again stored as prototypes. Despite the attractiveness of a prototype theory

of meaning in certain situations, very few simulation models actually implement such

a model, probably due to the difficulties involved in the representation of the system,

and the concomitant processing power needed to run meaningful experiments. Belpaeme
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Figure 4.5: An adaptive network in a two-dimensional space, from Belpaeme (2002).
This network, which represents one meaning, has three locally tuned units, each defined
in terms of their centre, width and height.

(2002), however, in contrast to Vogt (2000), has managed to use a method of represent-

ing prototype meanings where the categories have fuzzy boundaries. He uses adaptive

networks to represent categories, which are based on radial basis function networks (Orr,

1996), as shown in figure 4.5. Each category is represented by a different adaptive net-

work, and each adaptive network is made up of a number of locally tuned units, which

define the network. A locally tuned unit is defined by a Gaussian function around its

centre; the function is always positive, but its value decreases monotonically as we move

away from its centre, producing the characteristic bell-curves we see in figure 4.5. Each

unit is also defined by its width, or the steepness of the curve’s decline, and its weight,

or the value of the function at the centre of the unit; the adaptive network in figure 4.5,

which represents one meaning, has three locally tuned units with different centres and

different weights, although each of the three functions has the same width and so the

curves decline at the same rate.

The main advantage in Belpaeme’s approach is that the meaning space is not divided

into discrete regions, as in all the other approaches in which it makes sense to talk of a

‘meaning space’. Instead, we can look at a point in meaning space in terms of the adap-

tive networks, by interpreting the value given by an adaptive network in response to a

stimulus from the environment as a measure of category membership, or as a response

to the question “how much of a [category name] is this stimulus?”. The value produced

by the adaptive network, therefore, naturally provides a fuzzy, graded notion of category

membership consistent with that suggested by Rosch (1973). The main disadvantage is

that the boundaries between categories barely exist at all, although they could of course
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be superimposed if required; an adaptive network gives some measure of category mem-

bership for every point in the space, so there is no way to say that a particular point is

definitely not-x, and the boundary between categories cannot be clearly stated.

On the other hand, although Belpaeme (2002)’s model was clearly inspired by, and is

primarily focused on, the evolution of colour categories in agents, his simulations actually

have little to do with colours in particular and could have been presented as the evolution

of any abstract categories; the stimuli received by his agents are essentially just points

in a continuous three-dimensional space14. His model of meaning has a built-in measure

of similarity between meanings based on the weighted sum of minimum distances for

all the locally tuned units in each adaptive network, but does not lend itself easily to

hierarchical or other sense relations. In common with the simulations we have looked at

in the latter half of this chapter, however, the agent’s categories are explicitly grounded

in their environment, so they can be said to refer to stimuli or objects therein.

4.2.6 Summary

One of the crucial attributes which relates to the expression of reference is the idea that

the agents have access to and are able to interact with some kind of external world, and

objects therein which can be referred to. In the models whose meaning representation is

based on predicate logic, such as Kirby (2000, 2002), Hurford (2000) and Batali (2002),

this external world is missing, and the semantics presented is merely a code which the

agents must decipher. In Steels’ (1996a), Kirby (2001)’s and Brighton (2002)’s models,

some structure has been added to the meaning representation, which is, as we have seen,

a pre-requisite for the implementation of real semantic sense relations; additionally, both

Steels and Brighton introduce into their models the notion of an external world, notwith-

standing the fact that Brighton’s external world is actually more of a distraction than an

integral part of his model. Hashimoto (2001) presents a model which explicitly manages

without reference, as it builds its semantic structure entirely on word collocations. Al-

though no semantic notions other than collocation can be found, this model clearly has

the potential to be extended to encode other semantic relationships reasonably straight-

forwardly.

By contrast, the meaning structures in Steels (1996b, 1997, 1999), Steels and Kaplan

(2002) clearly contain both hierarchical sense relations and a real relationship with an

outside world. It is not coincidental that these models are based not on providing an
14Belpaeme explicitly defines this space in terms of the L*a*b* space devised by the Commission Inter-

nationale de l’Eclairage, where L* represents lightness, a* red-greenness and b* yellow-blueness, but it is
not clear that anything is gained by preferring this over a more abstract stimulus space.
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innate set of meanings to the agents, but instead on enabling the agents to create their own

meanings by providing them simply with a framework for representation and the ability to

interact with their environment. Steels’ original model has been extended to cover multi-

dimensional meaning structures (de Jong, 2000; Vogt, 2000), and more substantially to

incorporate representations of meanings as prototypes, with both discrete (Vogt, 2000)

and fuzzy (Belpaeme, 2002) boundaries, without losing the properties of reference which

are important to a semantic model.

It is clear that these latter, Steelsian, models are the most appropriate on which to build

a model of meaning construction, and in chapters 6–9, I present a model based on this

which will allow me to investigate how the interpretation of meaning affects the proper-

ties of agent-constructed communication systems.

4.3 The Creation of Meanings

In section 4.2, I surveyed many different systems for the representation of meaning

in simulations which have been proposed by researchers into language evolution, and

looked at how the conceptual systems relate to the Fregean notions of ‘sense’ and ‘ref-

erence’, which are often used to define meaning. Many types of meaning representation

have been put forward, representing both sides of the divide between classical and pro-

totype meanings we encountered in chapter 2, as well as more abstract representations

based on predicate logic and mathematics. Having done this, we will now look at those

same simulation models, but this time focusing on where the meanings originate and

how they are created. Having already discussed the often acrimonious debate between

nativists and empiricists, it is perhaps not too surprising to find a parallel, though al-

together more amicable, dichotomy in the field of simulations of language evolution,

between experimenters who provide a ready-made, ‘innate’ system of meaning for their

agents on one hand, and those whose focus of enquiry is the creation of the meanings by

the agents on the other.

In the first category fall the experimental models by Kirby (2000, 2001, 2002), Hurford

(2000), Batali (2002), Brighton (2002), Brighton et al. (2003) and Hashimoto (1997,

2001), who all provide some kind of innate meaning representation for the agents at the

start of the simulation. We can deal with these models briefly in this chapter, because the

creation of meanings does not play a large role, if any, in their simulations. Typically,

agents in the first group of models are provided with a finite set of meanings, accord-

ing to whichever representation of meaning the experimenter has chosen, as I discussed

in detail in section 4.2. During the experiments, the agents play two roles, with their
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exposure to these meanings being slightly different in each: as speakers, they are given

a random meaning by the experimenter, which prompts them to produce an appropriate

signal; as hearers, they receive both the speaker’s signal and the meaning it expressed as a

combined signal-meaning pair. The hearer’s task is not to produce, but to try to discover

the mapping between the two halves of the signal-meaning pair. There is no creation

of meanings at all, therefore, unless we include the initial setup of the simulation, when

a set of meanings is generated. If at any point new meanings are added to the agents’

repertoire, then these too are explicitly generated and given to the agents. We can safely

ignore such models, therefore, for the purposes of investigating the creation of meaning

by the agents themselves.

On the other side of this particular ideological fence are the models by Steels (1996b,

1997, 1999), Steels and Kaplan (2002), de Jong (2000), Vogt (2000) and Belpaeme

(2002); these experimenters provide the agents merely with the capability of creating

meanings, and investigate the conditions under which they are successful. In these mod-

els, the development of the semantic space is an important part of the simulation, and so

is much more interesting for our purposes. I will consider each of these models in turn,

starting with those created by Steels (1996b, 1997, 1999), who created the basic frame-

work from which all the others have been developed, and I will explore how the agents

go about the process of developing their own semantic systems.

4.3.1 Discrimination Games

The basic procedure of agent-based grounded meaning creation, of agents developing

meanings based on and relevant to the world they inhabit and the experiences they have,

was initially modelled by Steels (1996b), who named it a discrimination game, after

Wittgenstein (1953)’s famous language games. The Steelsian discrimination game is

both selectionist, adaptive and minimalist: selectionist because the environment in which

the game is played, and the dynamics of the game itself apply pressure to the agent’s

internal representations; adaptive because it responds to the results of the game to adapt

its own internal representations in various ways; and minimalist because the agents in the

simulations are provided only with basic operations for meaning creation, and not any

intelligent generalisation or language-specific capabilities such as those which have been

suggested for human infants and which we surveyed in chapter 3. I will briefly describe

the four constituent parts of all discrimination games in the Steelsian paradigm, namely

scene-setting, categorisation, discrimination, and adaptation, below, and will then go on

to discuss its varying implementation by researchers, who each use slightly different

methodologies, just as they used different methods of meaning representation.
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scene-setting: the agent is given a specific discrimination task based on its environment,

as follows:

� the agent is situated in a world made up of objects or situations, the features

of which are in some way detectable by the agent.

� a set of objects or situations, called the context, is presented to the agent.

� one of the objects in the context is chosen to be the target of discrimination15.

categorisation: the agent goes through all the objects in the context, returning for each

an association with one or more of its existing semantic representations.

discrimination: the agent tries to find a distinctive category for the target. A category

(or a set of categories) is distinctive if it is a valid representation of the target, and

is not a valid representation of any other object in the context.

adaptation: the agent modifies its internal conceptual structure in some way; the meth-

ods of adaptation available to the agent are typically simple and few.

The processes of scene-setting and of discrimination itself are essentially fixed and iden-

tical in all implementations, although the Steelsian abstract model (Steels, 1996b, 1997)

has been adapted into the Talking Heads experiments (Steels, 1999; Steels & Kaplan,

2002), in which real robots were built which could segment a scene into objects, and

extract features from the scene they had developed, rather than being presented with the

feature values from the objects. On the other hand, the particular methods of categorisa-

tion and adaptation of semantic representations are of course dependent on the particular

semantic representation which has been adopted. In the next section, I shall briefly in-

vestigate the various implementations of the discrimination game.

4.3.2 Binary Category Splitting

The essential ingredients of the categorisation sub-task of the discrimination game are the

reception of feature values from a space of possible values and the translation of these

into a new space of possible categories. In Steels (1996b)’s model, and in his subsequent

modifications thereof, including the implementation on the Talking Heads robots (Steels,

1997, 1999; Steels & Kaplan, 2002), the agents receive values from a number of different
15Steels (1996b) originally named this object the topic rather than target, but this term has connotations

of conversational units, as well as a linguistic definition as “that element of a sentence which is presented as
already existing in the discourse”(Trask, 1993), both of which can be misleading in a purely discriminatory
situation.
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features. In earlier models, the features were abstract without any specific meanings, but

in the robot implementations, the features were pre-defined into spatial and colour char-

acteristics such as AREA, HORIZONTAL and VERTICAL POSITION, HEIGHT, WIDTH,

GREYNESS, RGB (the amount of red-, green- and blue-ness in an object), and the number

of EDGES and ANGLES in the shape. For our purposes, however, the particular charac-

teristics to which the features correspond are irrelevant, so I will generally regard the

features as abstract, unless exemplification with a particular pre-defined characteristic is

especially enlightening.

Each feature is independent as far as the agent is concerned, and the values it receives

are normalised so that they always lie in the range range [0.0 � � � 1.0]. The translation

from feature space to category space therefore involves a translation from an infinite

number of possible values into a smaller number of categories (although also theoretically

infinite). Steels’ meaning representation is established on discrimination trees; the agent

has a specific sensory channel for each feature, and on each sensory channel can build a

separate discrimination tree. Each discrimination tree, therefore, corresponds to a specific

feature of the objects in the world, underlying the conceptual independence of the features

from each other. Each node on the tree is a category, and corresponds to a particular

contiguous segment of the feature value space; the root node of the tree corresponds

to the whole of the feature value space, i.e. it is bounded by 0.0 and 1.0 respectively.

Categorisation, therefore, is the translation of a continuous feature value into a particular

node on a discrimination tree. Of course, a category must exist before it can be used

to categorise an object in terms of its feature value, and the agents adapt their semantic

representation by one of the following means:

1. a new discrimination tree is created on a sensory channel which has no meaning

structure.

2. an existing node on a discrimination tree is chosen, and meanings are added:

� The region to which the existing node corresponds is split into two discrete

segments, equal in size.

� A new meaning is created for each of the new segments.

3. a node is pruned, or deleted, from the discrimination tree.

Because any created category can potentially be the source of a future refinement, the

meanings created through this procedure fall naturally into the hierarchy shown in figure

4.6, which shows a very simple example of a discrimination tree which has been built
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(0.0–0.5)

(0.5–1.0)

(0.0–1.0)

(0.75–1.0)

(0.5–0.75)

Figure 4.6: The development of categories on an abstract sensory channel shown as a
discrimination tree. Each node on the tree shows the bounds between which it is sensitive;
the root of the tree is sensitive to the entire feature value range (0.0–1.0); it has two
daughter nodes, each of which is sensitive to half of the root node’s range. The daughter
nodes can also potentially have their own daughter nodes, and so the meanings can easily
be represented in tree form.

on an abstract sensory channel. The root of the tree is sensitive to the entire feature

value range (0.0 – 1.0); it has two daughter nodes, each of which is sensitive to half

of the root node’s range. In principle, a category could be divided into more than two

segments, and the daughter categories need not have equal-sized sensitivity ranges, but

as there is no limit to how fine-grained the distinctions which can be made even with

the basic binary category splitting procedure, it seems sensible to stick initially with this

framework, which is simple yet powerful, and ideal for exploring the development of

meaning in agents. In Steels’ models, failure in the discrimination game is the trigger for

the adaptation of a sensory channel and the creation of more conceptual structure in the

form of more specific categories. There is no pre-definition of which meanings should be

created, however; the new categories may turn out to be useful in future discrimination

games, but there is no guarantee. The agents in this model, therefore, have a mechanism

for constructing concepts which are grounded in the environment (Harnad, 1990) and

adaptive to their surroundings.

In de Jong (2000)’s models, the agents again receive information on sensory channels,

but the feature values are specifically tied to particular representations of the state of the

world, the actions of the agent, and an evaluation of the appropriateness of the action, as

we discussed in section 4.2 which gives more detail of the structure of de Jong’s meaning

space. The environment provides a high reward for a specific action in the presence

of each of the three different predators, corresponding to the appropriate evasive action
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taken by the vervets (see table 2.1), and provides high rewards for all actions when there

is no predator around. The agents in de Jong’s model have a fixed task, which is to

create a sufficiently detailed semantic structure to successfully identify the presence of

the predators and take the appropriate action.

The categorisation and adaptation processes in de Jong (2000)’s model are very similar to

those in Steels (1997), although they may not appear so on first contact. The agents use

the same kind of categorisation, in that they check whether or not a particular value falls

into a subspace of the overall space, and the categories form a set of discrete categories.

Interestingly, however, the original feature values in de Jong’s model are not continu-

ous, but already discrete, so it is unclear why he needs to introduce a categoriser which

converts continuous variables into discrete ones, except that this kind of categoriser is

of course more general and can be more easily used with other problems. The adaptive

subspace method, as de Jong calls his process of concept formation, works in the same

way as Steels’ refinement process, with two main differences.

Firstly, the meanings are created across the whole of the multi-dimensional meaning

space; although the task is set up so that the five sensor dimensions provide specific

information, the agents do not know about this specificity, and search for general � -

dimensional subspaces in whatever space they are provided with. The actual process of

concept formation, however, is the same: a hyper-rectangular category is split into two

smaller hyper-rectangles of equal size.

Secondly, however, de Jong’s agents do not split categories blindly, without regard for

whether the new categories will be useful in future, but instead decide whether to split

a category or not on the basis of the pre-defined evaluative rewards they receive for par-

ticular combinations of states and actions from the simulation itself, and as such they

are guided explicitly by a reinforcement learning process, which is useful for this kind

of fixed problem. An agent is always looking for ways of splitting its meaning structure

into subspaces, or situation concepts, considering a potential split in each dimension of

its state-action space in turn. This potential split, as in Steels’ (1997) model, would bisect

the particular dimension, resulting into two smaller subspaces, both hyper-rectangles half

the size of the original space. The criterion for whether to actually make the split is based

on whether there is a significant difference between the distributions of the rewards for

the experiences in each of the two potential subspaces. Summarising briefly, once all

five dimensions have been investigated, a split takes place, realising the potential sub-

spaces, in the particular dimension for which there is the greatest difference, as long as

this difference is above a pre-defined threshold. In this way, the agents adapt their mean-

ing space more quickly to the environment than Steels’ agents, who are blindly creating
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Figure 4.7: De Jong’s representation of meaning in a five-dimensional hyperspace using
adaptive subspaces. Distinctions have been made in the

� � and � � dimensions.

categories which may or may not be useful to the agents in the future. In contrast, all

the new categories created by de Jong’s agents are necessarily useful in discriminating

experiences; if they were not, then the split which created them would have remained a

potential split, and would not have been confirmed.

Figure 4.7 is taken from de Jong (2000), and shows his representation of this mean-

ing creation in five-dimensional space; again, only two of the dimensions are shown to

make the figure comprehensible, because the particular task which the agents are set, to

respond with appropriate actions in the presence of particular predators, can actually be

solved without reference to the other dimensions. Recall that the dimensions of de Jong’s

meaning representation in a state-action space, as we saw in section 4.2.2, represent in-

formation both about the state of the world (
�

), and about the actions taken by the agents

( � ). In figure 4.7, the agent has split dimension
� � into four situations, representing each

of the three predators, and the ‘safe’ situation where no predator is found, which are all

shown inside the dotted box in figure 4.7. For each of these situations, except the top one,

which represents the safe situation, the agent has also split dimension � � , which relates
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to the action it should take in terms of its own vertical dimension, and it has chosen a

different action subspace for each of the three predator situations. In other words, figure

4.7 is a (fairly opaque) representation of the fact that the agent has successfully solved

the task it was set, that is to find the appropriate action for each of the four different

situations it finds itself in.

Although de Jong (2000)’s model solves the problem it was set, and expands Steels’

(1997) original model into five dimensions, it remains problematic, on account of its

design, which stems from the author’s desire to associate the task so closely with the

vervet monkey communication system we are now so familiar with. It seems to me that

this kind of reinforcement learning paradigm is singularly unsuited to solving tasks of

this nature; the agents in the model are not passing on innate knowledge like the vervets,

but are being asked to learn from scratch the categories which are important to them,

based on the feedback they get from the environment. This is all well and good, but if

this was a real world consisting of vervet monkeys and predators, then the feedback they

get from the environment would not allow them to solve the problem; rather the first time

they chose the wrong action, they would be caught and killed. Reinforcement learning,

which is based explicitly on learning from your mistakes, is not particularly useful if the

cost of failure is so catastrophic as death, as Oliphant (1999) has noted.

4.3.3 Prototype Manipulation

In this section, I will explore the processes of categorisation and adaptation in the systems

which used a prototype model of meaning (Vogt, 2000; Belpaeme, 2002). In both cases,

recall that the overall structure of the discrimination game remains broadly the same as

that designed by Steels (1996b) (see section 4.3.1), but that their particular implementa-

tion of categorisation and semantic adaptation are of course different.

In Vogt (2000)’s model, which is implemented on physical robots rather than inside a

computer, categorisation works in the same way as in the models just described; the

agents find out the space into which a particular feature vector falls, and return the cat-

egory which defines this space. It is important to differentiate in Vogt’s model between

the prototype, which is a single point in the meaning space, and the category, which

is a region in the feature space containing those points which are near the prototype.

Although the prototype is the basis of the category, the category itself always has a

hyper-rectangular shape, rather than a hyper-spherical one, so that no point in the space

falls outside categorisation, and the boundaries between categories are clear and distinct.
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Vogt’s agents, however, also have a number of different models, or layers, of the same

feature space, so that they can have overlapping categories on different dimensions.

Failure in the discrimination of objects is again the trigger for the adaptation of the agent’s

semantic representation, and this is done by increasing the number of prototypes in the

world, up to a maximum resolution of the feature space, which is defined arbitrarily be-

fore the experiment. When adding categories, the agent chooses a random feature of

the target object which it failed to discriminate, and uses the values of this to double

the number of prototypes in the feature space; the new prototypes differ from the ex-

isting ones only in their positioning with respect to the chosen feature. For instance,

assuming a three-dimensional space, and prototypes already existing at (0.1,0.2,0.3) and

(0.9,0.2,0.3), the agent chooses the second feature or dimension, for which the target

object had a value of 0.6. Two new prototypes are therefore created at (0,1.0.6,0.3) and

(0.9,0.6,0.3), in the same position as the existing ones, except in the second dimension.

This has the same effect of splitting the feature space in half, producing categories as

hyper-rectangular boxes; the growth of categories can likewise be displayed on a (multi-

dimensional) discrimination tree.

In addition, Vogt (2000)’s agents also update their prototypes when they succeed in us-

ing a category during a communicative episode, which I will discuss further in chapter

6. This addition to the model means that the categories adapt not only to failure, but

also to success; the categories are adapted by shifting them slowly towards the feature

vector which was successfully used. In order for communicative success to trigger the

adaptation of categories, the agents must receive feedback from the model which allows

it to evaluate communication. As we have already seen, the existence of feedback to

language learners is hotly disputed (Bowerman, 1988) and is therefore absent from the

model of agent-constructed communication which I will present in chapters 6–9. In ef-

fect, then, the agents in Vogt’s model are using an instance-based learning technique

(Mitchell, 1996), creating new prototypes when discrimination fails, and supplementing

this with reinforcement of successful meanings when communication succeeds.

Belpaeme (2002)’s model of categorisation is different from all the others we have seen,

because it is based on fuzzy prototypes; this means that for any object or stimulus, a

measure of categorisation is returned. Category membership is no longer a binary yes/no

decision, but is a matter of degree. When playing the discrimination game, therefore,

Belpaeme’s agents choose not the category which matches an object, but the category

which best matches the object. Thereafter, the procedure is similar to that which we have

seen before; if the target object’s category is different to the category of all the other

objects in the context, then the game succeeds.
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Failure triggers the adaptation of the network in one of the following ways:

1. If the agent has no categories, then one is created which describes the topic, consist-

ing of a network with one locally tuned unit, centered on the sensory representation

of the topic.

2. An existing category is adapted to better represent the topic.

3. A new category is created.

A pre-defined threshold value inside the agents determines whether a new category is

created or whether an existing one is modified. Adaptation of a network uses much the

same procedure as the creation of a new network: a new locally tuned unit is added which

is centered on the topic’s representation. Belpaeme also tunes existing categories when

they are successful, so that they are more like the topic, and has the locally tuned units

decay over time, so that unused units eventually drop out of the category definition.

4.4 Summary

In this chapter, I have reviewed many recent simulations of the evolution of language,

paying particular attention to their models of meaning representation and meaning cre-

ation. All of these models claim to have a ‘semantic’ meaning space, yet on closer

inspection, the majority of the models had categories which were innate, pre-specified by

the experimenters themselves, and had no reference to any external world at all. Many

of them, in addition, had no sense relations of even the most basic type; there were no

relationships at all between one category and another, which were instead atomic, indi-

vidual items. The meanings in these models are not under the control of the agents at

all; only the experimenters themselves can create new meanings or delete obsolete ones,

and the meanings can only appear or disappear from an agent’s repertoire by ‘magic’. In

summary, the semantic models of many language evolution simulations are simply not

semantic at all, but are instead merely a rudimentary coding system, which the agents

in the experiments use as a template with which to decode items expressed in another

medium, namely the signals.

On the other hand, there are a sizeable number of experimenters who have made an effort

to incorporate some kind of realistic semantic systems, by including an external world

of objects which the categories refer to, and by providing various different methods for

creating meaning based on the agents’ experience in this world. Meaning creation in
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these models is based on the discrimination game, in which an agent’s task is to return a

category which describes one particular object, distinguishing it from another set of ob-

jects. Experimenters have used both classical categorisation and prototype categorisation

successfully for their semantic representations; both have advantages and disadvantages,

but for the remainder of this thesis I will use my model of semantic representation and

creation, which is explored in more detail in the next chapter.





CHAPTER 5

Discrimination Trees

“ [Meanings] originate in sensory categories, and are grounded in the iconic

and categorical representations that make it possible for you to pick out those

sensory categories.” (Harnad, 1996, p.41)

5.1 Introduction

In this chapter, I move on to exploring in detail the basic model of semantic representa-

tion and creation which is used in the experiments in this thesis. In section 5.2, I look

at the creation of meaning through representing the features in an external environment,

how meaning is grounded through these representations and how its creation is driven by

the failure to discriminate objects in their environment from each other. I investigate the

properties of the model in detail, showing how the process of meaning creation works,

and the conditions under which it fails. In section 5.3, I show how this simple method

of grounded meaning creation, which is very successful at picking out objects from each

other, gives rise to independent and divergent semantic structures between agents, even

those who inhabit the same environment. I then propose measures to describe the differ-

ences in the resultant conceptual structues, which will be used extensively in the experi-

ments described in chapters 7 – 9.

Although one of the underlying principles of this thesis is to assume as little as possible in

the model, it seems inevitable, in order to keep the basic interaction process simple, that

the agents are able to consider individual objects as separate items, and moreover they

have a disposition only to consider full objects when interacting with their environment,

rather than parts of objects. This assumption is of course very similar to Macnamara

97
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(1982)’s whole object bias which I discussed in section 3.3.2, although it is not confined

to the domain of word learning.

5.2 Investigating the Properties of Discrimination Trees

Nearly all the models of independent, grounded meaning creation which have been pre-

sented in the literature are based on the initial model described by Steels (1996b), as we

have seen above. Steels’ initial model is abstract enough to be reasonably simple to im-

plement, yet also produces a semantic model which bears some resemblance to my own,

and allows the investigation of semantic properties and processes which are not possible

in innate, pre-defined systems, as we saw in section 4.3.

I have already briefly described the workings of the generic Steelsian discrimination

game in section 4.3.1, but a more detailed look at my particular model is in order here, as

the concepts used are important in understanding how the agent’s categorisation works.

The discrimination game works in the same way as already described, with agents at-

tempting to distinguish one particular target object from a larger context of other objects,

using the same subtasks of categorisation, discrimination and adaptation as in section

4.3.1. The initial environment consists of just one agent, and a population of twenty ob-

jects, which the agents are able to recognise as individual items. Each object is defined

with a fixed number of characteristics or features; the features themselves are completely

abstract, and although it is possible to conceptualise them as things which ‘make sense’

to humans such as colour or size, they are in fact represented in the model as real numbers

between 0.0 and 1.0, which are pseudo-randomly generated with a uniform distribution.

Categorisation

The agent first categorises the objects, by translating the feature value of each object

into a category using the discrimination tree on its sensory channel, to find the leaf node
�

within whose range the feature value falls. Categories, or meanings will be given

henceforth using the notation [sc-path], where sc identifies the number of the sensory

channel, and path traces the path from the tree root to the node in question. Each node on

a discrimination tree is either a leaf (terminal) node or it has two sub-branches; in � ����� ,

� signifies that the lower of these branches is traversed, and � signifies that the upper of

these branches is traversed. Figure 5.1, for instance, shows a simple discrimination tree

on sensory channel � , with not only the range within which each node is sensitive, but

also the meaning using to which this corresponds in the above notation.
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(0.0–0.5)
[0-0]

(0.5–1.0)
[0-1]

(0.0–1.0)
[0-]

(0.75–1.0)
[0-11]

(0.5–0.75)
[0-10]

Figure 5.1: A simple discrimination tree, which is being built on sensory channel � . Each
node shows not only the bounds between which it is sensitive, but also the meaning to
which it corresponds.

Object Feature Value Meaning

A 0.43276 0-0
B 0.87423 0-11
C 0.12098 0-0
D 0.50012 0-10
E 0.31419 0-0

Table 5.1: An agent categorises objects as part of the discrimination game, using the
discrimination tree on the sensory channel shown in figure 5.1 to translate the feature
values into categories.
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Table 5.1, for example, demonstrates the result of translating the feature values shown for

objects � – � into meanings on the discrimination tree shown in figure 5.1; the leaf node

whose range contains object � ’s feature value ��� � � � ��� , for example, is the lowest node

on the tree, which is reached from the root by traversing the lower of the two branches,

hence the category ��� � .

Discrimination

After categorising all the objects, the agent investigates the meanings with which it has

described the objects, in order to try to find a distinctive category, which is defined as

follows:

distinctive category: a category which is valid representation of the target object, and is

not a valid representation of any other object in the context.

If a distinctive category is found, then the discrimination game succeeds. Only one dis-

tinctive category is needed to distinguish the target from the context; if there is more

than one sensory channel, and more than one distinctive category exists, then the agent

chooses one of them at random to act as the distinctive category in this game. If no dis-

tinctive category is found, the the game fails, and the agent adapts its conceptual structure

in response to this failure, Table 5.1, for instance, shows an agent categorising objects as

part of a discrimination game, using the discrimination tree shown in figure 5.1. Two

example discrimination games based on these categorisation might proceed as follows:

1. if the target object in this game was � , which should be discriminated from the

context ���	�
� , then the game will succeed, with ��� � � as the distinctive category;

2. if the target object was � , which should be distinguished from the context �����
� ,

then the game would fail, as the category which describes � , �
� � , is not distinctive,

because it does not distinguish � from � or from � .

Adaptation

As we saw earlier, a sensory channel is refined by splitting the leaf node which categorises

the target object,
�

, into two further discrete segments. In game 2 above, therefore, the

agent would adapt its semantic representation by refining the node which categorised � ,

namely ��� � , and creates two new subcategories, ��� � � and ��� � � . This procedure can of
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course happen repeatedly, and can in principle provide an unlimited number of categories

whose range is ever smaller. Although the discrimination tree is a very simple mechanism

of meaning creation, it is very powerful, and is ideal for the abstract representation of real

hierarchical semantic structures such as those shown in figure 2.1.

5.2.1 A Basic Model of Discrimination

In this section, I will go through the working of my meaning creation simulations in

more detail; the environment is set up in a very simple fashion initially, but this will be

extended and developed as we progress through the remainder of this chapter. Each of the

objects has just a single feature, and the agent has one corresponding sensory channel;

this means of course that there is effectively no channel choice when a discrimination

game fails. I assume initially that the size of the context is fixed at the minimum of two

objects, i.e. the target must be distinguished from just one other object in the model. The

simulations are run for an arbitrary 300 discrimination games, and at regular intervals

throughout the following measures are taken:

discriminative success (
�
) the percentage of successful games;

unique discriminability ( � ) the percentage of objects in the model which can be distin-

guished from all the other objects in the world.

Figure 5.2 shows twenty different simulations for the model plotted on top of one an-

other, with the cumulative discrimination success rate shown with solid lines, and the

unique discriminability of the model shown with dashed lines. We can see that in all the

simulations the percentage of successful games rises rapidly from zero to 80% in about

20–30 games, before raising further towards 100% more slowly, but that the unique dis-

criminability of the model is much more variable, still varying between 50–70% after

300 games.

5.2.2 Discriminative Success

If we take a closer look at the dynamics of these simulations, we can see how the agent is

evolving the semantic representation on its sensory channel to take account of the actual

feature values of the objects in the world. At the start of the simulation, the sensory

channel is unrefined, and so will categorise all objects as � � , with no path component

to the meaning. This necessarily leads to the failure of the first discrimination game and
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Figure 5.2: Discrimination success
�

and unique discriminability � . The world contains
one agent and 20 objects defined with one feature. The context size is fixed at two objects.

thus also to the refinement of the channel and the creation of two new meanings ��� �
and ��� � , with the ranges (0.0–0.5) and (0.5–1.0) respectively. A second discrimination

game then takes place, and, given the uniform distribution of the objects’ feature values,

we could assume that it is likely that about ten objects (or half the total number) have

feature values below 0.5, and about ten have feature values above 0.51. Two objects are

then chosen at random to be the context, and one of them is then chosen to be the target.

In order for the game to succeed, the objects need to be in different categories, and the

probability of this happening is:

� �
��� �

����� � � ��� 	 �(5.1)

The refinement of the channel has therefore already increased the chance of success from

zero to 50%. If the second discrimination game is a success, then no further refinement

takes place, and the probability of success in the third game remains at 50%. But of

course we can’t assume that we will always get successes at odds of 50–50; it would be
1Increasing the number of objects will clearly improve the likelihood that the distribution actually does

approximate to 50–50.
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akin to getting ’heads’ every time we tossed a coin. Instead, we investigate what happens

when the discrimination game fails again. Failure is triggered by both objects having the

same category, and so we must again refine the sensory channel. The agent will refine

whichever node categorises the target, so splitting either:

� the lower node � � � , whose range is (0.0–0.5), into � � � � and � � � � (0.0–0.25

and 0.25–0.5 respectively);

� or the upper node � � � , whose range is (0.5–1.0), into � � � � and � � � � (0.5–0.75

and 0.75–1.0 respectively).

Nothing rides on this choice, so I will assume the second option, so that after two dis-

crimination game failures, we have a sensory channel like that already shown in figure

5.1.

The failure of a discrimination game always triggers the refinement of a channel, which

in turn always changes the probability of success for the following game. If we continue

with our worked example, with the channel as in figure 5.1, we have three possible leaf

categories for the target ( � � � � , � � � � and � � � ), with respective probabilities of 0.25,

0.25 and 0.5. The probability that both target and context will be in different categories

in this game:

� �
� � �

� � �

� �
� � �

� � �

� �
� � �

� � � ��� � � 	 �(5.2)

Although the development of the sensory channel has been a fairly straightforward pro-

gression up to now, it changes after the next failure. Remember that we have a channel

like that shown in figure 5.1, with three terminating categories. If we now have a failure,

the increase in probability of the next game being a success is dependent on how the

sensory channel is refined. This in turn is dependent on the category of the target: if the

target falls into the larger category (0-0), then the tree is refined into a symmetrical tree

with a depth of two levels, and the probability increases to:

� �
� � �

� � � � � ��� � 	 �(5.3)
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but if the target falls into either of the smaller categories ( � � � � or � � � � ), and this node

is then refined, the probability will be:

� �� � �� � �

� �� � �� � �

� �
� � �

� � �

� �
� � �

� � � ��� � 	�� � 	 �(5.4)

We can see immediately that every discrimination game failure, and corresponding re-

finement of the sensory channel, continues to increase the probability of the following

discrimination game being a success, although the absolute increase in probability is de-

pendent on how the sensory channel itself has been refined; I investigate these and similar

properties concerning the growth of discrimination trees in more detail in chapter 7. In

other words, the agent ‘learns’ only from its mistakes, and not from its successes. Armed

with this information, it is not hard to see from this how the percentage of successful

games rises so rapidly (see figure 5.2), and so constantly across simulations: refinements

always take place where the target is categorised, and this is inevitably going to reflect

the distribution of the feature values of the objects in the world.

5.2.3 Unique Discriminability

In contrast, however, the unique discriminability measure is much more volatile. Unique

discriminability, denoted in this thesis as � , is defined as the percentage of objects which

can be distinguished from all other objects in the world by an agent. If an object is

uniquely discriminated, then a description of it is effectively the same as identifying it

in the world — there is one object alone in the world to which a particular category

corresponds.

Returning to our example, after one failed discrimination game, the sensory channel is

refined into two segments, and the chances of a success in the next game has risen to 50%.

However, there are likely to be about ten objects in each segment, which still cannot be

differentiated from one another. Even after the tree has been refined a number of times,

we do not get any discriminability at all until one of the categories in the tree categorises

only one object. The maximum amount of discriminability � � � � � � at any time is given

by the following equation:

� � � � � � � �

� �(5.5)
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where � is the number of nodes (categories) on the discrimination tree built on the sensory

channel, and � is the number of objects in the world.

We can see that � is initially equal to one, and is incremented after each discrimination

game failure. The probability of subsequent failure, however, decreases after every actual

failed game, and so it can take some time to achieve even potential unique discriminabil-

ity. The actual unique discriminability measure � is always going to be smaller than

� � � � � � , because although each refinement of a sensory channel increases � and there-

fore � � � � � � , it does not necessarily make any difference to � itself. In the simplest

case, if a channel has not been refined at all, yet the value of every object in the world is

less than 0.5, then the initial refinement will create an extra category, but this will not in-

crease discriminability at all. The likelihood of these redundant categories2 increases as

each tree is refined more and grows deeper. Essentially, the variation in unique discrim-

inability in a model with just one feature reflects the distribution of the feature values; if

they are evenly spread around the segmentation points of the bisecting channel, then the

level of unique discriminability will be relatively high, but if they are clustered together,

it would take longer for an agent to develop categories to a sufficient depth to discrimi-

nate. In the limit, in a model with just one feature, the level of � will eventually climb

to 100%, but only after the number of categories on the discrimination tree exceeds the

number of objects in the world. In real human languages, however, it is very rare to have

any unique discriminability at all, as words do not pick out individuals in the world, but

rather kinds or properties (Lyons, 1977), with the possible exception of proper names,

which might form a counter-example (Hurford, 1999, 2001, 2003).

5.2.4 Multiple Sensory Channels

In the model just described, the objects in the world were defined with just one feature,

and the agents had just one corresponding sensory channel. In this section, we introduce

more features, and describe how the dynamics of the model change to reflect this. Figure

5.3 shows a simulation of a model where each object is defined with five features.

Although the percentage of successful games is similar to that in figure 5.2, the addi-

tional sensory channels have resulted in the discriminability of the model being much

reduced, staying at zero in nearly all the runs, and with one object uniquely discrim-

inable ( ��� 	
�

) in a couple of simulations. After the first game in a simulation has, of

necessity, been a failure, one of the channels is chosen at random to be refined, leaving
2The redundancy of the categories is only in terms of unique discriminability; the new categories might

well enable future discrimination games to succeed.
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Figure 5.3: Discrimination success
�

and unique discriminability � . The world contains
one agent and 20 objects defined with five features. The context size is fixed at two
objects.

the agent now with four unrefined channels, and one channel with two categories. In

effect, the situation is the same as in the previous simulation, as only this refined channel

can be used for categorisation, and so the chances of success are still 50%. After the

next failure, however, we do not get an automatic refinement of the same channel, but

one from the five is chosen at random again3. The agent has an 80% (
� �
) chance of re-

fining an unrefined channel, and then having three unrefined channels, and two channels

which each have two categories, and a 20% ( ��
) chance of refining the channels on which

meanings have already been created, then having four unrefined channels, and one like

the channel shown in figure 5.1. We have already looked at refining one channel, so let

us assume now that we have a situation with two refined channels. The probability of the

target object and context object being in different categories is now increased because

either channel (or indeed both) can be used to distinguish the objects:

Both Either� ��� �
�
� � �

� +

� ��� �� �
� � �

� ��� � = 0.75
(5.6)

3In the basic model, there is no bias on the choice of channel, so each is equally likely.
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After only two failed discrimination games, we can see that the probability of success in

the following game is already 75% if two channels have been refined. With one channel,

reaching this level of likelihood occurs only after at least three refinements, and then

only if the refinements resulted in a symmetrical tree. The increased number of features,

therefore, has increased the chances for succeeding in discrimination games, resulting

in even higher rates of discriminative success in figure 5.3 compared to those in figure

5.2. If each channel is refined just once, as in the above example, then the probability of

success in the following discrimination game is

� � �
� � �(5.7)

where � is the number of sensory channels. Clearly, this probability rises to near-certainty

very quickly (with just five sensory channels, it is already 96.9%). However, as we saw

in the previous section, success in the discrimination games is not unrelated to the overall

unique discriminability of the simulation. More successes, and therefore fewer failures,

mean that the agent does not have to ‘learn’ very much, and does not refine its sensory

channels. These channels have just two categories each, and even on the rare occasions

that these discrimination games do fail, it is unlikely that they will develop sufficiently

deeply so that one of the categories would contain just one object.

The agent will, therefore, struggle to achieve any sort of unique discriminability at all,

as we see in figure 5.3. In a couple of simulations, the agent has managed to be able

to discriminate one object from all the others after 250 games, but none at all in most

simulations. In fact in most longer simulations, � remains at 0% even after 1000 games,

and with no prospect of increasing, because the discrimination success rate itself is at, or

very near to, 100%. Increasing the number of features, then, improves the success rate

of the discrimination games themselves, but the very lack of failures in the games means

that the agent hardly needs to develop its sensory channels, and so the absolute unique

discriminability is correspondingly very low.

Unique discriminability, the ability to identify objects from all other objects in the world,

is not therefore necessary for successful discrimination games in this model, where the

objects need only be discriminated from a subset of the objects in the world. Given that

unique discriminability is very rare in human language, a low level of � in the simula-

tions is welcome with respect to the relative realism in the semantic structures which are

constructed by the agents.
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5.2.5 Larger Contexts

Instead of increasing the number of features available, we could have modified the ba-

sic model by tinkering with the actual discrimination games themselves, specifically by

altering the size of the context from which the target should be differentiated. Further

simulations have been run, still using a model of one agent and twenty objects with one

feature/sensory channel, but this time increasing the context from two (the target and the

context) to five, ten and even all twenty objects.

The changes that an increase to a context of five objects gives are immediately obvious,

if we look at the probabilities of the discrimination game succeeding after the initial

inevitable failure. The agent has just the one sensory channel, refined once into two

segments, and the probability of the next game succeeding is:

� �
�
�
��� � ����

���
� ��� � � � 	 �(5.8)

as there are only two possibilities for success, the target occurring in one category and all

four other objects occurring in the other category (and vice versa). In contrast to the situ-

ation in section 5.2.4 when the objects were described with five features and we quickly

reached a near-certainty of discriminative success, increasing the context produces in-

stead a near-certainty of discriminative failure. The flip-side of this high probability of

initial failure, of course, is that the agent has to refine its sensory channel, and so ‘learns’

more. After a second refinement, the probability of the next game succeeding has in-

creased to:

�
�
� � � ����

���
��� � �

�
�
� � � �� �

�����
� ��� � � � �(5.9)

which is already a large increase on the previous game, although still much lower than

in the previous simulations with a minimal context size. The low probability of suc-

cess means that the agent will continue to refine its sensory channel, leading to more

categories on the channel, and therefore a much greater likelihood that unique discrim-

inability will result.

In general, the probability of the next discrimination game � succeeding on a particular

sensory channel � , �
	 � � � can be expressed as:
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Figure 5.4: Discrimination success
�

and unique discriminability � . The world contains
one agent and 20 objects defined with one feature. Reading from left to right and top to
bottom, the context size is fixed at 2, 5, 10 and 20 objects respectively.

��� � � � � �� �
� �
� ��� � � � � � � ��� � �
	�� � �(5.10)

where � is the number of categories on the discrimination tree, 
 is the size of the context,

and � ��� � is the probability of the target occurring in category � , which is equivalent to the

range4 of category � .
Figure 5.4 shows the results of these simulations for contexts with two, five, ten and

twenty objects, the last of these representing every object in the population. All of these

simulations are still run with just one feature for each object, and therefore one sensory

channel for each agent. We can see clearly from figure 5.4 that increasing the number

of objects in the context reduces the success rate in the games early in this simulation,

but this in turn stimulates refinement of the sensory channels and therefore higher unique

discriminability.
4The difference between the upper and lower bounds of the category.
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However, we also need to look at the number of possible discrimination games which

can exist in a particular simulation. For any given target object, this is equivalent to the

binomial coefficient � � ��� . In our simulation, if � is the number of objects in the population,

and 
 the size of the context, then, taking account of the target object, this is equivalent

to ��� � �	�� �
�
, giving the number of different possible discrimination games in a simulation as:

�
� � � � ���� 
	� � ��� � � � 
 ���(5.11)

Note that if the size of the context 
 is the whole population, then there are only � pos-

sible discrimination games, and each one is in effect an exercise in testing the particular

target object’s unique discriminability. In these extreme circumstances, it is perhaps not

surprising to see that the unique discriminability rates are extremely high.

5.2.6 Multiple Channels and Larger Contexts

As we have seen, increasing the number of features and increasing the size of the con-

text tend to have opposite effects on the results of the simulations, so it is interesting to

investigate the effects of both phenomena applied at once. This time we have run simu-

lations with five features, and again looked at the results for different context sizes. To

investigate the probability of success in the discrimination games, we need again to take

account of the fact that a discrimination by any or all of the features is sufficient, so we

can make use of equation 5.10, which gives the probability for a particular sensory chan-

nel being able to discriminate, to derive the probability � � that the discrimination game� will succeed, or the probability that any of the channels (i.e. not none of them) is able

to discriminate, as follows:

��� � � �
��

	 � �
� � ��� ��
 � �(5.12)

where � is the number of sensory channels possessed by the agent, and � � ��
 � is defined

above in equation 5.10. Figure 5.5 shows that, as we might expect, unique discriminabil-

ity is much reduced, except when the context is very large, when each discrimination

game is essentially testing the unique discriminability of the target object.
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Figure 5.5: Discrimination success
�

and unique discriminability � . The world contains
one agent and 20 objects defined with five features. Reading from left to right and top to
bottom, the context size is fixed at 2, 5, 10 and 20 objects respectively.

We can see from these results that discrimination trees are a very successful and efficient

method of achieving unguided meaning creation based on observation of the world. Af-

ter a small number of episodes, we invariably find that the discrimination success rate

approaches 100%. The parameters we have chosen to vary, i.e. the number of features

which define the objects and the size of the context, affect the speed at which success is

achieved, and the extent to which particular objects are identified from all others in all

possible contexts, which we have called unique discriminability.

As we increase the number of features, discrimination success is achieved more quickly,

and without any unique discriminability of objects. As we increase the size of the con-

text, we naturally make the discrimination task more difficult, and so success is achieved

more slowly, and with higher rates of unique discriminability. If we increase both fac-

tors, we find that with small contexts, the effect of the increased number of features is

higher, so success occurs quickly and without much discriminability, but as the context

size increases, its effects override the feature effects, and we find slower success and

higher discriminability. The agents have a mechanism for constructing concepts which
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is grounded in the environment, is based on their experience, creates meanings which are

useful to the agents in allowing them to discriminate between the objects they find.

5.3 Divergent Semantic Structures

Although the trees are developed by the agents in response to their interactions with the

environment, there is explicitly no determinism in how they grow. If we create a world

in which objects are defined by five features, and then expose two agents to it, we find

that their individual meaning representations, as shown in the discrimination trees, can

be very different from each other, as we can see in figure 5.6. Both agents have created

different meaning structures, based on the same number of discrimination games in the

same world. We can see straight away, for instance, that agent one has developed the

first three channels to a greater extent than the second agent, who in turn has developed

the fourth and fifth channels more extensively. It is helpful to quantify the amount of

similarity of two agents’ meaning structure, and we do this by averaging the similarity

of the discrimination trees built on each of their sensory channels. In greater detail, if

� � � ��� � is the number of nodes which trees � and � have in common, and � � � � is the total

number of nodes or categories on tree � , then we describe the similarity between any two

trees � and � using the following formula:

� � � ��� � � � � � � ��� �
� � � � � � � � �(5.13)

The tree similarity � � � ��� � , therefore, is the proportion of all the nodes on the trees which

are shared by both trees. Note that equation 5.13 uses a slightly different measure of tree

similarity � from that described in A. Smith (2003a), shown in equation 5.14, in which,

for each tree separately, the proportion of its nodes which were also on the other tree was

calculated, with the tree similarity being the average of the two.

�
� � � ��� � � �

�

�
� � � ��� �

� � � � � � � � ��� �
� � � � �(5.14)

In the vast majority of cases, both these equations � and �
�

produce similar results, al-

though � is always slightly higher than �
�
, but there is an important difference when we

are comparing one tree which is vastly more refined than the other. The denominator
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term � � � � , the number of nodes on a tree � , is equivalent to ��� , where � is the number of

refinements which has taken place. Crucially, however, the first refinement of any tree is

always the same, as it splits the range [0.0 � � � 1.0] into [0.0 � � � 0.5] and [0.5 � � � 1.0].

Therefore, if we compare a tree � which has been refined once, to another tree � which has

been refined � times ( � � � � ), it is necessarily true that � � � � � � , and that � � � ��� � � � ,

in all cases. In equation 5.14, which compares each tree separately, the first term inside

the bracket is therefore always equal to � , which therefore means that the value of �
�
, in

turn, will necessarily be greater than ��� 	 , even if the other term is very small.

Using the equation in 5.13, in effect widens the distribution of the possible values of � ,

because the level of meaning similarity depends much more significantly on the number

of nodes on the second tree � as well. For instance, in the same example as above,

equation 5.13 reduces to �
� � � � � � � , and we can see that if � is high, then � is very low,

as is appropriate, and is not restricted by an artificial lower bound of ��� 	 . In cases in

which the trees being compared are not grossly dissimilar in the scale of their foliage,

however, � and �
�
produce very similar values for the level of tree similarity.

I then use the general measure of tree similarity � in 5.13 to develop an overall measure

of meaning similarity � between two agents, by averaging over all their sensory channels.

If �
�
	 identifies the discrimination tree on channel number 
 for agent � , and each agent

has � sensory channels, then the meaning similarity � � � � � � � � between agents � � and � �
is defined as follows:

� � � � � � � � � �
�

� � � ��
	 � � � � � � 
 � � � 
 � �(5.15)

If two agents � � and � � have identical conceptual structures, where � � � � � � � � � � , then

we say that their meanings are synchronised. It is important to note that both agents

whose meaning representations are shown in figure 5.6 are successful in the discrimi-

nation games, and so their representations are equally good descriptions of their world,

although their mutual meaning similarity � is only 68%. This model of concept cre-

ation, then, satisfies one of our main goals, namely that the agents are not given innate

meanings, but can create inventories of basic concepts individually, based on their own

experiences.
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Agent One
Agent Two

Figure 5.6: Two agents each have five sensory channels, with which they construct dif-
ferent representations of the same world.
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5.4 Summary

In this chapter, I have described how meanings are built through the binary splitting of

sensory channels, and are structured on these sensory channels in dendritic structures

called discrimination trees. We have seen that this simple method of meaning creation is

very effective at allowing individuals to ground their meanings in their own experience,

to create relevant meanings which allow them to discriminate between objects in their

world. High levels of discrimination success
�

and very low levels (often zero) of unique

discriminability � are achived with more features; as the context size increases,
�

rises

more slowly, and higher rates of � are found.

Importantly, there is no pre-definition of their meanings, so each agent creates its own

semantic representation individually; many different representations are equally good at

discrimination games, and so are equally good descriptions of their world. Finally, I have

presented the measures � and � , which represent the similarity between two discrimina-

tion trees ( � ) and between two agents’ semantic structures as a whole ( � ); both of these

will be made further use of in the experiments I go to describe in subsequent chapters.





CHAPTER 6

Communication

“Successful communication does not depend, then, on the communicator

and addressee having exactly the same representation of the utterance � � � ”

(Origgi & Sperber, 2000, p. 167)

6.1 Introduction

In chapter 4, I investigated a number of different models in the evolutionary linguistics

literature which attempt to grapple with the problems of representing meaning in virtual

agents, and of creating and modifying semantic structures under external pressures of

some sort. We saw that many of these methods were in fact semantic in name only, but

that others, notably those which include an external world which the agents can interact

with and which their meanings can refer to, did indeed produce structures which can

justifiably claim to be truly semantic both in name and in nature.

I then went on to introduce a model of meaning creation which is driven by the process of

discriminating objects in the world from each other, and which produces a hierarchical,

dendritic, semantic structure through the repeated binary splitting of categories into sub-

categories. In this chapter, I will continue to develop the agent-based model introduced

in chapter 4, to explore communication between agents, and in particular I will address

the following questions.

1. What does it mean to say that a communicative episode is successful?

2. How do agents choose a word to represent a particular meaning?

3. Conversely, how do they decide how to interpret a word they hear?

117
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4. Can agents achieve communicative success without explicit meaning transfer?

In section 6.2, I discuss the communicative episode in the abstract, looking at the com-

ponents which any model of communication must contain, and show that one of the most

crucial characteristics is a division between public and private knowledge. If there is no

such division, and more particularly if one agent’s semantic representations are either

transferable or visible to others, then the whole model is subject to the signal redun-

dancy paradox. In section 6.3, I go on to explore how we can decide whether a particular

communicative episode has succeeded or not, and show that we must use some indirect

measure based on reference identity. I then discuss some of the implications of this kind

of evaluation, particularly in terms of the actual learning of words by children which

I looked at in chapter 3, and address important issues like the provision of joint atten-

tion and corrective feedback to learners. In section 6.4, I describe previous work on the

evolution of communication and vocabulary, which show the importance of lexical bidi-

rectionality and of accommodating the hearer in a communication system. In section 6.5,

I go on to describe the lexicon at the heart of my model, which takes account of the find-

ings described in section 6.4, and of the need to avoid the signal redundancy paradox; the

strategy is based on Oliphant and Batali (1997)’s obverter, but because I allow the agents

access only to their own minds, I call the strategy introspective obverter .

6.2 The Constituents of Communication

Communication is the exchange of a message, containing some sort of ‘information’

between two parties. In using this working definition of communication, I am deliberately

avoiding any mention of how the message is exchanged, what format it takes, or what

roles the two parties play, though clearly these need to be fleshed out in any detailed

description. Importantly, there are two different roles in a communicative episode: the

instigator of communication, and the recipient. For communication to take place, there

must be both an instigator, and at least one recipient; if either is missing, then there is

no communication. No matter how loudly and often the shipwreck survivor on a desert

island cries, if nobody is there to hear him then he is not communicating. In the rest of

this thesis, I will refer to the communicative parties as speaker and hearer, and although

clearly this usage gives possibly undue pre-eminence to the role of spoken language as

a means of communication, rather than sign language or other systems, I would contend

that this is certainly justified in linguistic terms, as speech is undoubtedly the primary

mechanism through which languages have developed and evolved over generations of

human activity.
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Hauser (1996) gives an informative overview of how authors from different disciplines

have approached the problem of defining communication, and although he assumes the

distinction between speaker/instigator and hearer/recipient without further comment, he

goes on to suggest that the concepts of information and signal are central to most of

the definitions he gives. We can tentatively adopt Hauser’s summary, therefore, and

with the addition of the participants of communication, we can preliminarily conclude

that the four fundamental constituents of communication are as follows: a speaker, a

hearer, a signal, and some information. A communicative episode consists of the speaker

producing a signal, which is in turn received by the hearer, and some information, or

meaning, the exact nature of which is under further debate. The signal carries some

sort of informational content, but this cannot be the source of all the information in the

message. We shall see shortly that it is important that the meaning of a message is

derived from the context in which it is uttered, as well as from the properties of the signal

used to express it, but first let us explore these constituents of communication in more

detail, to check whether they are needed in a model of communication, and whether these

constituents are sufficient to delimit a model of communication.

6.2.1 Signals

The evolution of signals has received much attention in the literature, not only in terms

of the evolution of the innate alarm calls such as the (in)famous vervet monkeys we have

already discussed in section 2.4.2, but also in terms of the specific evolution of the main

human communicative channel of speech, and thereafter the evolution of the particular

speech sounds which are used in human languages. Lieberman (1984), indeed, argues

that the development of the specifically human vocal tract, characterised, amongst other

features, by a low larynx, a long jaw, a large and rounded tongue, and multiple resonating

cavities (oral, pharyngeal and nasal), was the driving force behind the emergence of

modern humans. Lieberman argues that these characteristics of human speech provided

adaptive benefits in terms of more successful communication, and particularly in terms

of the production of distinct sounds.

More recently, within the framework of computational simulation which is used in this

thesis, de Boer (2001, 2002) investigates the evolution of particular sounds as commu-

nicative signals; he shows how the dynamics of a population of language users neces-

sarily leads to the creation, over time, of a system of vowels which is optimal in com-

munication by each vowel being almost maximally distinguishable from each other. Fig-

ure 6.1 shows an example of a vowel system with just three vowels, this number being

widely regarded as the minimum number of vowels in a human language (Katamba, 1989;
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Front Central Back
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u

Figure 6.1: A basic system of three vowels which are maximally distinct from each other,
as seen in languages as diverse as Aleut and Quechua.

Crothers, 1978)1, and which is found in languages as diverse as Aleut and Quechua,

amongst others. The vowel systems which emerge from de Boer’s simulations show a

marked similarity with these actual systems, even when there is no optimisation of vowel

difference built in to the simulation, strongly suggesting that self-organisation is an im-

portant feature of the structure of human sound systems.

In this thesis, however, I am concentrating particularly on investigating the relationship

between meaning and communication, rather than the evolution of communicative sig-

nals themselves. I assume, therefore, the prior existence of a simple set of signals, which

are made up of random combinations of the lower case Roman letters [a-z]. Each signal,

or utterance, must be arbitrarily at least two letters long, though a signal can in principle

be any length. The letters are merely symbols in an alphabet of salient features which

are used to create signals; although they could be thought of in language terms as rep-

resenting phonemes, they could equally well be considered in terms of other features of

communication such as eyebrow raising, nostril flaring, eye opening and ear retraction,

which occur, for example, in the signals of rhesus monkeys (Hauser, 1996) .

Importantly, I am also assuming that the task of classification of signals based on their

similarity and difference is error-free and automatic; agents can express and receive sig-

nals without any error, so that the form in which the speaker utters the signal is exactly
1There are however, exceptions to this rule: Vaux and P � siypa (1997), for instance, describe the

C
�

�
�� � (Tswydzhy) dialect of Abkhaz, which has only two vowel phonemes / � / and / � /, and even then the

phonemic status of � is disputed, leaving C
�

�
�� � as a possibly univocalic language. It does, however, have

58 different consonant phonemes to compensate for the paucity of vowels!
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the same as that in which the hearer receives it. It is of course a trivial exercise to add

noise to this procedure, but I avoid doing so because I am interested in the inherent un-

certainty of meaning in the fundamental communicative model, and wish to avoid the

distractions of this additional uncertainty. The concepts of similarity and identity are

absolutely fundamental to all communication systems and central to their analysis, as is

widely recognised in psychology (see, for example, Tversky (1977)) and elsewhere. If

agents cannot reliably decide whether one signal is to be regarded as the same as an-

other, there is no possibility of generalising across the different situations in which the

signal is heard, and no way a meaning can emerge. On the other hand, if agents cannot

reliably decide that two signals are different, and every signal is essentially the same as

every other one, then likewise meaningful communication is impossible. For this reason,

endowing the agents with the ability to recognise whether two signals are identical or

different seems a reasonable, and indeed essential, minimal step to take, which allows us

to concentrate the exposition on the role of meaning in communication.

6.2.2 Meaning

Given that communicative signals carry some sort of information from speaker to hearer,

we must consider what kind of information this is likely to be. The obvious answer is that

the signal has a meaning, and it is this meaning which the speaker intends to transfer to

the hearer when uttering the signal. Indeed, it would not be unreasonable to assume that

the reason for communication is the desire to transfer meanings between conspecifics,

via the medium of the signal. There is a widespread assumption amongst researchers

using computational modelling to investigating questions of the evolution of language

(see Nowak, Plotkin, and Jansen (2000), Hurford (2000), Batali (2002), Brighton (2002),

K. Smith (2002b)), nicely exemplified by the following quotation from Kirby (2002),

namely that a linguistic utterance consists of the explicit conjunction of a signal and a

meaning.

“The utterances that the individuals produce and learn from in these simu-

lations are pairs of strings of letters and meaning representations.” (Kirby,

2002, p. 176)

In this section, I shall explain why I think making this tempting assumption is unrealistic

and moreover leads to an unwelcome paradox about the nature of communication and its

constituent parts.
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� � � �

zknvrt

Figure 6.2: A communicative episode which consists of the transfer of a signal “zknvrt”
and a meaning THREE APPLES from speaker to hearer.

Explicit Meaning Transfer and the Signal Redundancy Paradox

Figure 6.2 shows a schematic diagram of the linguistic transfer in such a communicative

model, where the utterances are “pairs of strings of letters and meaning representations”

Kirby (2002, p.176). We can see that the speaker (on the left of figure 6.2) utters a sig-

nal “zknvrt”, which is received intact by the hearer, as described above. Simultaneously,

the meaning in the speaker’s brain, represented in figure 6.2 by three symbols meant

to resemble apples, is transferred directly to the hearer’s brain. Because the utterance

is structured, consisting of two explicitly linked parts, it is a trivial task for the hearer

to learn the association between these two parts, between the signal “zknvrt” and the

meaning THREE APPLES. In chapter 3, we explored the problem of how children learn

the meaning of words when they are learning a language, particularly in relation to the

Quinean indeterminacy of translation, which shows that there are always an infinite num-

ber of meanings which could logically be consistent with the information received, and

in relation to the many different mechanisms which have been proposed in the psycholin-

guistic literature to explain how children solve this paradox effortlessly. If we compare

the idealisation of communication shown in figure 6.2 to the discussions of chapter 3, we

can see clearly that there are a number of stark and troubling problems.

Firstly, if the meanings are explicitly and accurately transferable by an unspecified tele-

pathic medium, as shown in figure 6.2, then it is clear that the signals such as “zknvrt”

are not being used to convey the meanings. But what, then, is the experimental role of
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the signals in such a model? More bluntly, what does the presence of signals add to the

model? I hope it is clear, in fact, that the inclusion of such signals is a complicating

factor, which adds nothing at all to the communicative process; no information is be-

ing transferred between agents by the signals that could not equally well be transferred

through the meanings alone. There seems little reason to posit the existence of a system

of signals which serves only to replicate another system of meanings, and so, given that

the signals are redundant, it seems reasonable to assume that we can remove them from

the model completely; after all, the agents can still transfer meanings between each other,

and there is now no need for them to expend time and energy worrying about learning a

redundant additional system of signalling. The signal-less model, therefore, now consists

of a speaker and a hearer, communicating to each other through the telepathic transfer of

thoughts (meanings) between their respective brains. But here we stumble upon another

serious problem: having removed the redundant signals, the communicative aspect of the

model now bears very little resemblance to the communication system we are trying to

simulate, namely human language, in which signals play an unarguably crucial role. This

problem, which I call the signal redundancy paradox, can be summarised as follows:

signal redundancy paradox If the meanings are transferable, then the signals are re-

dundant; but if the signals are removed, then the system no longer represents a

(human-like) communication system.

Fortunately, there is a straightforward way out of the signal redundancy paradox, once we

realise that it is based on a false premise. The whole problem of signal redundancy only

exists if we assume that meanings are transferable; if they are not, then the information

cannot be passed directly from one brain to another, but must instead be encoded into a

signal. This, of course, is exactly what happens in actual communication systems, where

the communication process consists not of the transfer of meaning and (redundant) signal,

but only of the transfer of the signal. The exact meaning, as we have seen in chapter 3,

must be derived by the hearer from somewhere else, prompted of course by the signal,

and by additional factors such as the situation or context in which the signal is heard.

So how do the agents know which meaning to associate with a particular signal? Having

established that meanings cannot be transferred, we must conclude that the agents (and by

extension, children learning words while acquiring language) infer them from elsewhere.

The most obvious, and most general source for this is the environment in which the agent

lives; as this is already our source for the construction of meanings, as we saw in chapter

4, using the environment neatly reinforces our model of meanings being grounded, not
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just in terms of their creation, but also in terms of their communication (Harnad, 1990).

It is worth noting, however, that the need to infer meanings from some external source

like the agents’ environment has interesting implications for the experiments like those

described by Kirby (2002). As we saw in chapter 4, these models contain no environment

or indeed anything which could be considered both accessible and external to the agents,

so the ‘meanings’ cannot be inferred from elsewhere, and must necessarily be abstract,

pre-defined tokens. Because they have no reference, they cannot be communicated except

by explicit meaning transfer. Avoiding explicit meaning transfer, therefore, implies that

the agents must have access to an external world which they can experience. More than

this, however, it implies that there must be at least three levels of representation in the

model, as shown in figure 6.3 and described below:

� an external environment, which is public and accessible to all;

� a private, agent-specific internal representation of meaning;

� a set of signals, which can be transmitted between agents and is in principle public2.

The external environment, from which the agents’ experiences are derived, provides the

motivation and source for the creation of meanings which will allow the agents to distin-

guish between particular situations in the environment. Meaning creation itself, however,

is a private, agent-specific process, based on the particular experiences an agent has.

The meanings in an agent’s mind do map to the situations in the environment, but this

mapping is not perceptible to others; agents cannot read each other’s minds directly, but

only have access to them indirectly, through their communication process, just as human

beings do through language. Communication involves the creation of public signals,

which map to the private meanings in an agent’s mind; I assume that the signals can be

transferred and received without error, while recognising that this assumption is a simpli-

fication. It is important that the internal, agent-specific semantic representations are kept

private and invisible to others. Moreover, it follows that the mappings between public

and private, i.e. between both situations in the environment and meanings on the one

hand, and between meanings and signals on the other, must likewise be inviolable, and

for this reason both mappings are shown below the dividing line between private and

public across the centre of figure 6.3.

If the private sections of the model become public, then the model unfortunately reduces

to the equivalent of one which contains the signal redundancy paradox described above.
2Of course, each communicative episode does not necessarily involve a broadcast to all the agents.
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gttwd

� �

Private

Public

A C

B

Figure 6.3: A model of communication which avoids explicit meaning transfer and the
signal redundancy paradox must have three levels of representation for the agents: an
external environment (A); an internal, private semantic representation, represented by
the trees in the agent’s brain (B); and public signals (C). The mappings between A and B,
and between B and C, represented by the arrows, must also be private and inaccessible to
other agents.



126 CHAPTER 6. COMMUNICATION

For instance, Hutchins and Hazlehurst (1995), in their famous neural network model of

the development of shared vocabulary, present a model with an external world made up

of events, or ‘scenes’. At first glance, it is tempting to assume that because there is an

external world, this model does not rely on explicit meaning transfer, and yet the scenes

of the external world are not quite what they seem. The scenes are themselves used as

the meanings for the agents; although the scenes are not explicitly transferred between

the internal representations of the agents, they are still accessible to all the agents, and so

they are still explicitly connected to particular signals during the communication process.

In terms of figure 6.3, although there is an external world (A), there is no private semantic

representation (B); the whole model takes place above the dotted line, and because there

is no level of their model which is private to each agent, we return again to the signal

redundancy paradox; if the agents know which scene is being talked about, there is no

need to learn a signal.

Brighton (2002), too, presents a model which appears to contain an external world made

up of communicatively relevant situations. Yet, as we saw in chapter 4, although the

environment is defined by Brighton as the source of the meanings used by the agents,

this relationship plays no role in the simulations; the agents never interact with the en-

vironment, and the mapping from communicatively relevant situations to meanings is

pre-determined by the experimenter, and identical for all agents. Again, there is no pri-

vate level in the model, and the environment, such as it is, is merely a complicating factor

in the simulation, which is not able to solve the signal redundancy paradox.

At the beginning of this section, I presented Hauser (1996)’s summary of many different

definitions of communication, from which he derived the crucial concepts of information

and signal, in addition to the participants of the communicative episode. At that point,

I tentatively assumed that the agents’ meanings were the equivalent of Hauser’s infor-

mation, but it is now apparent that this view must be modified slightly. One possibility

is to extend the notion of information so that it includes not only the internal semantic

representations, but also the external experiences from which they are derived. It seems

rather unsatisfactory, however, having established the importance of the three levels of

representation in avoiding the signal redundancy paradox, to collapse private and public

representations into the same, rather bland, category of information. It is more helpful,

I feel, instead to extend the number of core communicative constituents, replacing infor-

mation with meaning, and then additionally including the situations in the environment

as another, fifth constituent of communication. This leaves us with a communicative

episode which is made up of five essential elements:
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� the participants of communication:

– the speaker;

– the hearer.

� and the components of communication:

– a situation or object in the external environment, which serves as the subject

of the communication;

– a meaning, internal to the agent, which represents the subject of communica-

tion;

– a signal, which is an external representation of the meaning.

In the above schema, the components of communication are explicity linked together

through the referential nature of meaning (Frege, 1892), which is therefore crucially

important to communication as a whole; the internal meaning must refer to a situation

or object in the external world, and must itself be represented by the communicative

signal. In the following sections, we shall look in detail at the process of communication

without explicit meaning transfer, with particular emphasis on establishing a definition

for successful communication, and the conditions under which this is most likely to occur,

and thereby present one of the main contributions of this thesis3.

6.3 Evaluating Communication

Having established the constituents of communication, I will now turn my attention to

the evaluation of the communicative episode itself, and start by defining the following

simple measure of communication which we will use throughout the experiments:

communicative success rate ( � ) the percentage of successful communicative episodes.

Although this is a straightforward definition of the communicative success rate, a defini-

tion of communicative success itself is much more tricky, as we shall see. The evaluation

of whether a communicative episode has succeeded or not can be rephrased in terms of

whether or not the speaker and hearer have come to some agreement over the meaning

of the signal; if the signal signifies the same thing to both speaker and hearer, then the
3Further work on the establishment of communication without using explicit meaning transfer can be

seen in A. Smith (2001, 2003a).
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communicative episode is a success. But how do we measure whether the speaker and

hearer agree on this issue? If we focus in more detail at the details of communication, we

realise that the speaker’s role is to encode a particular meaning as a signal, and utter this

to the hearer. An obvious starting point is to consider the episode a success, therefore, if

the hearer, on decoding the signal into its internal meaning, arrives at the same meaning

as that which was initially conceptualised by the speaker.

6.3.1 Sense Identity

Figure 6.4 shows a diagram of this kind of evaluation of the communicative episode,

which I call an evaluation based on sense identity, because it compares the agent’s inter-

nal meanings to each other. Two of the speaker’s sensory channels are shown, with the

discrimination trees which have been built thereon; the speaker’s meaning is the shaded

node in the lower half of the second tree. In the communicative episode, this meaning

is encoded into the signal, and then decoded back by the hearer into its own meaning,

denoted again by the shaded node in its meaning structure. The evaluation of the com-

municative episode is simply a matter of comparing the two nodes; if they are identical,

then the agents are using the same meaning for the signal, and thus the episode is a suc-

cess. Note that the overall semantic structures of hearer and speaker are not identical,

because their trees have been grown in different places, but the particular node that has

been used by both agents is in both structures.

Although a definition of successful communication based on sense identity is attractive

and easy to conceptualise, there are problems with it which make it less than ideal for the

evaluation task we require. Firstly, it requires that we look into the minds of the agents,

to determine the meanings that they are using; although in the context of simulations,

this is quite rightly possible and appropriate for the experimenter to do, it means that we

are automatically ruling out the possibility that the agents themselves will ever be able

to evaluate their own communicative episodes. Getting round this problem by allowing

agents to read each other’s minds, of course, throws us back into the signal redundancy

paradox we are trying to avoid. Secondly, by focusing on sense identity as the evaluative

mechanism, we are in effect saying that agents with slightly different semantic structures

will never be able to communicate with each other accurately. For example, in figure

6.4, if the speaker had chosen a more specific meaning than the one shown, one level

further down the tree, then this communicative episode could never have been a success,

because the corresponding meaning structure does not yet exist in the hearer’s meaning

representation.
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aiwhs

S H

Figure 6.4: A model of communicative success based on sense identity. The speaker
encodes a meaning S, denoted by the shaded node on the dendrogram, into the signal ai-
whs. The hearer decodes the signal into its own meaning H. The communicative episode
is evaluated by comparing S and H; if they are identical, as in this case, then it is a
success, otherwise it is a failure.

Finally, it is worth noting that communicative success based on sense identity is vacuous

if we allow meanings to be part of the linguistic transfer; it is inconceivable that the hearer

would not produce the same meaning as the speaker, if that meaning was explicitly trans-

ferred to him! The final point should not come as too great a surprise, as we have already

seen how explicit meaning transfer undermines the essential communicative nature of a

model, but the previous arguments are more damaging, as they suggest unrealistic con-

trol over the exact specification of semantic structure or over access to other individual’s

internal workings, which undermines the important dividing line between public and pri-

vate parts of the model. Evaluation of communicative success based on sense identity is

possible, therefore, but not very desirable. How might we improve the situation, then, to

avoid the pitfalls we have just described?

6.3.2 Reference Identity

The problems with evaluating communication in terms of sense identity can be summed

up by the statement that such an evaluation is simply not realistic. If a person is trying

to communicate with someone who speaks a foreign language, for instance, they cannot

look into their head to see that their interlocutor has the same semantic structure as they

do. If someone asks for a particular object using the word jardal, they can only gauge

their success on whether or not their interlocutor passes them the object they had in mind,
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Figure 6.5: A model of communicative success based on reference identity. The speaker
describes the shaded object at A with a meaning B, denoted by the shaded node on the
dendrogram, and then encodes this meaning into the signal lahrlg, shown at C. The hearer
decodes the signal C into its own meaning D, and then finds the object E which this
meaning refers to.
The communicative episode is evaluated by comparing A and E; if they are identical, as
in this case, then it is a success. Note that the communicative episode can succeed even
though the meanings used by speaker and hearer (B and D respectively) are different;
under sense identity this particular game would have been evaluated as a failure, since
� �
� � .
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not on whether she actually has the same semantic representation associated with the

word jardal in her mind. In effect, we can only use what is available in the public domain

(see figure 6.3) to evaluate the communicative episode indirectly, using the referents of

the speaker’s and hearer’s meanings, rather than directly using their senses.

Figure 6.5 shows this situation diagrammatically: the speaker represents one object by a

particular node on a discrimination tree, and then encodes this into a signal; the hearer

then decodes the signal into a meaning, and then picks out the object to which that mean-

ing refers. The evaluation of the communication episode using reference identity com-

pares the objects, not the meanings themselves. In the particular example in figure 6.5,

for instance, the agents use different meanings for the signal, but both these meanings

still end up referring to the same object, so the communicative episode succeeds. Fig-

ure 6.5 also exemplifies one of the problems highlighted in the last section about sense

identity evaluation: because the meaning node chosen by the speaker does not exist in

the hearer’s semantic representation, there is no way this communicative episode could

succeed in terms of sense identity, even though both agents are using the same signal to

refer to the same object.

6.3.3 Joint Attention

We have established that the most satisfactory way of evaluating a communicative episode

is to use the referents of the speaker’s and hearer’s meanings, rather than by inspecting

their internal meaning structure directly. This has a number of implications for the setup

of the experiments, which it is useful to spell out explicitly. Firstly, and most obviously,

the hearer must not know which object is being referred to; if the hearer is informed of

the speaker’s object, then there is no possibility of communication failure, and we return

to a situation similar to that found in the signal redundancy paradox.

On the other hand, evidence from children acquiring language suggests that one of the

most important building blocks used by children is joint attention with their interlocutors

on the referent (Tomasello, 1999), where both child and adult attend to the same referent,

and the child can infer, at some level, the intention of the adult to refer to the object.

Baldwin (1991, 1993) shows in a number of related studies that small children are unable

to learn words for objects simply by hearing the word while they are attending to the

object; instead, learning can only take place if the child notices that an adult is explicitly

directing their attention at the object, and that the adult is explicitly naming the object.

Joint attention can occur through many different tasks and activities, though Tomasello
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provides a useful summary of these, and suggests that the three main types of interaction

which result in joint attention are:

checking the attention of an adult in close proximity, by simply looking at them;

following the attention of an adult to a more distant object, perhaps by following their

gaze;

directing the attention of an adult to a more distant object, by pointing at it.

The first of these interactions is clearly more fundamental and straightforward, as the

child needs only to recognise that the adult is around and concerned with them; in fol-

lowing or directing an adult’s attention, the child needs to know exactly what the adult is

attending to. This appears to cause problems for our model of communication, in which,

as we have seen, the hearer must not know what the speaker is attending to, lest the signal

redundancy paradox reappear.

Despite the apparent importance of joint attention, there are some societies in the world

where joint attention is explicitly excluded by cultural customs and traditions. In these

cultures, adults speak to each other in the presence of children, but rarely name things for

children, and direct speech towards children infrequently if at all (Lieven, 1994; Brown,

1998), until the children themselves have learnt enough of the language to be considered

as interlocutors4. In such situations, it is clear that the children must decipher what

the adults are talking about without the benefit of joint attention, but it is important to

recognise, however, that children in these circumstances certainly learn words much more

slowly than others who are not restricted in this way. Tomasello and Todd (1983), for

instance, have shown that children who learnt with their parents using joint attention had

larger vocabularies than those who did not, and word learning is also improved if adults

name objects on which children have already focused their attention (Tomasello & Farrar,

1986).

We must, therefore, conclude that the establishment of joint attention is a very important

mechanism which helps narrow down the possibilities in word learning, and allows words

and language to be learnt more quickly, but on the other hand we should also prefer to

develop a model in which joint attention is not a necessary condition for success, so that

we can also account for the experiences of children who do not use joint attention or

receive child-directed speech, and yet still acquire language successfully.
4In the case of the Tzeltal-speaking children studied by Brown (1998), this does not occur until the

children are walking properly.
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ngaxf
Speaker

Hearer

A

B

C D
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F

Figure 6.6: A model of communication based on reference identity and restricted joint
attention. The speaker distinguishes the shaded object at A from the other objects in the
context, shown within the dotted line, using a meaning B, and then encodes this meaning
into the signal ngaxf, shown at C.
The hearer receives both C and the context in which the word was uttered, without knowl-
edge of the original target object, shown at D; access to D establishes a restricted form of
joint attention on the context between hearer and speaker.
The rest of the episode continues as in figure 6.5: the hearer decodes the signal into a
meaning E, then finds an object F in the context to which E refers. The communicative
episode is based on reference identity, and so is evaluated by comparing A and F. In the
episode shown, the objects do not match, and communication fails.
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Figure 6.6 shows the communicative model described in this thesis, which constitutes a

position of restricted joint attention, in which the hearer and speaker both attend to the

same subset of objects. The hearer is not being informed of the referent, and yet some

form of joint attention is achieved on this subset, which eliminates other objects from the

list of possible meanings. In order to obtain this subset of objects, we extend the role of

the context from its original use in the discrimination game described in chapters 4 and

5. As can be seen in figure 6.6, the speaker is given a random context of objects, from

which one is chosen as the target object, and it finds a distinctive category which both

identifies the target object and does not identify the other objects in the context, which it

represents by the utterance “ngaxf”. In the communicative episode, the hearer receives

not only the utterance, but also the context in which the word was chosen. Both hearer

and speaker are therefore jointly attending to the same group of objects.

It is important to note, however, that the hearer’s context (shown as D in figure 6.6) differs

from the speaker’s context (shown inside the dotted line within A in figure 6.6), in that

the identity of the target object is kept secret from the hearer. This is necessary because of

our use of reference identity to evaluate communicative success. Absolute joint attention,

where there is just one object in the context, eliminates all the uncertainty in the hearer’s

mind, and will inevitably result in perfect ‘communication’, albeit communication which

once again suffers from the signal redundancy paradox.

6.3.4 Reinforcement and Feedback

Another strategy which works very well in associative learning is reinforcement learn-

ing, which has been widely used in simulations of the acquisition of vocabulary, for

instance in the guessing games described, for example, by Steels and Kaplan (2002) and

by Vogt (2002). Under reinforcement learning, agents receive an evaluation of their ac-

tions, which they use to modify their future behaviour. For example, if they use a word

‘correctly’, they will receive some kind of reward, or positive feedback, to encourage

them, but if they use a word ‘incorrectly’, they will receive a disincentive, or negative

feedback, and will also usually be provided with the correct word they should have used.

In chapter 3, however, we saw that although both positive and negative feedback do

appear to be used by parents in ‘Western’ cultures, during child-rearing, this is not by

any means a cultural universal. We have already looked at Lieven (1994)’s description

of cultures in which parents do not even speak to their children in the initial stages of

acquisition, much less provide them with feedback, and at Bloom (2000)’s description
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of the study on mute children who developed normal language in the absence of the

possibility of feedback.

The receipt of feedback by the learner, therefore, should be treated with severe caution

and, I would contend, should not be assumed by a model of the acquisition of communi-

cation systems. One important result from my thesis, indeed, will show that successful

communication can be modelled without the need to provide feedback of either kind to

the agents.

6.4 Communicative Strategies

In this section, I will firstly describe previous work looking at the evolution of commu-

nicative strategies in simulated populations, and will then go on to present in some detail

the communicative model on which the simulations described herein are based. The

earliest experiments into the evolution of communicative strategies were carried out by

Hurford (1989); from a communicative point of view, Hurford’s model suffers from sim-

ilar problems as did Hutchins and Hazlehurst (1995)’s, in that the meanings are objects in

the external world which are accessible to all agents and there is no private domain, but

his model still provides important insights into the nature of successful communicative

strategies.

Hurford introduces the notion of two dynamic communicative matrices for the agents,

with one type of matrix to encode their transmission behaviour, or the probability of ut-

tering a signal for a particular meaning, and the other to encode their reception behaviour,

or the probability of interpreting a meaning for a particular signal. Each agent has a fixed

life-cycle of birth-acquisition-reproduction-death, and the focus of the experiments is

the acquisition stage, in particular the acquisition of different communicative strategies

which the agents use to form their two communicative matrices. In each case, the agent

is given small samples of the communicative behaviour of the previous generation, aver-

aged across the whole population of adults into population matrices: for each meaning,

one signal is chosen probabilistically from the population transmission matrix; and for

each signal, one meaning is chosen probabilistically from the population reception ma-

trix.

There are two different ways used by the agents to form their own new matrices from

these sample matrices: direct copying and indirect optimisation. If the matrix being

formed is of the same type (transmission or reception) of matrix as the source, then

the new matrix is copied directly from the sample; if an agent observes signal � � being
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interpreted as � � in the sample reception matrix, then the agent will set the probability

of interpreting � � as � � to 1.0 in its own reception matrix. If, on the other hand, the

new matrix is of a different type, then it is not copied, but instead optimised indirectly to

reflect the sample. For example, if two signals � � and � � are both interpreted by meaning

� � in the sample reception matrix, then a derived production matrix would produce both

signals with an equal probability of 0.5 for meaning � � . Hurford defines three different

learning strategies, according to which of these formation rules the agent uses for each

of its matrices:

Imitators copy both matrices.

They form their transmission matrix from the sample of transmission behaviour,

and their reception matrix from the sample of reception behaviour;

Calculators optimise both matrices.

They form their transmission matrix from the sample of reception behaviour, and

their reception matrix from the sample of transmission behaviour;

Saussureans copy their transmission matrix, and optimise their reception matrix.

They form their transmission matrix from the sample of transmission behaviour,

and their reception matrix from their own transmission matrix.

Hurford (1989) shows that the Saussurean agents are the most successful at developing

communicative systems, while Calculators are unable even to maintain a communication

system with which they are provided. The Saussureans’ success comes from their opti-

misation of one behaviour from the other, and in particular ensures that the agents have

a bidirectional mapping between signal and meaning such as that presented as the most

fundamental linguistic structure by Saussure (1916). Hurford shows that the bidirection-

ality of the communicative mapping between signals and meanings has clear advantages

over the other systems. The Calculators, on the other hand, try to optimise both their

behaviours at once, and crucially do not attempt to synchronise their own behaviour into

any form of bidirectionality, and their system fragments and drifts into chaos as a result.

The most important insight of this work is that, by separating transmission behaviour

from reception behaviour, Hurford has shown that lexical bidirectionality, or the cou-

pling of these two behaviours is crucially important for the development of successful

communication systems.

A similar model, which is also based on agents using communicative matrices to control

their behaviour, is presented by Oliphant and Batali (1997). Both the agents in this and
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in Hurford (1989)’s model try to accommodate the transmission and reception behaviour

of the whole population in determining their own communicative matrices, but there

is one important difference. While Hurford’s agents use a probabilistic sample of the

population matrix, Oliphant and Batali’s agents use the average population matrices in

their entirety to determine their communicative strategies. In the latter model, the agents

choose a winner-take-all algorithm, choosing the behaviour which is most popular for

each signal or meaning respectively, which necessarily results in only one signal being

chosen for each meaning, and only one meaning being chosen for each signal. Within

this framework, Oliphant and Batali define two different learning strategies, as follows:

Imitate-Choose The agents form their transmission matrix as follows:

� for each meaning, find the signal which is sent most often in the population.

and their reception matrix as follows:

� for each signal, find the meaning which is interpreted most often in the popu-

lation.

Obverter The agents form their transmission matrix as follows:

� for each meaning, find the signal which is interpreted as the meaning most

often in the population.

and their reception matrix as follows:

� for each signal, find the meaning which is sent with the signal most often in

the population.

In this way, the Imitate-Choose algorithm bases its behaviours directly on the relevant

population matrices, while the Obverter algorithm bases its behaviours on them indi-

rectly; its transmission matrix is based on the population’s reception behaviour, and its re-

ception matrix is based on the population’s transmission behaviour. Essentially, a speaker

using Imitate-Choose chooses the word it knows other agents use to represent the target

meaning, while a speaker using Obverter chooses the word it knows other agents will

understand as the target meaning.

Oliphant and Batali show that the Imitate-Choose algorithm can increase communicative

accuracy, but only in a model with a system which already has a high level of commu-

nicative accuracy; in effect, it polarises the system further, improving when the system
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is good and degrading when the system is bad. Obverter, on the other hand, always pro-

duces steady increases in communicative accuracy until an optimal system is reached.

Oliphant and Batali suggest that this happens because of the implicit avoiding of ambi-

guity in the obverter mechanism, and the fact that an attempt to communicate is built

into the very choices the agents make, because the agents base their production matrix

on the population’s reception matrix. K. Smith (2001, 2002b), shows, however, in neural

network models of communicative agents, that some agents who base their production

matrix on the population’s production behaviour can also still develop an optimal com-

munication system. After further analysis of his system, K. Smith argues that, rather than

the design of the obverter mechanism itself being responsible for the establishment of

optimal systems, there is actually a key bias which favours one-to-one biases between

meanings and signals. He goes on to show convincingly not only that Hurford (1989)’s

original model, and Oliphant and Batali (1997)’s subsequent model contain this bias, but

also that many other models proposed in the literature to explain the cultural evolution

of communication, including those presented by Batali (1998), Kvasnička and Pospíchal

(1999), Livingstone and Fyfe (1999) and Kirby and Hurford (2002), also contain this

very same key one-to-one bias.

Crucially, K. Smith (2002b) suggests that there are two pre-conditions for the emergence

of optimal communication: the key bias in favour of one-to-one mappings between mean-

ings and signals; and the capacity to read other people’s intentions. These two conditions

are strongly related to phenomena we have explored already in this thesis. The key bias is,

of course, strongly supported by the proposed existence of similar biases which attempt

to explain the acquisition of vocabulary by children, such as Clark (1987)’s Principle of

Contrast and Markman (1989)’s Mutual Exclusivity Bias, which we explored in chapter

3. His second condition, however, the ability to read other’s thoughts, is more problem-

atic, and yet also crucial to the emergence of communication, because much depends on

the nature of this proposed capability. On the one hand, if intentions can be completely

perceived, then we are led back to the iniquitous signal redundancy paradox we explored

and rejected earlier in this chapter. On the other hand, we have already acknowledged the

importance and usefulness of joint attention in providing a restricted context to solve the

problem of the indeterminacy of meaning, while noting that some human cultures appear

to manage without it. If the capability of reading others’ intentions can be restricted to

providing the context alone, then we can surely reconcile the difficulty.

In this section, we have explored many simulations which have shed light on what is

needed to develop a stable communication system between agents. Hurford (1989) has

shown the importance of lexical bidirectionality, the fact that reception and transmission
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behaviours are coupled together. (Oliphant & Batali, 1997) have proposed an obverter

learning algorithm, which always constructs an optimal communication system, and K.

Smith (2002b) has proposed that obverter and other successful algorithms are under-

pinned by a key bias in favour of one-to-one mappings between signals and meanings.

In the rest of this chapter I shall explain the workings of the lexicon in my model, which

incorporates both lexical bidirectionality and aspects of an obverter system of learning.

This model will not require the agents to be able to read each other’s minds, but will

include a truly external world in which to ground the meanings and which is necessary

to avoid the system redundancy paradox which exists in all the computational models

which have been hitherto suggested.

6.5 The Lexicon

The communicative model as described hitherto contains at least two participants, and

at least three levels of representation split across two different domains, that which is

public and accessible to all, and that which is private and individual to each agent. The

communicative process in the model is made up of three distinct parts:

signal production: the speaker, having found a distinctive category in the discrimination

game, chooses a signal to represent this meaning.

signal transfer: the signal is transferred to the hearer in conjunction with the whole

context in which the signal was chosen.

It is important to remember, with respect to signal transfer, that the speaker’s mean-

ing is not transferred, nor does the hearer know which object in the context is being

referred to.

interpretation: the hearer tries to interpret the signal in the context in which it is heard.

Crucial to both the production of signals by the speaker and their later interpretation by

the hearer, and therefore at the heart of the communication process, is each agent’s indi-

vidual set of private mappings between the meanings stored on its discrimination trees,

and the utterances used to describe them. By implementing both production and interpre-

tation from the same set of linguistic mappings, I am ensuring that lexical bidirectionality,

of the kind explored and shown to be crucial by Hurford (1989), is necessarily present in

the system. In this section, I shall be focusing in detail on the mapping, which is stored as

a dynamic lexicon of associations between words and meanings; each entry in the lexicon

contains the following components:
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� a signal � ;

� a meaning � ;

� a count of how many times the pair has been used � ;

� a confidence probability � , which represents the agent’s confidence in the associa-

tion between the signal and meaning.

The properties of both signal and meaning are clearly straightforward, but a few explana-

tory words are necessary with reference to the usage count and the confidence probability.

A signal-meaning pair can be used both by being uttered by the speaker and by being un-

derstood by the hearer, so that � is the total number of communicative episodes in which

the agent either uttered � to represent � , or interpreted � as representing � . An agent’s

confidence in a signal-meaning pair is based solely on the relative co-occurrence of sig-

nals and meanings, or the proportion of times in which � has been used that it has been

associated with � . More formally, � � � � � � can be expressed as:

� � � � � � � � � � � � �
���

�
� � � � � � � �(6.1)

where � is the number of entries in the lexicon. This confidence probability represents

the agent’s interaction history, recording, in summary form, all the associations between

signals and meaning which the agent has ever made, and the equation above is equivalent,

as has been pointed out by Vogt and Coumans (2003), to the conditional probability that,

given a particular signal � , the meaning � can be expected.

A short extract from an example lexicon is given in table 6.1, and this extract will be

used in the following sections to explain how the algorithms for choosing words and

meanings work. Each agent’s complete lexicon is obviously potentially very big, with

a potential size of
� � � entries, where

�
is the total number of signals, and

�
the

total number of meanings for the agent, and grows considerably over the length of an

experiment, depending on how frequently the agents create new words, so table 6.1 shows

only the entries for two particular signals (gttr and oij), and the meanings associated with

them. For reference, however, I have provided examples of an agent’s complete lexicon

in appendix E.
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Signal Meaning Usage Conf. Prob.

gttr 0-0 1 0.083
gttr 0-1 2 0.167
gttr 0-11 1 0.083
oij 1-0 9 0.600
gttr 2-0 4 0.333
oij 2-0 6 0.400
gttr 2-1 1 0.083
gttr 3-1 2 0.167
gttr 4-00 1 0.083

Table 6.1: An extract from an example lexicon. Each entry contains a signal � , a meaning
� , a count of usage � and a confidence probability � .

6.5.1 Signal Choice

Given the lexicon extract in table 6.1, how does the speaker decide which signal to

choose, when it is trying to express a particular meaning? Let us assume, for argu-

ment’s sake, that the speaker has played a discrimination game, and found a distinctive

category � � � which distinguishes the target object from the other objects in the context.

There are a number of different algorithms which the speaker could implement in order

to choose a word to represent � � � , as we have seen in the previous section. Remem-

ber, however, that in the previous models the agents had access to the production and

reception matrices of all other agents, either through access to the combined population

matrices of Oliphant and Batali (1997) or the sampled population matrices of Hurford

(1989). Having rejected this, the only lexicon to which the agent has access is actually

his own, so I assume that the lexicon shown in table 6.1 is the only lexicon on which the

agents will base their transmission and reception decisions.

Returning to the task in hand, the signal oij would seem to be a reasonable choice to

represent ��� � , based on the lexicon shown in table 6.1 for two obvious reasons:

� the value of � is higher for the signal-meaning pair [oij, 2-0], namely 6, than for

[gttr, 2-0] (4); oij has therefore been used in association with � � � more often than

gttr.

� the value of � is higher for the signal-meaning pair [oij, 2-0], namely 0.4, than for

[gttr, 2-0] (0.33); the agent is therefore more confident in the association of oij with

��� � than it is in the association of gttr with ��� � .
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Signal Usage Conf. Prob. Interpretation
� � � � � � � � � � � � � � � � �

gttr 4 0.333 2-0
oij 6 0.400 1-0

Table 6.2: The introspective obverter strategy. Agents use the lexicon extract shown in
table 6.1 to choose a word to represent the meaning � ( � � � ), by finding a list of candi-
date words (here gttr and oij), which are shown together with their usage in association
with � , � � � � � � , the confidence the agent has in their association with � , � � � � � � , and
the meaning which they would be interpreted by the agent, � � � � , or the meaning which
maximises the confidence probability for the signal � . The agent would interpret gttr with
the appropriate meaning, but not oij, despite the fact that both � and � are higher for the
latter word.

Choosing oij on this basis would in fact be similar to using the Imitate-Choose algorithm

described by Oliphant and Batali (1997), in which the agents searches through the signals

in the population transmission matrix, choosing the one which is most popular, if we as-

sume that the lexicon is table 6.1 represented the population lexicon. However, Oliphant

and Batali’s own results have already demonstrated that the Imitate-Choose algorithm

polarises a communication system it is imposed on, improving only systems which are

already high in communicative accuracy. Obverter, on the other hand, gradually increases

the communicative accuracy of a population over time until an optimal system results.

I will, therefore, base this model on a modified version of the obverter strategy, but one

which avoids mind-reading and explicit meaning transfer.

Unfortunately, true obverter learning as described by Oliphant and Batali assumes that

the speaker can read the lexicons of the other members of the population, to calculate the

optimal signal to use for any meaning, and thus allow the speaker to choose words which

he knows the hearer will understand correctly. We have seen already how such mind-

reading is not only unrealistic, but more damagingly returns us to the telepathic world of

the signal redundancy paradox, and so I assume instead that the speaker has access only

to its own lexicon, using this alone as an approximation to the general population lexicon

and as a basis for decision-making. Instead of explicitly choosing the word that will be

understood most generally in the population, the speaker using the introspective obverter

strategy chooses the word that it itself would be most likely to understand if it was the

hearer.

In order to decide which word the agent should choose using introspective obverter, we

need to investigate how the two candidate words oij and gttr would be interpreted. The
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precise details of signal interpretation will be discussed in more detail below, but for

expository purposes here, it will be sufficient to say that the confidence probability is the

crucial statistic on which a hearer decides what a word must mean; given the uncertainty

of meaning inherent in the system, it chooses the association in which it has the most

confidence. In order to see how a word is interpreted, we need to find the meaning which

maximises the confidence probability for each word. We can see from table 6.1 that

although oij has been associated with the meaning � � � on more occasions than gttr, it

would actually be interpreted as ��� � , because � � � is the meaning which maximises

the confidence probability for oij, while gttr would be interpreted with the target � � �
meaning, as this is the meaning which maximises the confidence probability for gttr.

Table 6.2 gives a summary of how the introspective obverter strategy allows the speaker

to choose a word that the speaker would understand if it was the hearer.

Interestingly, the agent would not find a word from its lexicon in table 6.1 to express

many meanings which do nevertheless have some associations (e.g. � � � , ��� � etc.).

One of the characteristic outcomes of obverter learning is the avoidance of homonymy,

so we find that, at any one time, each word in the lexicon is only used with one meaning,

although the particular meaning can of course change as the associations in the lexicon

are updated. This means that, although there are eight meanings in the lexicon extract,

only two of them are actually used by the speaker, and so only these can be regarded as

being truly in the speaker’s active lexicon.

6.5.2 Meaning Choice

We have seen how the speaker tries to second-guess the hearer and chooses words which

are likely to be understood before uttering them, but a much greater problem is faced by

the hearer in understanding the meaning which is being conveyed. On hearing a signal,

the hearer’s only guide in determining the intended meaning, in addition to the signal

itself, is the observation of the context in which the word was heard. In figure 6.6, we

saw that the hearer knows neither the target object to which the speaker is referring, nor

the meaning which the speaker has in mind for the signal, although the restricted joint

attention we have implemented means that there is only a subset of possible objects in the

context to which the signal could refer. Despite this, the hearer tries to infer the intended

meaning solely from the context and from its own previous experiential history, stored

in its lexicon as described above, disambiguating the potential referents in the context as

follows:
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The hearer creates a list of possible meanings or semantic hypotheses, namely every

meaning in its conceptual structure which identifies any one of the objects in the context

and distinguishes it from all other objects in the context. All these possible meanings are

equally plausible, and the hearer has no immediate reason to prefer one over the others,

so each of them is paired in turn with the signal and lexicalised. The lexicalisation of

a signal-meaning pair is carried out by incrementing � � � � � � , and recalculating � � � � � �
based on the new value of � � � � � � . Once all the possible meanings have been lexicalised,

the hearer searches through its semantic hypotheses, and chooses the meaning in which it

has the highest confidence; if it has an equally high confidence in more than one meaning,

then one of these is chosen at random. The hearer then returns to the context, to find the

object therein which is identified by the meaning it has just inferred. Because evaluation

of communicative episodes is based on reference identity, this object is compared with

the original target object of the speaker, to determine the success of the game, as shown

in figure 6.6; successful communication occurs when the speaker’s original target object

is the same object as that which is identified by the hearer’s meaning. It is not necessary

that the agents use the same agent-internal meaning, only that both agents refer to the

same object.

Neither agent, however, receives any explicit information about the success or failure

of the episode. It is possible, however, especially if the hearer has very little concep-

tual structure, that its set of semantic hypotheses is empty. This means that there is no

meaning in the hearer’s conceptual structure which distinguishes any one of the objects

in the context from all the others. This is analogous to being shown five identical mugs,

and being asked to find the “fipply” one; it is impossible to interpret the signal “fipply”,

because there are no distinguishing features on which to make a decision, and the hearer

cannot interpret the signal. In chapter 9, I explore what happens when meaning cre-

ation is driven not just by playing discrimination games, but also by failure to interpret

unfamiliar signals.

6.6 Summary

In this chapter, I have described in detail the constituents which must make up an accu-

rate model of communication, and have shown that one of the most important factors is

that there must be a distinction drawn between public knowledge of events and objects

in the environment on the one hand, and private semantic representations which only the
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individual agent can access on the other. I then discussed various potential ways of eval-

uating the success of a communicative episode, and showed that a system of reference-

based identity is much more plausible, and potential evaluable by the agents themselves,

than a system of sense-based identity. We saw from the work of Hurford (1989) how

lexical bidirectionality is important in the evolution of vocabulary, and we learnt from K.

Smith (2002b) that optimal communication systems arise if there is an underlying bias

in favour of one-to-one biases between signals and meanings. Such a system, in which

the speaker’s choice of signal is informed by his knowledge of the hearer’s lexicon, is

described by Oliphant and Batali (1997) . In order to avoid enabling telepathic commu-

nication between the agents, I described a modification to this system, called introspective

obverter, which allows agents to communicate without explicit meaning transfer, without

knowledge of the topic of conversation, and without feedback about the communicative

process itself. Examples of the lexicons which are built by the agents in the model are

shown in appendix E for reference.

In the following chapters, I will describe experiments which investigate the conditions

under which communicative success is likely to occur, showing that there is a close re-

lationship between communicative success and meaning similarity, and I will then go

on to describe experiments which investigate how the agents build individual conceptual

structures which are more co-ordinated with those of their interlocutors.





CHAPTER 7

Preliminary Communication Experiments

“Make your contribution as informative as required. Do not make your con-

tribution more informative than required.” (Grice, 1975, p. 45)

7.1 Introduction

The communicative model I described in chapter 6, using the introspective obverter com-

municative strategy on top of a system of grounded meaning creation, fulfills the initial

objective of constructing a system of communication which relies neither on the explicit

transfer of meaning, nor on feedback to guide the learning. Creating a framework for

communication is clearly only the first step towards a simulated model of communica-

tion, however; the crucial question to ask about this theoretical model of communication

is the degree to which it actually works.

� Can the agents within such a system communicate with each other with an accept-

able level of accuracy?

In this chapter, I will thoroughly investigate the model’s communicative efficacy; in sec-

tion 7.2, I describe how meaning construction can be decoupled from communication,

by providing the agents with pre-defined conceptual structures of various sorts, and then

in section 7.3, I explore how successful agents are in developing a communication sys-

tem under these circumstances, and look at how the level of meaning similarity between

agents relates to level of communicative success they achieve. Section 7.4 explores why

the level of meaning similarity in randomly provided conceptual structures is so pre-

dictable, while section 7.5 explains why communicative success is often higher than

meaning similarity.

147
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7.2 Innate Concept Provision

In this section, I will temporarily sever the link between meaning creation and communi-

cation, so that we can focus on communication alone, and see whether the framework we

have built is viable. To do this, we must therefore temporarily dispense with the mean-

ing creation algorithms, and instead give the agents innate conceptual systems1. There

are two ways in which I provide the agents with innate conceptual structure, as detailed

below:

comprehensive innate concept provision, where a discrimination tree is comprehen-

sively refined to a certain depth, known as the comprehensive depth;

random innate concept provision, where a leaf node
�

is randomly chosen on a dis-

crimination tree and refined, or split into two sub-categories.

Figure 7.1 demonstrates the nature of comprehensive innate concept provision on a dis-

crimination tree. Assume first that the root of the tree is at depth 0, and every movement

down the tree away from the root increments the depth level. A tree is comprehensively

refined when the following condition has been met:

� if one node of depth � has been refined, then every node on the tree of depth � must

also have been refined.

If all nodes at depth � have been refined, then we say that the tree has a comprehensive

depth of � � � . The tree on the left of figure 7.1, for example, has a comprehensive depth

of 1, because the root node (at depth 0) has been refined; the tree in the middle has been

comprehensively refined to a depth of 2, because both nodes at a depth level of 1 have

been refined; likewise, the tree on the right has been comprehensively refined to a depth

of 3, because each node at the previous depth level has been refined. Comprehensive tree

growth covers the whole of the feature space (hence the name) at each level, and no part

of the feature space has any more distinctions than any other. Note that there is only one

way to comprehensively refine a discrimination tree to a certain depth, so if two trees

have comprehensive concept provision of the same depth, the similarity � (see equation

5.13) between them will always be 1.0. This, therefore, provides us with an easy way to

guarantee that two agents will have synchronised meaning structures ( � � � ); we simply
1No claim at reflecting reality is involved here; it is merely experimentally convenient to be able to set

up simulations where the meaning similarity � between the agents can be explicitly controlled.
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Figure 7.1: Comprehensive innate concept provision occurs when every node at a certain
depth of the discrimination tree has been refined. On the leftmost tree, the node at depth
0 (the root) has been refined, so the tree has been comprehensively refined to depth 1.
On the tree in the middle, both nodes at depth 1 have been refined, so the tree has been
comprehensively refined to depth 2. On the rightmost tree, all nodes at depth 2 have been
refined, so the tree has been comprehensively refined to depth 3.

Figure 7.2: Random innate concept provision involves the random refinement of nodes
on the agent’s discrimination trees. The agent above has three sensory channels, which
have been refined in total ten times, giving the agent an innate endowment of twenty
different meanings, each represented by a node on a tree.

ensure that they are both provided with comprehensive conceptual structure to the same

depth on each of their sensory channels. Likewise, if we vary the number of channels on

which comprehensive growth is provided, then we can easily specify a particular level of

meaning similarity, as we shall see in section 7.3.2.

Random innate concept provision, on the other hand, is not explicitly deterministic, but

instead allows us to introduce an element of uncertainty into the proceedings; it is char-

acterised by the simple choosing of a node on a tree at random, and then the refinement

of that node. This selection and refinement procedure can of course be carried out re-

peatedly; figure 7.2 shows an agent with three sensory channels, which have been refined

respectively three, four and three times.
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7.3 Innate Concepts and Communicative Success

Using these methods of innate concept provision gives us a straightforward framework in

which the level of meaning structure � between agents can be pre-specified, allowing us

to explore the effects that different kinds of conceptual structure have on the communica-

tive success rate � that the agents achieve. In this section, I investigate whether agents

with innate meaning structure can communicate with each other in the model as it stands.

A simulated world is created, in which there are twenty randomly generated objects,

which are described in terms of five features. There are two agents, each having five cor-

responding sensory channels on which its discrimination trees are constructed; the actual

details of the meanings we will provide them with, and the effects these have on com-

munication, are the focus of these experiments. In these initial experiments, one agent

acts as the speaker in the communicative episodes, and the other as the hearer; in effect,

therefore, we are investigating whether the hearer can learn a mapping between signals

and meanings which has been created by the speaker, without being told the meanings,

without being told the referent of the communicative episode, and without any feedback

on the success or otherwise of the learning process.

7.3.1 Synchronised Comprehensive Conceptual Structure

Firstly, we look at two agents who have been provided with innate conceptual structures

with a comprehensive depth of 3 (see figure 7.1) on all their five sensory channels; be-

cause all their sensory channels have exactly the same level of comprehensive innate

conceptual structure to the same depth, their meaning structures are necessarily synchro-

nised ( � � � ). Figure 7.3 clearly shows that very high levels of communicative success

� occur under these conditions; in all cases, there is an initial sharp rise in � , as the

hearer deduces the meanings of many signals through their disambiguation in different

contexts. The value of � is already very high after only a few hundred communicative

episodes, and after this initial rise, � continues to climb more slowly, as the hearer tries to

deduce the meanings of the remaining signals; this occurs because the meanings which

these remaining signals represent are seldom needed in the discrimination games, and so

occur relatively infrequently in communicative episodes, making them more difficult to

disambiguate through exposure in different contexts.

In order to quantify the communicative success the agents achieve under these experi-

mental conditions, each simulation is run 50 times, after which I calculate the average

communicative success rate achieved after 5000 communicative episodes (
�� ) and the co-

efficient of variation (CoV( � )), which is the standard deviation expressed as a percentage
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Figure 7.3: Communicative success � in agents with initially synchronised ( � � � ),
comprehensive, innate conceptual structures. Agents are each provided with innate con-
ceptual structure to a comprehensive depth of 3 on each of their sensory channels. The
experiment was repeated 50 times, with each line on the graph representing a single run.

Communicative Success Rate
Mean Range

�� (CI) Max( � ) Min( � ) CoV( � )

0.96 (0.96 – 0.96) 0.98 0.92 0.01

Table 7.1: Communicative success � in agents with initially synchronised ( � � � ) innate
conceptual structures, provided to a comprehensive depth of 3. The table provides a
summary of the range and distribution of � after the 50 runs of the experiment shown
in figure 7.3, showing the mean communicative success rate

�� , together with a 95%
confidence interval around the mean, the range of values for � , and the coefficient of
variation.
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Comprehensive Meaning Communicative Success Rate
Depth Similarity

�� (CI) Max( � ) Min( � ) CoV( � )
1 1.00 1.00 (1.00 – 1.00) 1.00 1.00 0.00
2 1.00 0.99 (0.99 – 0.99) 1.00 0.98 0.00
3 1.00 0.96 (0.96 – 0.96) 0.98 0.92 0.01
4 1.00 0.95 (0.95 – 0.96) 0.97 0.91 0.01

Table 7.2: Meaning similarity � and communicative success � in agents with innate
synchronised conceptual structure. Agents are innately provided with identical meaning
structures ( � � � ) to various comprehensive depths, and then undertake 5000 commu-
nicative episodes. Each simulation is repeated 50 times, over which the mean commu-
nicative success rate

�� , together with a 95% confidence interval around the mean, the
range of values for � , and the coefficient of variation, are calculated.

of the mean, and gives a measure of the relative dispersion or variation at the cut-off

point of 5000 episodes2. I express the mean together with a 95% confidence interval,

because the particular 50 runs of the simulations whose results are shown here only rep-

resent a sample of all the possible runs which could have occurred. For completeness

in viewing the range of the results, I also include the maximum and minimum values

achieved for � during the experiments. Table 7.1 shows these values for the experiment

shown in figure 7.3, and confirms the results we can obtain by visual inspection of the

graph, namely that the rate of communicative success after 5000 communicative episodes

is very high (
�� � ����� � ), and there is very little variation in the levels of communicative

success (CoV( � � � � � � )) which are achieved.

The experiments were then modified slightly, so that the comprehensive depth of the in-

nate conceptual structure on each of the agents’ sensory channels was varied, and each

experiment was again repeated 50 times, and summary statistics calculated. We can

see very clearly in table 7.2 that very high levels of communicative success are always

achieved under these circumstances, with almost negligible levels of variation after 5000

communicative episodes. It does appear, however, that these very high levels of com-

municative success are slightly less likely to occur as comprehensive depth increases.

Increasing the comprehensive depth, of course, gives the agents many more potential

meanings to decipher, and so it is perhaps not altogether surprising that it takes them

longer to work out the meanings of all the words, some of which will of course be used

only very rarely. In all cases, however, the � rate tends towards 100% with a graph es-

sentially that shown in figure 7.3, with slight differences in the speed at which the initial

spurt occurs, and the rate of increase of the curve in the latter part of the experiment;
2The standard deviation is scaled relative to the mean so that we can more accurately compare results

from distributions with different means.
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we can safely say that, under these experimental conditions, the introspective obverter

method can indeed develop communication systems with a very high success rate.

Even though the actual target object referred to by the speaker is not known, the hearer

does have access to the context in which the signal was uttered. The disposition to only

consider whole objects as possible referents in accordance with Macnamara (1982)’s

whole object bias, discussed in section 3.3.2, which we are assuming in the model, re-

duces the uncertainty of reference to a finite, rather than the infinite problem with which

Quine (1960) was grappling. This finite problem, although soluble, can still be very large,

as each utterance can be paired with all meanings which could discriminate any one of

the objects in the context from all the other objects in the context; even for each object

there could be multiple semantic hypotheses, for instance an object could be described as

TURQUOISE, EXTREMELY LONG or CIRCULAR, all of which might in principle identify

it from the other objects in any particular communicative episode. The context in which

the signal was uttered, as we saw in section 6.3.3, provides a form of restricted joint at-

tention which allows the hearer to solve the uncertainty problem practically; in section

6.5, we saw that the agents maintain a record of all the possible meanings which have

ever been associated with a signal, through the confidence probability which is stored

with each signal-meaning pair the agent has encountered. After the signal has been ut-

tered many times, it will have been paired with many possible meanings, and the agent

will therefore have considered, and have a record of, many different semantic hypothe-

ses. Many of these meanings will have been encountered in more than one context, and

the agent’s confidence in these particular signal-meaning pairs will rise as a consequence.

Over time, one meaning will occur in more contexts than any other, and that meaning will

be considered by the agent as the most likely meaning to be associated with the signal.

7.3.2 Non-Synchronised Comprehensive Conceptual Structure

In this section, I present similar experiments to those we have just looked at, in which the

agents are once more provided with comprehensive innate conceptual structure, but in

these simulations the agents’ meaning structures are not synchronised. There are a num-

ber of ways of implementing this; one of the most straightforward and interesting is to

limit the number of channels on which innate meaning structure is provided. One agent,

for instance, might have a comprehensive conceptual structure on all five of its channels,

but the other agent only has meaning structure on four of its channels; although every

channel which has a discrimination tree is refined in the same comprehensive manner

and to the same depth, as shown in figure 7.1, the fifth channel is left without conceptual
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structure at all. In this particular case, setting up one channel out of five without mean-

ing structure would result in a pre-defined meaning similarity rate � � ��� � between the

two agents. This method of conceptual structure provision presents an easy way to set

up experiments so that the two agents have a specified amount of meaning similarity � ;

table 7.3 and figure 7.4 both show results from experiments in which both agents have

comprehensive structure to depth 3, but whereas the speaker has this structure on all five

of its sensory channels, the hearer only has structure on a specified number of channels,

so enabling the meaning similarity between them to be fixed at regular intervals between

0 and 1. Again, each of the experiments was run 50 times at each level of meaning sim-

ilarity, and the summary statistics were then calculated. We can see clearly that there is

a strong relationship between meaning similarity � and communicative success � under

these conditions. When � � � , as we have already seen in the previous section, the mean

communicative success
�� is also very high, approaching the level of � , and there is very

little variation. As � decreases,
�� also falls, but not as as quickly as � ; at � � ��� � they

are at approximately the same level, but when � � ��� � , both the mean
�� and indeed

the minimum level of � seen are considerably higher than the meaning similarity level.

Moreover, the variation in � increases considerably as � decreases, with CoV( � ) increas-

ing from 0.01 to 0.16. There is, therefore, a clear relationship between the level of innate

meaning similarity and the level of communicative success which the agents are likely to

achieve: as � increases, the level of communicative success � increases, and the variation

in the likely level of � decreases considerably.

When the hearer is missing conceptual structure on one or more of its sensory channels,

then the introspective obverter algorithm can only produce levels of � which are closely

related to the level of meaning structure � . When meaning similarity is high, identity of

both sense and reference will eventually occur through disambiguation, and so the levels

of � and � are closely related, but when meaning similarity is low, even though sense

identity is often impossible, reference identity can still occur, leading to relatively higher

rates of � compared to � . For instance, if the speaker utters a signal corresponding

to a meaning on the particular sensory channel which the hearer lacks, then there is

no possibility that disambiguation over multiple contexts will ever lead the hearer to

the speaker’s meaning, because the hearer can never consider a semantic hypothesis to

which it does not have access. Paradoxically, however, because of the hearer’s conceptual

deficit, it will actually have fewer semantic hypotheses to consider for the signal, and

may therefore be able to settle on a meaning more quickly than if it had many possible

meanings to disambiguate. The hearer’s meaning will not be that which was intended by

the speaker, but because communicative success is based on reference identity and not

on sense identity, the meaning may still refer to the appropriate object.
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Meaning Communicative Success Rate
Similarity � �� (CI) Max( � ) Min( � ) CoV( � )

1.00 0.96 (0.96 – 0.97) 0.98 0.91 0.01
0.80 0.82 (0.80 – 0.84) 0.92 0.70 0.08
0.60 0.66 (0.64 – 0.68) 0.78 0.51 0.11
0.40 0.52 (0.50 – 0.54) 0.63 0.38 0.12
0.20 0.34 (0.32 – 0.36) 0.50 0.24 0.16

Table 7.3: Meaning similarity � and mean communicative success
�� . Agents are innately

provided with meaning structure at various levels of meaning similarity � , and then un-
dertake 5000 communicative episodes. Each simulation is repeated 50 times, over which
the mean communicative success rate

�� , together with a 95% confidence interval around
the mean, the range of values for � , and the coefficient of variation, are calculated.
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Figure 7.4: Meaning similarity � and communicative success � . Agents are each pro-
vided with comprehensive innate conceptual structures with some channels restricted
to produce various fixed levels of meaning similarity � . Meaning similarity is plotted
against the level of communicative success after 5000 communicative episodes. The ex-
periment was repeated 50 times at each level of meaning similarity, with each cross on
the graph representing the results from a single run.
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Variable Mean (CI) Max Min CoV
� 0.93 (0.92 – 0.94) 0.97 0.88 0.02

� 0.66 (0.65 – 0.67) 0.73 0.60 0.05

Table 7.4: Communicative success � and meaning similarity � in agents with innate
random conceptual structures. A summary of the range and distribution of � and � after
5000 episodes, averaged across the 50 runs of the experiment shown in figure 7.5

7.3.3 Random Conceptual Structure

All these experiments, of course, were carried out after providing the agents with com-

prehensive innate conceptual structure; what happens if the agents are instead provided

with random conceptual structure? With comprehensive innate structure, it is possible

to determine in advance the exact level of meaning similarity that the agents in the ex-

periment would have, and, in the experiments described above, I let this range from

synchronised ( � � � ) to very dissimilar meaning structures ( � � ��� � ). With random

conceptual structure, on the other hand, the level of meaning similarity which emerges is

not deterministic at all, and could in principle vary quite dramatically between runs of the

same experiment; one agent might develop a particular sensory channel to a very great

degree, allowing a very sensitive categorisation of objects in respect of their colour, for

instance, while the other agent might have only a very coarse representation of colour,

but can instead differentiation many objects by their smell.

In this section, therefore, we will look at experiments in which most settings remain the

same, but the agents are each provided with 60 random innate concepts, or nodes on their

discrimination trees, as shown in figure 7.2, before they attempt to communicate with

each other. As before, each simulation is run 50 times, with each run being shown as a

separate line in figure 7.5, and, after 5000 communicative episodes, summary statistics

are calculated and displayed in table 7.4. Because of the random setup of these exper-

iments, both communicative success � and meaning similarity � vary over the 50 runs,

and so 7.4 shows summaries for both variables. Figure 7.6 shows a more detailed break-

down of the relationship between meaning similarity and communicative success, with

a plot of the two variables against each other, after 5000 communicative episodes have

been carried out. We can see immediately in table 7.4 that the mean level of communica-

tive success
�� is high, and, as we saw previously, there is little variation in � under these

circumstances. Perhaps surprisingly, however, the mean level of meaning similarity
�� is

much lower, at only 66%, and again with little variation. In figure 7.6, we can confirm
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Figure 7.5: Communicative success � in agents with innate random conceptual struc-
tures. Agents are each provided with 60 random innate meanings, and the experiment
was repeated 50 times, with each line on the graph representing a single run.
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Figure 7.6: Communicative success � and meaning similarity � after 5000 communica-
tive episodes, in agents with innate random conceptual structures. Each cross on the
graph shows the endpoint of one run of the simulation shown in figure 7.5.
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that neither variable shows much variation at all, as the plots on the graph are clustered

together very tightly.

7.3.4 Summary

The contrasting communicative success results we find when different types and levels

of innate conceptual structures are provided to the agents present us with an intriguing

puzzle. When the agents have comprehensive structure, there is a clear linear relationship

between the level of meaning similarity � and the level of communicative success � ; as

� increases, � also increases, albeit slightly more slowly. Moreover, the variation in

� decreases quite substantially as � approaches 1 due to a ceiling effect, showing that

agents with identical meaning structures will communicate optimally using introspective

obverter.

When the agents’ structure is randomly generated, on the other hand, the relationship be-

tween meaning similarity and communicative success is more opaque; there is much less

variation in the level of � than we might have expected, and therefore insufficient infor-

mation to confirm the slight upward trend in � which appears to be present, for instance

in figure 7.6. Moreover, the levels of communicative success achieved are considerably

higher than those we might have expected from our results with innate structure shown

in figure 7.4. What are the crucial factors concerning the production and use of random

conceptual structure which results in such elevated levels of communicative success?

7.4 Randomness and Predictability

When we are experimenting with comprehensive innate conceptual structure, the crucial

parameter is, as we have seen, the level of meaning similarity between hearer and speaker.

But with random conceptual structure, we find much less variation in both meaning sim-

ilarity and in communicative success; moreover, the levels of communicative success are

higher than we would expect given the comprehensive results. In order to explain this,

we must delve deeper into the process of random meaning provision, and in particular

we need to differentiate two different kinds of randomness in the allocation of random

innate meaning structure, whose effects are subtly different, as follows:

� a sensory channel is chosen at random;

� a value on the selected channel is then chosen at random, and the leaf node
�

corresponding to this value is refined.
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The random choice of a sensory channel is very straightforward, and need not concern

us very much; firstly, the fact that there is a uniform probability distribution across the

channels implies that each channel has a probability �� of being chosen, where � is the

number of channels; secondly, the relatively large number of meanings chosen (60 in this

case) for each agent, means that the distribution of channels chosen will be very similar

between agents.

Once the sensory channel has been chosen, however, the choice of node which is refined

is crucial in determining the similarity � (see equation 5.13), and therefore indirectly the

meaning similarity � between agents. Furthermore, the fact that our meanings are created

on binary trees leads to some interesting (and perhaps unforeseen) consequences. If, for

instance, a channel is refined once, then we know exactly what the tree will look like

after the refinement; there is only one way in which an empty tree can be refined, and it

always produces a tree with two leaf nodes, shown as A at the top of figure 7.7.

Moving down this diagram, we follow the stages through which a discrimination tree

passes as it is randomly refined; if the tree in A is refined for a second time, it is clear

that either of its two leaf nodes could be chosen, each with an equal probability of 0.5,

as shown by the annotations to the dotted lines, giving two possible trees B and C, each

of which has three leaf nodes3. If a third refinement takes place, any of the three leaf

nodes on B or C can be refined, but because of the hierarchical way in which subsequent

levels of the tree divide up the semantic space, it is important to note that each node is

not equally probable; the node at depth 1 has a probability of 0.5 of being chosen, while

the two nodes at depth 2 each have a probability of 0.25. In fact, because of the binary

nature of the trees, the probability of a particular leaf node being chosen is given simply

by ���� , where � specifies the depth of the node. In order to work out the probability of any

particular path being traversed, we simply multiply the probabilities we find on the path

back from that tree to the tree at the top of the diagram4.

Calculating the probability of any particular tree’s occurrence is likewise straightforward,

and is simply the sum of the probabilities of each path which could lead to that tree; the

probabilities for the trees D-H, which are obtained after three refinements, are shown in

brackets at the bottom of figure 7.7. Interestingly, although there are five possible trees

at this depth level, there are marked differences in the chances of obtaining each of them.

Tree F, in particular, can be reached from both trees on the preceding level, B and C,
3Every refinement of a tree, as we can see, increases the number of leaf nodes which are available for

future refinement by one node.
4More properly, we would need to multiply the resultant probability by the probability of obtaining this

first tree, but we have already seen that this latter probability is 1, and so the term can be eliminated from
the equation.
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Figure 7.7: The random refinement of a sensory channel. The first refinement of a sensory
channel is deterministic, and always results in the tree at the top of the figure (A). From
this tree, either of the leaf nodes (the slightly larger, black nodes) can be chosen, with
a probability of 0.5 (shown on the dotted lines leading from tree A), resulting in the
trees on the second level (B and C). Thereafter, the number of possible trees increases
dramatically (see equation 7.2), but the available nodes are not equally probable, and this
pressure leads to a trend for the trees to become as comprehensive as possible (compare
tree F to the other trees on the lowest level).
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Tree D E F G H
D 1 0.67 0.67 0.33 0.33
E 0.67 1 0.67 0.33 0.33
F 0.67 0.67 1 0.67 0.67
G 0.33 0.33 0.67 1 0.67
H 0.33 0.33 0.67 0.67 1

Table 7.5: Levels of mutual tree similarity � between trees D-H in figure 7.7.

whereas trees D, E, G and H each have only one path which reaches them. If we focus

in more closely on either tree B or tree C, we can also see that the path which leads

from here to tree F is twice as probable as either of the paths which lead from this tree

to the other successor trees. Tree F, in fact, the only comprehensively refined tree of the

five, will occur fully 50% of the time, while each of the others will occur just once in

every eight attempts. The random nature of the meaning allocation process, therefore,

coupled with the hierarchical nature of the semantic structure, combine together to create

a considerable pressure towards comprehensively refined trees.

Tree F in figure 7.7 is clearly much more likely to occur than D, E, G or H, but what effect

might this have on meaning similarity? Table 7.5 shows a matrix of tree similarity � for

all combinations of trees D-H, and even with just five possible trees under consideration,

we can find a number of interesting properties. Firstly, the lowest levels of � ( ��� � � ) are

found when one of DE (the trees which can only be reached from B) is compared with

one of GH (the trees which can only be reached from C); it is clear that low levels of �

therefore can only occur when the meaning structures diverge from an early stage in the

meaning creation process, and that both trees being compared are not comprehensive, but

instead are very specialised, in that they can make very fine distinctions at one part of

the feature spectrum, but not anywhere else. In contrast, apart from the obvious identity

relation when a tree is compared with itself, the highest values found anywhere in the

matrix are when tree F is compared with any other tree, which is always the same ( ��� � � ).

If we couple this with the knowledge that tree F is also much more likely to occur than

any of the other trees, what will this mean for an expected level of tree similarity � � � � � �
between a random combination of any two trees created with three refinements? The

general solution to this is given by the following equation:

� � � � � � � �� �
� �

��
	 � � � � � � � � 	 � � � �

�
� � � � 	 � �(7.1)
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where � is the number of possible trees under consideration, and � � � � is the probability

of tree � being chosen. For the five trees D-H in figure 7.7, therefore, � � � � � � � ��� � � � ,

which is perhaps higher than we might have imagined, given that this occurs through

a completely random process of concept creation. As we have seen, however, it is the

random nature of the concept creation process itself which leads to pressure to create

comprehensively refined trees. Comprehensively refined trees in turn produce the highest

possible levels of tree similarity � when compared with trees with the same number of

leaf nodes (with the exception of comparing a tree with itself), leading to expected levels

of � far above what we might initially imagine.

It is arguable, however, that such high levels of � are an artefact of the situation with trees

which have only been refined three times; little meaning creation has happened, and this

inevitably means little variation. If we therefore increase the number of refinements to

four, the number of different possible trees which can be created rises to 14; looking at

these possible trees in detail, we can see that:

� eight of them are the most specialised trees, which can only be reached by refining

one of the deepest nodes on trees D, E, G or H (figure 7.7). Each of these occurs

with a probability of just 0.016;

� two of them are reached by refining the node at depth 2 on trees D, E, G or H. Each

of these trees has two different routes to creation, and occurs with a probability of

0.063;

� the final four trees can be reached either by refining any of the nodes on the com-

prehensively refined tree F, or by refining the node at depth 1 on any of the other

trees. There are therefore two ways to reach all of these trees, and again the par-

ticular paths needed to reach these are relatively more likely, so each of these four

occurs with a probability of 0.188.

Not surprisingly, the tree similarity levels are also highest for these latter four trees, which

are by far the most likely to occur, with a combined probability of 0.75. Although there

cannot be any completely comprehensive trees created from four refinements, I hope that

it is clear that this pressure to create trees which are as balanced as possible is still very

strong. As we increase the number of refinements � , the number of different possible
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Refinements Possible Mean Range
� Trees

� � � � �� (CI) Max( � ) Min( � ) CoV( � )
3 5 0.740 (0.700 – 0.780) 1.000 0.333 0.275
4 14 0.745 (0.713 – 0.777) 1.000 0.250 0.217
5 42 0.692 (0.659 – 0.725) 1.000 0.200 0.243
6 132 0.698 (0.670 – 0.726) 1.000 0.333 0.202
7 429 0.709 (0.683 – 0.734) 1.000 0.429 0.180
8 1430 0.693 (0.671 – 0.714) 0.875 0.250 0.160
9 4862 0.688 (0.668 – 0.708) 1.000 0.444 0.146

10 16796 0.684 (0.663 – 0.705) 0.900 0.400 0.158
11 58786 0.695 (0.675 – 0.716) 0.909 0.455 0.152
12 208012 0.683 (0.661 – 0.705) 0.917 0.333 0.162

Table 7.6: Observed levels of tree similarity � between randomly created trees with dif-
ferent numbers of refinements. One hundred separate pairs of trees were created, and a
summary of the mean and range of � over these experiments is shown.

trees
� � increases dramatically, following the series of Catalan numbers, each member

of which is given by the equation

� � � � � � ���� � � � ��� � �(7.2)

(Conway & Guy, 1996), leading rapidly to very intense and laborious calculations to

discover the expected level of tree similarity for all possible combinations of these trees.

To avoid the need for these calculations, I have instead run computational simulations,

in which two trees are created at random with a certain number of refinements, and the

tree similarity level then calculated explicitly. Each experiment is run 100 times, and the

average observed tree similarity level, together with other summary statistics, is displayed

in table 7.6, and should provide a good approximation to the mathematically expected

rates.

We can see in this table that the experimental results are indeed consistent with the theo-

retical results which we had anticipated. The expected value of � at � � � , for instance,

derived from equation 7.1, of ��� � � � , falls well within the confidence limit (0.70-0.78)

found experimentally. Even more interestingly, the pressure to keep trees balanced and

as comprehensive as possible results in remarkably similar levels of tree similarity, no

matter how many nodes are created on the trees. There is a very small decline in the level

of
�� as we move down table 7.6 and the tree structures become ever more complicated,

coupled however with a reduction in the variation � � � � � � . Random concept allocation,

therefore produces structures which are progressively more similar to each other as more

conceptual structure is created.
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Finally, because the expected level of � in two randomly created trees is relatively static, it

is not surprising to find that the corresponding level of � , the meaning similarity between

agents, which is averaged across all their sensory channels, also had little variation in the

experiments which we looked at in figure 7.6.

7.5 Semantic Generality

But why is the level of average communicative success
�� in table 7.4 so much higher than

we might have expected, had we taken the experiments with non-synchronised compre-

hensive meanings as faithfully indicative of the relationship between meaning similarity

and communicative success? In order to answer this, we need to focus on the commu-

nicative process in the context of Grice (1975)’s philosophical model of conversation. In

the Gricean model, it is proposed that the communicative process is governed by the co-

operative principle, a set of hypothetical, implicit, rules which underlie communication.

Famously, Grice unpacked this principle into four conversational maxims, reproduced

below:

Maxim of Quantity: Be informative.

Maxim of Quality: Be truthful.

Maxim of Relation: Be relevant.

Maxim of Manner: Be perspicuous.

Of course, these maxims are often violated in conversation, for rhetorical effect such as

irony or sarcasm, and their violation allows the the hearer to make certain conversational

implicatures. Implicatures, in turn, allow the construction of additional aspects of mean-

ing which are not explicitly referred to in an utterance. My model of communication

between agents is of course not meant to be a complete account of communication, and

it assumes indeed that the Gricean maxims are not violated. Of most relevance in this

discussion is the first maxim above, that of quantity, found in the epigram at the start of

this chapter and in detail below:

� Make your contribution as informative as required.

� Do not make your contribution more informative than required.
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In my model of communication, the agents use meanings which provide sufficient infor-

mation to identify the target object, but not unnecessarily specific information. To take a

hypothetical example, if a speaker has a very detailed discrimination tree, for instance, on

the channel which represents colour, yet in a particular discrimination game the target ob-

ject can be described as RED, while all the other objects are BLUE, the agent will use the

general meaning RED rather than a very specific meaning DEEP VERMILION. The pur-

pose of communication in this model, after all, is to identify one particular object from a

group of other objects, and in this context the use of the specific meaning DEEP VERMIL-

ION would be considered as providing more information than was required. Likewise,

when interpreting an utterance, the hearer will conform to the same maxim of quantity

when constructing its list of semantic hypotheses, discarding a possible meaning DEEP

VERMILION in favour of RED, as long as the meaning RED is sufficiently specific to

identify one object in the context.

In the hierarchical dendritic semantic model in use in these experiments, it is clear that

general meanings can be defined as those which are nearer the root of the discrimination

tree, and specific meanings are those nearer the leaves of the tree. We saw in section 7.3.2

that it is important from a communicative point of view for the hearer to contain in its

conceptual structure those meanings which the speaker is likely to use in the communica-

tive episodes. The Gricean preference for the use of more general meanings over specific

meanings by both agents means that these general meanings are those which the hearer

needs to have in its semantic repertoire for communication to succeed. In section 7.4, we

noted that, coincidentally, there is a strong bias in the random meaning creation process

for balanced, comprehensive discrimination trees, and consequently for a full range of

general meanings to occur in the agents’ trees. Differences between agents’ conceptual

structure, therefore, are more likely to occur towards the leaves of the discrimination

trees, in the parts of the semantic structure which are less important for communicative

success.

To summarise, the Gricean maxims of communication in the model result in general

meanings being disproportionately used by the agents, while the hierarchical structure

of the meaning structure and the random nature of the meaning creation process result

in general meanings being disproportionately shared by the agents. Together, these lead

to a communicative success rate which is considerably higher than the level of meaning

similarity (see table 7.4) alone. Meaning similarity remains a very important predictive

factor for communicative success rates when we are relying on the disambiguation of

utterances through context, but it will always, except in the special case when � � � ,
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underestimate the actual rate of communicative success due to the Gricean preference for

objectively more general meanings over specific ones.

7.6 Summary

In this chapter, I have investigated the efficacy of the communicative framework based on

my introspective obverter algorithm, in which the hearer is told neither the speaker’s in-

tended meaning, nor the referent of this meaning, nor given any feedback concerning the

success of its attempted interpretation. In section 7.3, I broke the link between the pro-

cess of unguided meaning creation described in chapter 5 from the process of unguided

communication described in chapter 6, and provided agents with innate meanings in var-

ious configurations. I showed that, given innate conceptual structure under this variety of

circumstances, the communicative success rate � is consistently very high:

� If agents have identical comprehensive conceptual structures ( � � � ), then com-

municative success is near-perfect (table 7.2);

� If agents have comprehensive structure which is not synchronised, because the

hearer is lacking a certain number of sensory channels, then communicative suc-

cess � is very strongly correlated with meaning similarity � (figure 7.4);

� If agents have randomly allocated conceptual structure, then � is regularly between

65-70%, but communicative success is consistently much higher at around 93%

(table 7.4), due to the Gricean preference for general meanings discussed in section

7.5.

In section 7.3.3, I explored the provision of random meanings, and found that commu-

nicative success is in this case always at a higher level than the meaning similarity. I then

investigated the reasons for this both theoretically and experimentally, in section 7.4, and

made the important discovery that:

� the random nature of the meaning allocation process, coupled with the hierarchical

nature of the semantic structure in the discrimination tree mode, combine to exert

considerable pressure in favour of the construction of balanced, comprehensive

meaning structures at similar levels of tree similarity.
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I then went on to demonstrate in section 7.5 that the meanings which are most likely to

be shared in these structures, namely the more general ones, are also most likely to be

used by the agents in accordance with Gricean conversational principles. In chapter 8, I

will go on to explore experimental conditions under which levels of meaning similarity

are not as uniform and predictable as in the models described here, and show how agents

build highly co-ordinated structures despite the pressures inside the system.





CHAPTER 8

Meaning Creation and Communication

“[S]imple heuristics perform well � � � if the structure of the heuristic is adapted

to that of the environment.” (Gigerenzer & Todd, 1999, p. 13)

8.1 Introduction

I have identified a number of characteristics of the meaning creation process as it stands

so far which help to explain the mechanisms and conditions which help to facilitate com-

munication using the introspective obverter algorithm. In particular, we saw in section

7.4 how the random nature of the meaning creation process creates a strong pressure to

develop comprehensively refined trees, and indirectly leads to fairly predictable levels of

meaning similarity between the agents, though this predictability decreases slowly as we

increase the number of channels on which an agent can grow conceptual structure. The

agents can, furthermore, develop a co-ordinated system of communication by inferring an

utterance’s meaning through context-driven disambiguation, despite having no access to

each other’s internal lexicons and no guidance about what or how well they are learning

the meanings of the vocabulary items.

In this chapter, my investigations will proceed through comprehensive computational ex-

periments based on the model I have described, and will focus in detail on two particular

areas:

� the re-linkage of meaning creation and communication, so that agents create their

own grounded meanings, rather than having them provided by the model.

169
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� the exploration of how various cognitive biases and environmental structure influ-

ence the levels of meaning similarity and communicative success.

Firstly, the re-linkage of meaning creation with communication will show us whether

agents can communicate as effectively with their own, individually created meanings, as

they could with the meanings of various kinds provided by the model in chapter 7. The

experiments, therefore, are reconfigured so that both agents develop their own individual

meaning structures, as discussed in chapter 5, by responding to failures in their attempts

to discriminate certain objects from other objects in their external environment. In a stan-

dard simulation, each agent plays an average of 1000 discrimination games, and thereby

develops a semantic structure which successfully represents the world around them. In

each discrimination game, the agent tries to discriminate one particular object from a

larger context of five objects; if this is not possible, then the agent chooses a sensory

channel, and refines the node which describes the target object; for instance, the agent

might choose the colour channel1. If the target object was blue (but at least one other ob-

ject in the context is also blue, hence the failure of the game), then the agent could refine

the category BLUE (which describes the target object) into the more specific categories

DARK BLUE and LIGHT BLUE. Having individually created their meaning structures, the

agents will play 5000 communicative episodes as described in chapter 6, with one agent

acting as the speaker, and the other agent acting as the hearer. As before, communicative

success is defined in terms of referent identity (see section 6.3.2), and the hearer is pro-

vided only with the signal and the context in which the speaker uttered it; neither agent,

of course, receives any information about the success of the communicative episode.

Secondly, the exploration of the model under a number of different circumstances and

conditions will not only allow me to test the robustness of the theory of communication

through the inference of meaning, but will also provide evidence concerning the utility of

the cognitive and environmental factors under investigation. In section 8.2, I will explain

how cognitive biases are introduced into the model, and explore how they interact with

different meaning creation algorithms to produce varying levels of meaning similarity

and communicative success in the standard world we have looked at so far. I will then

move on in section 8.3 to modify the simulations so that both agents have the same expe-

riences of the world they inhabit, and we will see that this can, in certain circumstances,

lead the agents to produce completely synchronised conceptual structures, and therefore

optimal communication systems. In section 8.4 I will investigate modifying the struc-

ture of the environment itself, developing a more realistic world for the agents to inhabit,
1Remember that the sensory channels in these experiments are in fact totally abstract, and names such

as colour are only used for expository purposes.
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and I will show that, when this is in place, the agents can develop extremely success-

ful communicative systems merely through the inference of meaning, as they exploit the

structure of the environment.

8.1.1 Experimental Measurements

In the body of this chapter, I will present many experimental results which show vari-

ations in meaning similarity � and communicative success � across various different

parameters, which will themselves be introduced in the following sections. As a gen-

eral rule, each simulation is repeated 50 times, over which the now-familiar summary

statistics for the levels of both � and � are calculated.

In addition to the raw results, it is interesting to compare the distribution of results ob-

tained by one set of experiments to those obtained by another set, to see if there is any

statistically significant difference between them. In order to measure this, I use the

Kolmogorov-Smirnov (KS) statistic to express how different two sample distributions

are. Strictly speaking, we are trying to disprove the null hypothesis that the two datasets

are drawn from the same population distribution function (Conover, 1999).

In the tables in the forthcoming sections, the notation KS( � � � ) represents a statistical

comparison between the data in the current (row of the) table and the data in (the cor-

responding row of the) table � � � . In general, the higher the level of the KS statistic, the

more certain we are that the two distributions are not from the same underlying popula-

tion; crucial to the interpretation of the Kolmogorov-Smirnov statistic is its significance

level, small values of which show that the distributions are indeed different. Significance

levels under 0.05 will be denoted by an asterisk (*), and those under 0.01 will be indicated

by a double asterisk (**).

Although the most interesting and relevant results are presented throughout this and the

following chapter, I have also produced full details of the results for all the experiments

in appendix C for reference.

8.2 Cognitive Biases and Tree Growth Strategies

I have already discussed, primarily in chapter 3, many proposed solutions to the apparent

paradox of how children manage to acquire their lexicon, and, in particular, that scientists

have appealed to many different cognitive biases to solve this problem, some of which I

will briefly recap here:
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Whole-Object Bias (Macnamara, 1972): a child will assume that an unfamiliar word

names a whole object, rather than a particular property of it;

Shape Bias (Landau et al., 1988): a child is more likely to assume that an unfamiliar

word refers to the shape of an object rather than to other properties such as its

colour or taste;

Taxonomic Bias (Markman & Hutchinson, 1984): a child will group the same kinds

of objects together;

Underlying all these proposals are variants of the idea that learners are pre-disposed to

focus on particular properties of objects they are learning names for, and it is easy to see

analogies with the sensory channels in this model of meaning creation. In this section,

and throughout the analyses in this chapter, therefore, I will investigate how abstract bi-

ases affect the construction of conceptual categories. However, I do not propose to inves-

tigate whether, for instance, the shape bias accounts for more of the acquisition process

than the taxonomic bias, because I have designed the model to be as abstract as possible

on purpose, and the channels to be intrinsically meaningless, so it makes no sense to

arbitrarily decide that channel one should be renamed ‘shape’ and channel two ‘smell’,

and then investigate which is better for the agents. Instead, I will investigate cognitive

biases in the abstract, focusing on what kind of biases are important for communication

to succeed. In particular, implicit in all the explanations of lexicon acquisition we have

looked at are that the biases and assumptions are ‘sensible’, and made by all children,

that is, they are universal biases. I will investigate in this section whether it is indeed

important for communication that agents have identical cognitive biases, or whether they

can communicate successfully despite not having the same cognitive biases.

8.2.1 Sensory Channel Biases

In the simulated world within the model, I have already described how each agent � is

created with a set of numbered sensory channels, which correspond to the features by

which the objects in the world are defined. The evolution of these channels is not under

consideration here, though this of course remains an important question which is the

subject of much contemporary research (see Polani, Uthmann, and Dautenhahn (2000),

Ward, Gobet, and Kendall (2001), Ziegler and Banzhaf (2001), among others). Each

sensory channel � has a bias
���
� , which is stored as a real number in the range 0 � � � 1,

and can be thought of as representing the probability of the channel being chosen for
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refinement2. The channel biases do not change over time, so the method used to set

them in the initialisation of the experiments is crucial. In the standard model we have

been using hitherto, my exposition has ignored the channels biases so far, because I have

set them so that, for each agent, every channel bias is equal (i.e. there is a uniform bias

distribution across the agent); the agent essentially chooses a channel at random each time

a channel is needed. The channel biases, however, can of course be defined according

to many different probability distributions; I will investigate three particular interesting

cases in detail, including the uniform distribution used in all the experiments described

in chapter 7:

Bias Allocations

Uniform Bias Allocation, in which the agent’s channel biases are all equal;

Random Bias Allocation, in which each of the agent’s channel biases is a ran-

domly generated number in the range 0.0 � � � 1.0;

Proportional Bias Allocation, in which each of the agent’s channels has a bias

which represents a fixed proportion � of the remaining bias available to the

agent, taking into account biases which have already been allocated to its

other sensory channels. This description might seem a little opaque, so let

us first consider that the biases form a probability distribution, and therefore

the total value of all the biases for an agent must equal 1. The remaining bias

available is defined as the total of all biases on the channels whose biases have

already been set, subtracted from 1. With this in mind,
� �
� is defined as in the

following equation:

if � � � � � �
� � �

if � � � � � �
� � � � � �

�
� �

���
� � �

� �
�

� � (8.1)

Because the biases represent a probability distribution, they must always be scaled, no

matter what allocation method is used, so that the following equation always holds for

each agent:
� � �� �
� �

� �
� � � �

2We will see soon that such a representation actually only makes sense under the probabilistic tree
growth strategy, but it is a useful starting point.
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Channel Bias Scaled Bias

0 0.5 0.5161
1 0.25 0.2581
2 0.125 0.129
3 0.0625 0.0645
4 0.03125 0.0323

Table 8.1: Allocation of biases under the fixed proportional method, with � � ��� 	 .

0.0 1.00.52 0.77 0.90

Channel 0 1 2 3 4

Figure 8.1: A ‘bias line’ representing the probability distribution of sensory channels,
whose biases are proportionally (� � ��� 	 ) created.

namely that the sum of the channel biases for the agent always adds to 1. For instance,

under proportional bias allocation, if � � ���
	 , and there were five sensory channels, the

biases would be allocated as shown in table 8.1. Another way of thinking of the biases

as a probability distribution is to visualise them as in figure 8.1, which shows a line

from 0 and 1 representing the probability distribution across all of an agent’s channels.

A random number � in the range 0 � � � 1 is chosen, shown below the bias line, and the

corresponding channel, shown above the line, is chosen for refinement and the creation

of new meaning structure. It is worth observing here that the proportional method of

channel selection is deterministic, so if two agents have the same value of � , then they

will necessarily have identical cognitive biases3.

8.2.2 Tree Growth Strategies

As well as changing the distribution of an agent’s channel biases, we can also investigate

variations in the strategies the agents use for channel selection, which I call tree growth

strategies. The tree growth strategy determines the method of sensory channel selection,

but not the particular leaf node
�

on the tree which will be refined; in all cases this node

is defined as follows:

leaf node to be refined
� � � � : the deepest node in the discrimination tree on the sensory

channel � which categorises the target object in the current discrimination game.
3Unless specified otherwise, � is set to 0.5 for all simulations reported in this thesis.
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Firstly, in the default or probabilistic method, the agent chooses a sensory channel on

the basis of the channel biases, as described in section 8.2.1 and shown in figure 8.1. In

addition to this method, I will investigate another strategy, in which the agent first orders

its channels according to their biases, then searches through them, considering possible

nodes
�

which would have resulted in successful discrimination of the target object in

this particular discrimination game, had
�

already been refined. If no channel which

meets this criterion is found, then no refinement takes place. Three noteworthy features

of the second strategy, which I will call the intelligent tree growth strategy, stand out

immediately (others will become apparent throughout the course of this chapter):

� an intelligent refinement will always make a helpful distinction in at least the par-

ticular discrimination game during which it was created. By contrast, refinements

under the probabilistic strategy are not guaranteed to be successful in any future

discrimination games at all.

� if there are no channels on which a possible refinement would have been successful

in the current discrimination game, then no refinement takes place at all. Such a

situation is more likely to arise at the beginning of a simulation, before trees of any

great depth have been grown, so it seems reasonable to assume that the intelligent

tree growth strategy might be slightly slower to develop meaning structure than the

probabilistic tree growth strategy.

� the intelligent tree growth strategy is based on a simple heuristic (Gigerenzer &

Todd, 1999), in that it does not consider every possible
�

in every possible future

discrimination game, and then decide which would be the optimal node to refine,

but searches only until it finds one which satisfies the chosen criterion.

For reference, I summarise below the definitions of the two tree growth strategies which

are used in the experiments:

Tree Growth Strategies

Probabilistic Tree Growth, in which each channel has an innate bias which rep-

resents the probability of choosing the channel. The agent chooses a random

number � , and finds the channel within whose bounds � falls, as shown in

figure 8.1.

Intelligent Tree Growth, in which the agent again has channels with innate bi-

ases, but they do not represent the probability of being selected, and are used
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merely to order the channels before searching occurs. Having ordered them,

the agent searches through the channels, testing possible leaf nodes until it

finds a node
� � � � on channel � , which, if it had been already refined, would

have led to the current discrimination game being a success.

First, then, let us consider results from experiments which explore the levels of meaning

similarity and communicative success under various configurations of the different cog-

nitive biases and tree growth strategies I described above, with particular focus on the

following questions:

� do the cognitive biases and tree growth strategies manifest themselves as differ-

ences in the way in which agents create meanings and communicate with each

other?

� with which combination of tree growth strategy and bias allocation do agents pro-

duce the highest (and lowest) levels of meaning similarity and of communicative

success?

� does communicative success rely on the need for agents to share the same biases,

as implicitly suggested by the proposed universality (among humans) of cognitive

biases like the shape bias?

In all experiments, the feature values of the objects in the world are initialised at the start

of the experiment, and are thereafter permanently fixed; in this first set of experiments,

representing the basic model to which later ones will be compared, the feature values are

taken from a uniform random distribution.

8.2.3 Probabilistic Tree Growth

Probabilistic Tree Growth based on Uniform Biases

In figure 8.2, I show how the level of meaning similarity � progresses during 1000 dis-

crimination games in which the agents are building their conceptual structure, with differ-

ent numbers of sensory channels available to them; these results are further summarised

in table 8.2. As we would expect from our knowledge of the meaning creation process,

most of the workload of meaning creation occurs in the initial part of the simulation,
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Figure 8.2: Meaning similarity � in a random world: agents have different experiences
and create individual meaning structures using the probabilistic tree growth strategy
based on uniform channel biases. The simulation contains 1000 discrimination games,
and is repeated 50 times, with each run represented by a separate overlaid line on the
graph. Sub-figures show varying numbers of channels available to the agents: 2 (upper
left), 3 (upper right), 5 (lower left) and 10 (lower right)

which leads to dramatic falls4 in the level of meaning similarity � at the beginning of the

experiment, as the agents fail in the discrimination task, then a slower increase over time,

before � remains more or less constant from only a few hundred episodes onwards, as

the agent’s conceptual structures are developed sufficiently to represent the world they

inhabit, and there is no need to create any further meanings.

We can see that the precise parameters of the lines, from the steepness and depth of the

intial fall, through the time taken to recover to a stable level, to the value of this level

itself, are dependent, as we would expect, on the number of sensory channels available to

the agents. There are, moreover, slight variations in the clustering effects, which we can

see both in figure 8.2 and table 8.2; the value of the mean
�� decreases as the number of

sensory channels grows, and the variation CoV( � ) increases at the same time. Unsurpris-

ingly, given our understanding of the random processes at work, there is a vanishingly
4It is worth noting that the level of both tree similarity � and agent meaning similarity � are always

artificially high ( � �
��� ��� � �

��� �
) at the beginning of every experiment, because all the agents’ trees are

without any growth, and trees in this condition are always necessarily identical.
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � )

2 0.80 (0.78 – 0.81) 0.89 0.69 0.06
3 0.74 (0.72 – 0.76) 0.89 0.59 0.08
5 0.70 (0.69 – 0.71) 0.80 0.58 0.07

10 0.62 (0.61 – 0.64) 0.77 0.43 0.11

Table 8.2: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on uniform channel biases. The table shows a summary of
the final range and distribution of � across 50 repetitions of the experiment.

small chance of agents developing independent, synchronised ( � � � ) conceptual struc-

tures, and levels above 80% are very rarely seen, and only at all when the number of

sensory channels is small. If we compare the results with five sensory channels to those

we looked at in table 7.4, when the agents were provided with random conceptual struc-

ture, we can see that there are small, but interesting differences:

� the average level of meaning similarity
�� is slightly higher at 0.70 (0.69–0.71)

compared to 0.66 (0.65–0.67);

� the average level of communicative success
�� is very slightly lower at 0.90 (0.89–

0.91) compared to 0.93 (0.92–0.94).

These results initially might appear to be slightly counter-intuitive, as both sets of exper-

iments appear to be set up with random parameters; the only difference between them,

indeed, is that in the original experiment, the meanings are created through the random

innate provision described in section 7.2, while in these experiments, they are created

randomly following the failure of discrimination games5. This apparent near-identity

between the two experiments, however, hides one important difference in the degree of

randomness involved in the meaning creation procedure.

I have already discussed in detail the process of tree creation during random innate pro-

vision, and shown mathematically why the levels of meaning similarity are in fact so

predictably consistent, so I will confine myself here to a brief investigation of the agent-

driven meaning creation process. As we have seen, in both cases, a sensory channel is
5I have, of course, been describing the meaning creation process in this section as probabilistic meaning

creation based on uniformly distributed channel biases. Choosing a sensory channel under these circum-
stances is, however, exactly equivalent to ‘choosing a channel at random’ as we did in the previous chapter.
For expository purposes, however, it is helpful to group this process with the other processes which also
use probabilistic meaning creation, but which are based on non-uniform distributions of the channel biases.
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Figure 8.3: Communicative success � in a random world, following individual meaning
creation based on agents’ different experiences using the probabilistic tree growth strat-
egy based on uniform biases. The simulation contains 5000 communicative episodes, and
is repeated 50 times, with each run represented by a separate overlaid line on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right)

Channels Mean
�� CI Max( � ) Min( � ) CoV( � )

2 0.95 (0.94 – 0.95) 0.97 0.89 0.02
3 0.93 (0.93 – 0.94) 0.97 0.87 0.02
5 0.90 (0.89 – 0.91) 0.95 0.82 0.04

10 0.81 (0.80 – 0.82) 0.89 0.72 0.05

Table 8.3: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on uniform biases. The table shows a summary of the final range and distribution of �
across 50 repetitions of the experiment.
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chosen randomly following the failure of a discrimination game. The difference, how-

ever, becomes apparent when we consider how to choose the particular leaf node
�

which

will be refined. Under innate concept provision, a random value between the bounds of

the sensory channel is chosen, and the leaf node corresponding to this value is refined.

When the agents create their own meanings, however, the value chosen is taken from

the value of the target object itself, as I explained in section 8.2.1; this is in fact how

I ensure that the agent’s meaning creation process is grounded in its experiences of the

world. This means that, rather than there being an infinite number of possible values at

every step of the meaning creation process, there are in fact only � values which can be

chosen at any one time, where � is the number of objects in the world. The probability

of a particular node being chosen is not straightforwardly inversely proportional to the

depth � � � � of the leaf node
�

, or defined by ���� , as we saw in section 7.4, but is dependent

instead on the actual distribution of objects in the world as well as the node’s depth in the

discrimination tree. Because the world, once created, is static, it is inevitable that partic-

ular portions of the meaning space, to which no objects correspond, will never be chosen

for refinement. The main consequence of this explicit grounding of the new meanings

in the agents’ environment is, of course, that they reflect the (random) regularities which

are found there, and so values are not being chosen from a uniformly random meaning

space. The meaning structures created, therefore, will have a slightly greater degree of

meaning similarity than under the random innate meaning provision described in chapter

7, but this increase will not be enormous, because the meaning creation is still taking

place under the very great pressure for the production of trees which are as balanced and

comprehensive as possible (see section 7.4 for more details).

After having created their individual conceptual structures, the agents communicate with

each other during 5000 communicative episodes, which are shown in figure 8.3, and

summarised in table 8.3. Communicative success � rises quickly at first, as many lexical

items are successfully acquired and understood, but then continues more slowly as the

remaining words are only slowly disambiguated from context, in a similar way to that

which we saw in the preliminary experiments in section 7.3. We see again that com-

municative success is very high when there are relatively few lexical items to learn the

meanings of, but as the number of sensory channels increases, the average success rate
�� declines and the variation CoV( � ) slowly increases. The scatter plot of meaning simi-

larity � and communication success � in figure 8.4 shows both of these phenomena; the

crosses appear both lower and less clustered together in the sub-figure at the bottom right.
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Figure 8.4: Meaning similarity � (x-axis) against communicative success � (y-axis) in a
random world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the probabilistic tree growth strategy based on uniform channel biases. The simu-
lation is repeated 50 times, with each run represented by a separate cross on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right).

Probabilistic Tree Growth based on Random Biases

Figure 8.5 shows the levels of meaning similarity � for a similar set of experiments in

which the agents create meanings using the probabilistic tree growth strategy based on

random biases, and again these experiments are summarised in table 8.4. If we com-

pare these with the results obtained when the agents’ probabilistic strategy was based on

uniform biases, we can see some marked differences:

� the average
�� is in all cases much lower, and moreover varies very little with respect

to the number of channels available;

� there is much more variation in the individual levels of � achieved on a particular

run, shown both by the wide spread of lines in figure 8.5 and by the high values

of CoV( � ) in table 8.4; this variation is most pronounced with small numbers of

sensory channels available;

� the distributions are very significantly different from those seen in figure 8.2.
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Figure 8.5: Meaning similarity � in a random world: agents have different experiences
and create individual meaning structures using the probabilistic tree growth strategy
based on random channel biases. The simulation contains 1000 discrimination games,
and is repeated 50 times, with each run represented by a separate overlaid line on the
graph. Sub-figures show varying numbers of channels available to the agents: 2 (upper
left), 3 (upper right), 5 (lower left) and 10 (lower right)

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2)

2 0.42 (0.34 – 0.50) 1.00 0.00 0.66 0.76 **
3 0.44 (0.38 – 0.49) 0.81 0.06 0.44 0.82 **
5 0.41 (0.37 – 0.44) 0.76 0.11 0.32 0.96 **

10 0.38 (0.35 – 0.41) 0.55 0.16 0.29 0.86 **

Table 8.4: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.2, as shown in the far right-hand
column.
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The reduced levels of � with tree growth based on random biases can be explained if we

concentrate on the different levels at which randomness operates in the world. We saw

in section 7.4 that, at the tree level, random refinements provide a universal pressure to

create relatively comprehensively refined trees. Given two trees refined the same number

of times, we can predict an expected level of similarity � between them. But at the agent

level, there is no such pressure for predictability at all; the randomly distributed cognitive

biases will by their nature be completely different for different agents, and so it is not

unlikely at all that one agent will have a very low bias for, say, smell, but that another

agent will have a very high bias for the same channel. Remember that meaning similarity

at the agent level � is calculated by comparing trees on the same sensory channel with

each other, as detailed in equation 5.15. High levels of � are only possible if the vast

majority of sensory channels themselves have high levels of � , and under the probabilistic

tree growth strategy, levels of � depend explicitly on the agent’s cognitive biases, which

define the distribution of refinements amongst the sensory channels. We could suggest,

therefore, that the agents are only likely to produce high levels of meaning similarity �
under the probabilistic tree growth strategy, if their innate biases are similar in the first

instance.

Meaning similarity is substantially reduced if we compare random biases with uniform

biases under the probabilistic strategy, but what happens to the level of communicative

success � ? In figure 8.6, we can see the progression of � develops in these same experi-

ments, and see summary statistics in table 8.5. The average communicative success
�� is

also reduced, with a corresponding increase in the variation CoV( � ). Both the average

and the variation in communicative success are reasonably constant across the number

of sensory channels, although as we would expect, � is slightly lower as the agents have

more semantic hypotheses to disambiguate. The level of communicative success is sub-

stantially higher than the level of meaning similarity in almost all cases, as can be seen

in figure 8.7, where the points on the scatter plot are overwhelmingly, with only very

few exceptions, above the main diagonal where � � � . We saw in chapter 7.5 that this

is due to the Gricean maxims of communication which promotes the use of objectively

more general meanings in the communicative process. As more general meanings are

more likely to be shared by the agents, they are more likely to result in successful com-

municative episodes, and if they are disproportionately used, then the average level of

communicative success
�� will always be higher than the average level of meaning sim-

ilarity. In figure 8.7, the relationship between � and � is perhaps more obvious than it

was in figure 8.4 because of the much wider variation in the values of � , but we have no

reason to suppose that it does not hold in all these experiments.
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Figure 8.6: Communicative success � in a random world, following individual meaning
creation based on agents’ different experiences using the probabilistic tree growth strat-
egy based on random biases. The simulation contains 5000 communicative episodes, and
is repeated 50 times, with each run represented by a separate overlaid line on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right)

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.3)

2 0.76 (0.71 – 0.82) 0.98 0.38 0.25 0.62 **
3 0.77 (0.73 – 0.81) 0.95 0.37 0.19 0.70 **
5 0.71 (0.68 – 0.74) 0.93 0.41 0.17 0.84 **

10 0.64 (0.61 – 0.67) 0.88 0.37 0.16 0.80 **

Table 8.5: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on random biases. The table shows a summary of the final range and distribution of
� across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.3, as shown in the far right-hand column.
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Figure 8.7: Meaning similarity � (x-axis) against communicative success � (y-axis) in a
random world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the probabilistic tree growth strategy based on random channel biases. The simu-
lation is repeated 50 times, with each run represented by a separate cross on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right).

Probabilistic Tree Growth based on Proportional Biases

The random assignment of biases, therefore, appears to be a confounding factor which

undermines, to a large extent, any potential advantage which cognitive biases in them-

selves may provide to the agents, because the agents are likely to have different cognitive

biases, which leads to meaning structures which are also too different to allow very suc-

cessful communication. To investigate what happens when we explicitly set the biases

using the proportional method described in section 8.2.1, we look at table 8.6, which

summarises the meaning similarity rates in a similar set of experiments, but for agents

whose cognitive biases are set proportionally, with (� � ��� 	 )6.

The results show a swing back to those we found in figure 8.2, when the cognitive biases

were set in a uniform distribution; the results here are indeed very similar to those in table

8.2, with the exception that when a large number of channels is available, the variation
6For a graphical view of these results, please refer to appendix C, which contains comprehensive details

on all the experiments in this chapter.
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2) KS(8.4)

2 0.80 (0.78 – 0.82) 0.92 0.60 0.07 0.12 0.74 **
3 0.76 (0.74 – 0.77) 0.84 0.63 0.07 0.24 0.84 **
5 0.71 (0.69 – 0.73) 0.82 0.50 0.08 0.20 0.94 **

10 0.71 (0.68 – 0.74) 0.91 0.47 0.14 0.50 ** 0.92 **

Table 8.6: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on proportional (� � ��� 	 ) channel biases. The table shows a
summary of the final range and distribution of � across 50 repetitions of the experiment.
The distributions were compared statistically with those shown in tables 8.2 and 8.4, as
shown in the far right-hand columns.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.3) KS(8.5)

2 0.95 (0.95 – 0.96) 0.97 0.89 0.01 0.12 0.64 **
3 0.93 (0.93 – 0.94) 0.97 0.89 0.02 0.14 0.78 **
5 0.90 (0.89 – 0.91) 0.96 0.81 0.04 0.16 0.82 **

10 0.85 (0.83 – 0.87) 0.95 0.72 0.06 0.42 ** 0.82 **

Table 8.7: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on proportional (� � ��� 	 ) biases. The table shows a summary of the final range and
distribution of � across 50 repetitions of the experiment. The distributions were com-
pared statistically with those shown in tables 8.3 and 8.5, as shown in the far right-hand
columns.

is greater, and the distributions are significantly different. In comparison with table 8.4,

on the other hand, it is clear, unsurprisingly, that using proportional biases reduces the

level of variation and increases meaning similarity. In table 8.7, we can see that commu-

nicative success, too, is improved dramatically in comparison with randomly set biases,

and is again significantly different from the results obtained with uniform biases when

ten channels are available.

It is clear from these initial investigations that we can differentiate the uniform and pro-

portional bias allocations, on the one hand, from the random bias allocation on the other;

Under uniform and proportional bias allocation, � varies between 60% and 80% depend-

ing on the number of sensory channels available, and � varies likewise between 80% and

95%, but under random bias allocation, both levels are significantly lower, � around 40%,

and � between 65% and 75%, so using random biases under the probabilistic tree growth

strategy puts the agents at a disadvantage in terms of increasing co-ordination of seman-

tic structure. The most obvious difference between these two groups of bias allocations
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Channels Mean �� CI Max( � ) Min( � ) CoV( � ) KS(8.2) KS(8.4) KS(8.6)
2 0.81 (0.76 – 0.85) 1.00 0.50 0.21 0.36 ** 0.68 ** 0.34 **
3 0.71 (0.68 – 0.75) 1.00 0.45 0.18 0.26 0.66 ** 0.32 **
5 0.63 (0.60 – 0.67) 0.91 0.31 0.19 0.44 ** 0.70 ** 0.48 **
10 0.61 (0.58 – 0.64) 0.78 0.31 0.17 0.20 0.76 ** 0.44 **

Table 8.8: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on identical random channel biases. The table shows a
summary of the final range and distribution of � across 50 repetitions of the experiment.
The distributions were compared statistically with those shown in tables 8.2, 8.4 and 8.6,
as shown in the far right-hand columns.

Channels Mean �
� CI Max( � ) Min( � ) CoV( � ) KS(8.3) KS(8.5) KS(8.7)

2 0.95 (0.94 – 0.96) 0.98 0.83 0.04 0.48 ** 0.56 ** 0.44 **
3 0.92 (0.90 – 0.93) 0.98 0.75 0.05 0.30 * 0.58 ** 0.34 **
5 0.89 (0.87 – 0.90) 0.97 0.72 0.06 0.14 0.76 ** 0.14

10 0.85 (0.83 – 0.86) 0.94 0.73 0.06 0.38 ** 0.84 ** 0.12

Table 8.9: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on identical random biases. The table shows a summary of the final range and distri-
bution of � across 50 repetitions of the experiment. The distributions were compared
statistically with those shown in tables 8.3, 8.5 and 8.7, as shown in the far right-hand
columns.

is that in the first group (uniform and proportional), the agents are guaranteed to have the

same cognitive biases, whereas in the second group they are vanishingly unlikely to have

the same biases. In the following section, therefore, I modify the random bias allocation

method to test this hypothesis further.

Probabilistic Tree Growth based on Identical Random Biases

In order to test the validity of the hypothesis that the crucial difference between uniform

and proportional biases on the one hand, and random biases on the other is the identity

of the cognitive biases across agents, I alter the allocation of random biases to ensure

that both agents have the same set of cognitive biases; the random biases are created in

the same way as before, but each set of biases is created only once, and given to both

agents, rather than each agent’s biases being generated separately. If the hypothesis is

correct, we should expect that agents with identical random biases can also communicate

with a similar level of success as those whose biases have been allocated uniformly or

proportionally. In table 8.8, however, we find an intriguing set of results. As expected,

we can indeed see that the levels of meaning similarity � are, in all cases, significantly
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higher than with different random biases (table 8.4). On the other hand, although they

are certainly closer, the levels of � with identical random biases are also still lower in

most cases than those with proportional (table 8.6) and uniform (table 8.2) biases. This

can be explained if we remember that the actual setup of cognitive biases is actually very

different in each of these cases; with identical random biases, each run of the experiment

is set up differently, and we therefore find a much higher level of variation in � . The

proportional and uniform allocations, on the other hand, are deterministic, and so each

run under these conditions is set up identically, leading to much less potential (and actual)

variation. This difference in variation CoV( � ), rather than the average value
�� , shows up

in the KS test as a significantly different distribution of results.

We will not be surprised, given the consistent relationship between meaning similarity

and communicative success which we have seen throughout these experiments, to find

a similar story in table 8.9 with the level of communicative success � . Again, the most

significant differences are between identical random biases and different random biases

(table 8.5), but there are also significant differences in many of the other conditions as

well, particularly when few channels are available.

Summary

It is clear, therefore, that under the probabilistic tree strategy as a whole, we can draw the

following conclusions:

� variation in � is very small if the agents have uniform or proportional biases, but is

much wider if the agents have random biases;

� variation in � is always much smaller, as agents can learn to communicate even

with different conceptual structures;

� there is a strong, J-shaped7 relationship between the levels of � and � in all cases,

although it is more obviously visualised in some experiments where wide variations

in � are found (see for example figure 8.7) than in experiments with little variation

in � (see for example figure 8.4);

� most importantly, if all agents have the same cognitive biases, they will, on av-

erage, produce more similarity in their individually created conceptual structure;

high levels of meaning similarity, in turn, lead on average to high levels of com-

munication success.
7The curve resembles a letter J reflected in the � � � axis: as � ( � ) increases from 0 to 1, � ( � ) increases

more rapidly at first, then slows down substantially.
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It is important to note that having the same cognitive biases does not guarantee that agents

will build the same conceptual structure, but I have shown through the experiments in this

section that they will build conceptual structures which are, on average, more similar.

Likewise, agents with high levels of meaning similarity are much more likely to be able

to communicate with high levels of success; under the probabilistic tree growth strategy,

we can now be confident that this is much more likely to happen if they start off with the

same cognitive biases.

In this section, therefore, we have seen that under the probabilistic tree growth strategy,

the highest levels of both meaning similarity � and communicative success � occur when

the agents have identical biases, though the actual expected levels are dependent on the

particular bias allocation mechanism and the number of sensory channels available to the

agents. Remember that these results are not intended to suggest, in themselves, that par-

ticular cognitive biases are better than other cognitive biases, so we cannot say whether,

for instance, Landau et al. (1988)’s shape bias explains more of the lexicon acquisition

problem than Markman and Hutchinson (1984)’s taxonomic bias, but they do strongly

suggest that the sharing of cognitive biases, and therefore their universality, whatever

their actual realisation, is crucial in substantially increasing the agents’ meaning simi-

larity. This is in turn instrumental in higher communicative success rates, and therefore

such sharing of cognitive architecture could be a very important pre-adaptation for the

emergence of communication.

8.2.4 Intelligent Tree Growth

The intelligent tree growth strategy differs from the probabilistic strategy in that it is not

determined by the agent’s biases, as I discussed in section 8.2.2. The agents do make use

of their cognitive biases to a small extent, in that they order the channels according to the

biases before searching through to find a suitable candidate for refinement, but the crucial

work of the strategy, and the reason I call it intelligent, is that the agent checks the leaf

node
�

which categorises the target object from each channel in turn, until it finds one

which, if it had been refined a further level, would have been successful in discriminating

the target object from the other objects in this particular discrimination game. If the

agent finds such a leaf node, then it is refined; if none is found, then no refinement at all

takes place. The intelligent tree growth strategy therefore almost completely eliminates

the random element in the channel selection task, and links meaning creation even more

closely to the discrimination process. Not only is tree growth driven by discrimination

failure (as of course are all the strategies), but the chosen channel is more likely to be of

some use in the future.
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2)

2 0.86 (0.82 – 0.91) 1.00 0.43 0.17 0.64 **
3 0.58 (0.53 – 0.64) 0.95 0.04 0.35 0.58 **
5 0.46 (0.41 – 0.51) 0.89 0.12 0.42 0.76 **

10 0.37 (0.33 – 0.40) 0.72 0.11 0.32 0.88 **

Table 8.10: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on uniform channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.2, as shown in the far right-hand
column.

Intelligent Tree Growth based on Uniform Biases

Let us first take a look at the intelligent tree growth strategy in action, when it is used in

conjunction with uniform biases. If we compare the levels of meaning similarity shown

in table 8.10 to the corresponding information under the probabilistic strategy ( table 8.2),

we can see some interesting and significant results. The average meaning similarity
�� is

reduced quite substantially, and the variation increased, except when only two channels

are available; in this case,
�� is significantly higher, and a large number of runs actually

produce completely synchronised meaning structures. The reason for this is the nature

of the intelligent tree growth strategy, and in particular that refinements are focused on

channels which would have succeeded. Other things being equal, channels which al-

ready have a high degree of tree growth, and thus a number of specialised meanings, are

more likely to produce a discriminatory meaning than those which have only very general

meanings. Therefore, after a few initial refinements have been made, the intelligent strat-

egy tends to concentrate refinements on those channels on which trees have already been

grown, and moreover on those parts of trees which are refined deeply. Divergence in the

conceptual structure is therefore almost inevitable unless the initial refinements made by

the agents happen to be the same. If the initial refinements do happen to be the same, the

intelligent strategy is likely to keep the agents’ conceptual structures very similar for the

same reason: because refinements are concentrated on those areas of the trees on which

growth is the deepest, namely those on which the (same) initial refinements were made.

The intelligent strategy, therefore, can maintain extreme levels of � for quite some time.

In particular, if there are only two or three sensory channels available, then the initial tree

growth is reasonably likely to occur on the same channel in each agent, and so high levels

of meaning similarity can ensue. Conversely, if there are many channels available, then
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.3)

2 0.94 (0.92 – 0.96) 0.98 0.58 0.07 0.44 **
3 0.80 (0.76 – 0.84) 0.97 0.35 0.17 0.56 **
5 0.72 (0.68 – 0.76) 0.94 0.42 0.19 0.66 **

10 0.60 (0.57 – 0.62) 0.74 0.42 0.12 0.94 **

Table 8.11: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
uniform biases. The table shows a summary of the final range and distribution of �
across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.3, as shown in the far right-hand column.
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Figure 8.8: Meaning similarity � (x-axis) against communicative success � (y-axis) in a
random world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the intelligent tree growth strategy based on uniform channel biases. The simulation
is repeated 50 times, with each run represented by a separate cross on the graph. Sub-
figures show varying numbers of channels available to the agents: 2 (upper left), 3 (upper
right), 5 (lower left) and 10 (lower right).
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it is extremely unlikely that such growth will be mirrored across both agents, and so we

find very low levels of meaning similarity.

Given these findings on the levels of meaning similarity, it is perhaps not surprising that

we find in table 8.11 that the levels of communicative success � are also significantly

lower than those we found in the relevant corresponding experiments where the agents

were using probabilistic tree growth ( table 8.3). Communication episodes still succeed

more often than not, because of the agents’ Gricean tendency to prefer general mean-

ings which can be more easily disambiguated through context, but whenever specialised

meanings are used, it is likely that the hearer will not have the speaker’s meaning in its

conceptual structure, and so may well misidentify the intended referent and fail to un-

derstand the utterance. As we have seen, specialised meanings are not only more likely

to occur in the conceptual structure under the intelligent tree growth strategy, but more-

over are necessarily useful in some circumstances, and so are relatively more likely to be

used by speakers than specialised meanings which happen to have been created under the

probabilistic tree growth strategy, but may well never be called upon. However, the rela-

tionship between meaning similarity and communicative success as shown in figure 8.8

is as strong as ever, and possibly even more marked than under the probabilistic strategy,

particularly in the experiments with a wide spread of values for � (see, for instance, the

results with 3 and 5 sensory channels); we can see clearly that good communication is

very dependent on having high levels of meaning similarity.

Intelligent Tree Growth based on Random Biases

Under the probabilistic tree growth strategy, we saw a large drop in the level of meaning

similarity when the agents’ biases were allocated randomly, but when such experiments

are run under the intelligent tree growth strategy, there is no such drop; instead, we get

almost identical results with uniformly and randomly allocated biases, both in terms of

meaning similarity (table 8.12 in comparison to table 8.10) and communicative success

(table 8.13 in comparison to table 8.11). The average level of meaning similarity
�� is

very high when only two channels are available, and is significantly higher than un-

der the probabilistic strategy with random biases (table 8.4), but this decreases rapidly

once again, with high levels of variation, when more channels are available. The ini-

tial refinements are the most important under the intelligent tree growth strategy, and all

refinements are useful to some degree, so it is no real surprise that when there are few

channels, there is little scope for variation in the refinements which can take place, and

so consequently a high level of meaning similarity.
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.4) KS(8.10)

2 0.82 (0.76 – 0.87) 1.00 0.36 0.23 0.58 ** 0.14
3 0.60 (0.55 – 0.66) 0.99 0.22 0.34 0.42 ** 0.14
5 0.43 (0.39 – 0.48) 0.70 0.08 0.35 0.22 0.18

10 0.43 (0.39 – 0.47) 0.68 0.17 0.29 0.29 * 0.32 *

Table 8.12: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in tables 8.4 and 8.10, as shown in the far
right-hand columns.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.5) KS(8.11)

2 0.92 (0.89 – 0.94) 0.99 0.57 0.11 0.44 ** 0.18
3 0.81 (0.77 – 0.85) 0.97 0.43 0.18 0.22 0.14
5 0.71 (0.68 – 0.75) 0.93 0.36 0.18 0.12 0.12

10 0.61 (0.57 – 0.65) 0.89 0.36 0.21 0.29 * 0.29 *

Table 8.13: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
random biases. The table shows a summary of the final range and distribution of �
across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in tables 8.5 and 8.11, as shown in the far right-hand columns.

In the same way, the communicative success rate levels in table 8.13 show very little

deviance from those we saw in table 8.11, when the agents had uniform biases; the only

significant difference, indeed, is caused by the higher variation in the level of � when

ten channels are available (CoV( � , random) � ��� ��� , CoV( � , uniform) � ��� � � ). As we

might expect, there is the same clear correlation between levels of meaning similarity and

communicative success we have found throughout the model.

The most remarkable fact, indeed, about all the results under the intelligent tree growth

strategy is that they are very similar, with few significantly different results8. The near-

identity of all the results under the intelligent tree growth strategy is very interesting;
8The only significant difference to be found is that uniform biases result in significantly lower levels of

both meaning similarity and communicative success when ten sensory channels are available, in compari-
son not only with random biases, as we have just seen in tables 8.12 and 8.13, but also in comparison with
proportional and identical random biases as well. For detailed information about these and other experi-
ments, the reader is referred instead to figures C.5-C.8 in appendix C, where full details are collated and
reproduced for reference.
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although we found that the sharing of cognitive biases by agents was important for com-

municative success under the probabilistic tree growth strategy, we must conclude now

that, by contrast, this same sharing is completely unimportant under the intelligent tree

growth strategy, which, despite its name, produces significantly lower levels of both �
and � in all the experiments we have so far looked at.

8.2.5 Summary

Tables 8.14 and 8.15 summarise the experiments carried out so far in this chapter, and

show clearly that the levels of meaning similarity � and communicative success � which

are achieved under both tree growth strategies (probabilistic and intelligent) and all four

separate bias allocations (uniform, proportional, (different) random and identical ran-

dom). Due to considerations of space, I have only included details for the simulations

involving the standard five sensory channels in tables 8.14 and 8.15, but comprehensive

information for both fewer and more sensory channels is provided for reference in ap-

pendix C.

We can see clearly that, under the intelligent tree growth strategy, there are only very

small and insignificant differences in the levels of meaning similarity and communica-

tive success which are achieved with different cognitive bias allocations;
�� varies only

between 0.43 and 0.47,
�� between 0.71 and 0.75. The allocation of particular cognitive

biases has no effect because meaning creation using the intelligent strategy is based al-

most completely on effectiveness in discrimination, and hardly takes any account of the

biases at all. Instead, I have shown that the most important factor in terms of meaning

similarity under the intelligent tree growth strategy is the tree growth which has already

occurred. If we track backwards through time to the initial scenario in which the agents

have no meanings on their conceptual apparatus and are effectively tabulae rasae, it

would seem reasonable to hypothesise that the level of meaning similarity should be af-

fected by the early experiences which kick-start concept creation, and on which all future

concept creation is dependent. The investigation of this hypothesis of the importance of

the agents’ experience is the subject of section 8.3.

From the experiments in section 7.4 and in this chapter, summarised in tables 8.14 and

8.15, we can confidently conclude that the two tree growth strategies have very different,

opposing effects. Under both strategies, we have repeatedly seen that there is an impor-

tant relationship between the relative levels of meaning similarity and communicative

success; we should not be surprised by this, as we already understand that the sharing

of conceptual structure is crucial to the inference of the meaning of utterances through
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Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.70 (0.69 – 0.71) 0.80 0.58 0.07
Proportional 0.71 (0.69 – 0.73) 0.82 0.50 0.08Probabilistic

Random 0.41 (0.37 – 0.44) 0.76 0.11 0.32
Identical Random 0.63 (0.60 – 0.67) 0.91 0.31 0.19

Uniform 0.46 (0.41 – 0.51) 0.89 0.12 0.42
Proportional 0.46 (0.41 – 0.51) 0.83 0.19 0.37Intelligent

Random 0.43 (0.39 – 0.48) 0.70 0.08 0.35
Identical Random 0.47 (0.42 – 0.51) 0.85 0.13 0.35

Table 8.14: Meaning similarity � — summary for agents in a random world, with dif-
ferent experiences. The table shows a summary of the final range and distribution of �
across 50 repetitions of each experiment, when agents have five sensory channels.

Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.90 (0.89 – 0.91) 0.95 0.82 0.04
Proportional 0.90 (0.89 – 0.91) 0.96 0.81 0.04Probabilistic

Random 0.71 (0.68 – 0.74) 0.93 0.41 0.17
Identical Random 0.89 (0.87 – 0.90) 0.97 0.72 0.06

Uniform 0.72 (0.68 – 0.76) 0.94 0.42 0.19
Proportional 0.74 (0.71 – 0.78) 0.95 0.42 0.17Intelligent

Random 0.71 (0.68 – 0.75) 0.93 0.36 0.18
Identical Random 0.75 (0.72 – 0.79) 0.96 0.53 0.16

Table 8.15: Communicative success � — summary for agents in a random world, with
different experiences. The table shows a summary of the final range and distribution of
� across 50 repetitions of each experiment, when agents have five sensory channels.
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multiple contexts. The differences between the strategies appear to be primarily in the

concept creation phase which precedes and provides the foundation for communication,

as I summarise below:

Probabilistic Tree Growth, on the one hand,

� exerts a pressure towards the creation of balanced, comprehensively refined

discrimination trees on the sensory channel; these discrimination trees will

therefore contain more general meanings and relatively few specific mean-

ings;

� the sharing of cognitive biases plays an important role under this strategy;

agents with identical cognitive biases will always, on average, end up with

higher levels of meaning similarity than those with different biases.

Intelligent Tree Growth, on the other hand,

� exerts a pressure in the opposite direction, towards the creation of imbalanced,

deeply skewed discrimination trees, which contain many specific meanings

and relatively few general meanings;

� the sharing of cognitive biases under this strategy is consequently unimpor-

tant, and has no effect on the level of meaning similarity;

� moreover, the level of meaning similarity is substantially lower under the

intelligent tree growth strategy than with the same cognitive bias allocation

under the probabilistic tree growth strategy.

8.3 Experience

The model of empirical meaning creation which we have been investigating is explic-

itly based on the agents’ building of their conceptual structure in response to failures in

their interactions with the world through the discrimination game. I also hypothesised

in section 8.2.4 that, under the intelligent tree growth strategy, the low level of meaning

similarity � was likely to be due to the different experiences the agents had.

In human language communities, it is well known that groups of people who have similar

experiences create specialised semantic distinctions based on those experiences, leading

to the creation of particular lexical terminology or jargon to name the distinctions they

have made. The distinctive styles of legal documents or medical terminology are perhaps
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the most well-known (and most widely mocked), but in fact all groups who share experi-

ences create such distinctions. Despite the pejorative connotations of the word ‘jargon’,

indeed, such specialised terminology is not only essential for making the distinctions

which are important to the group, but are also actually very efficient and economical

within the context of the group (Allen, 2001), even if they are often seen as obfuscatory

outwith that community. In section 3.4, indeed, we saw that the semantic categorisations

and classifications made by speakers of different languages are remarkably varied, and

concluded that a grounded mechanism of meaning construction was an essential part of

this model. In this section, therefore, I investigate the importance of the specific situa-

tions which are experienced by the agents, and in particular how much of their conceptual

structure is influenced by the order in which they encounter certain target objects in con-

text, by looking at simulations in which both agents play the same discrimination games.

By comparing the results we obtain under these condition to those we found when the

agents had different experiences (in section 8.2), we will be able to come to conclusions

about the effects which experience has on both meaning creation and communicative

success. In these simulations, a set of objects is chosen as usual for the discrimination

game (see section 4.3.1), but this time the agents take it in turn to play the same game

individually. In order to maintain our policy of avoiding feedback, neither agent knows

that the game has been played before, or that other agents have been exposed to the same

experience.

8.3.1 Probabilistic Tree Growth Strategy

If we investigate tables 8.16 and 8.17, which show the rates of meaning similarity achieved

under the probabilistic tree growth strategy with uniform and random bias allocation re-

spectively, we see that there are few differences from the results obtained when the agents

had different experiences. Although the meaning creation process in all these experi-

ments is grounded to the extent that concept development is triggered by an individual

failing to interact with its environment in an appropriate manner, the probabilistic tree

growth strategy does not take this grounding any further; once the failure in discrimina-

tion has taken place, no further use is made of the context in which the target object was

observed, and so there are few differences. There is a significant difference under uniform

biases, when only two sensory channels are available, but this appears to be an artefact

due to a couple of experiments which produced outlying results; this is much more likely

to happen with few channels available because each sensory channel contributes such a

high proportion to the overall level of meaning similarity.
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2)

2 0.84 (0.82 – 0.86) 0.96 0.64 0.08 0.50 **
3 0.75 (0.73 – 0.77) 0.92 0.62 0.08 0.14
5 0.70 (0.69 – 0.72) 0.81 0.49 0.09 0.18

10 0.63 (0.60 – 0.65) 0.74 0.43 0.10 0.17

Table 8.16: Meaning similarity � in a random world, after agents have had 1000 identical
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on uniform channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.2, as shown in the far right-hand
column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.4)

2 0.43 (0.36 – 0.50) 1.00 0.00 0.59 0.14
3 0.45 (0.40 – 0.50) 0.92 0.05 0.41 0.12
5 0.45 (0.41 – 0.48) 0.73 0.22 0.29 0.18

10 0.39 (0.36 – 0.42) 0.68 0.22 0.25 0.14

Table 8.17: Meaning similarity � in a random world, after agents have had 1000 identical
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.4, as shown in the far right-hand
column.

Figure 8.9 shows the now familiar relationship between meaning similarity � and com-

municative success � , for agents with random biases under the probabilistic strategy, with

the inverted J-shape of the curve being much more obvious when the range of values for

� is more spread out, when few channels are available (e.g. CoV( � ), 2 features � � �
	 � ;

CoV( � ), 10 features � ��� � 	 ). Levels of communicative success, too, are broadly similar

to the results when the agents had different experiences, but again with some significantly

higher and others significantly lower.

Overall, the results for the probabilistic tree growth strategy are at best inconclusive,

and we cannot say that giving the agents identical experiences makes any systematic

difference to either their conceptual structures or communicative prowess.

8.3.2 Intelligent Tree Growth Strategy

In sharp contrast, table 8.18 shows how meaning similarity levels are significantly in-

creased across the board under the intelligent tree growth strategy with uniform biases,
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Figure 8.9: Meaning similarity � (x-axis) against communicative success � (y-axis) in a
random world, after 1000 discrimination games and 5000 communicative episodes; the
agents have identical experiences of the world and create individual meaning structures
using the probabilistic tree growth strategy based on random channel biases. The simu-
lation is repeated 50 times, with each run represented by a separate cross on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right).

with almost perfect synchronisation occuring when the agents have few channels. This

occurs, of course, because the agents’ meaning creation under intelligent tree growth is

embedded much more closely into their experience, so when they have the same expe-

riences, they choose the same meanings to refine. But given that the agents have both

the same biases and the same experiences, and the latter control the process of meaning

creation, why do we only get near-perfect meaning creation, and then only when few

channels are available? After all, the agents appear to be in a deterministic situation, but

yet do not develop identical conceptual structures. In these experiments, the agents both

have exactly the same experiences, and so meaning creation will necessarily be triggered

by the failure of the same discrimination game at the start of the simulation; they then

both go through their sensory channels, which are ordered identically due to their biases,

and both find the same leaf node to refine under the intelligent tree growth strategy.

The answer to this conundrum lies in an oddity which arises because uniform biases are

identical not only across agents, but across sensory channels as well. When using the

intelligent tree growth strategy, the agent orders its channels according to its cognitive
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.10)

2 0.99 (0.99 – 1.00) 1.00 0.93 0.02 0.74 **
3 0.89 (0.86 – 0.93) 1.00 0.54 0.14 0.66 **
5 0.70 (0.65 – 0.75) 1.00 0.35 0.25 0.48 **

10 0.55 (0.49 – 0.61) 0.94 0.26 0.30 0.55 **

Table 8.18: Meaning similarity � in a random world, after agents have had 1000 identical
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on uniform channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.10, as shown in the far right-hand
column.

biases, and then searches through them. But if all channels have the same bias, how then

can they be ordered? The solution I adopt is to randomly order all channels which have

equal biases, which means that the two agents may well search through their identically-

biased channels in a different order. It is important to note that this is not absolutely

equivalent to choosing a channel at random, because it is not the channel to be refined

which is being chosen, but simply the order in which the channels will be searched until a

suitable node is found. Although this distinction makes no difference with few channels,

leading to almost completely synchronised meaning structures, as the number of channels

increases, the random nature of the ordering becomes more prominent, and the level of

meaning similarity approaches that which is achieved using different random biases.

The problem, or feature, of uniform biases being equal not just along the dimension

of individual agents but also across the dimension of sensory channels within an agent

does not, of course, apply either to the proportional or identical random bias allocation

strategies. In these circumstances, the determinism of identical biases and identical ex-

periences does indeed lead to perfect meaning sychronisation (with � � � ) on every

occasion and thence to near-optimal communication success. With different random bi-

ases, on the other hand, there is no determinism in the model, and consequently, as we

can see in table 8.19, the levels of meaning similarity are much lower. They are, however,

still significantly higher than with different experiences, with some simulations produc-

ing complete synchronisation even with as many as five sensory channels available.

8.3.3 Summary

In all cases, the high levels of meaning similarity lead inevitably to significantly improved

communication when the agents have the same experiences. The experiments in this
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.12)

2 0.99 (0.98 – 1.00) 1.00 0.67 0.05 0.82 **
3 0.87 (0.83 – 0.91) 1.00 0.35 0.17 0.58 **
5 0.61 (0.56 – 0.67) 1.00 0.23 0.33 0.46 **

10 0.51 (0.45 – 0.56) 0.94 0.21 0.29 0.29

Table 8.19: Meaning similarity � in a random world, after agents have had 1000 identical
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.12, as shown in the far right-hand
column.

section have shown us that the two different tree growth strategies again have opposing

effects on the levels of meaning similarity and communicative success, but that these

effects are different when the agents have identical experiences from the effects we saw

when experiences were different.

When the agents had different experiences of the world, the probabilistic tree growth

strategy’s pressure towards balanced trees leads to a reasonable level of meaning similar-

ity, but the intelligent tree growth strategy’s concentration on providing specific meanings

led to vary diverse meaning structures. By contrast, in the summary tables 8.20 and 8.21,

we can see that when the agents have the same experiences of the world, we have seen

the results change in different ways:

� identity of experience has no major effect on the results under probabilistic tree

growth;

� under intelligent tree growth, however, identity of experience combines with the

strategy’s pressure to build trees with many specific meanings, so that complete

meaning synchronisation (
�� � � ) occurs deterministically in every case if the

agents have identical biases and identical experiences;

� even if the agents do not have identical biases, meaning similarity rates are signifi-

cantly increased when the agents have the same experiences of the world, allowing

them to learn to communicate successfully much more quickly.
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Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.70 (0.69 – 0.72) 0.81 0.49 0.09
Proportional 0.64 (0.60 – 0.67) 0.95 0.38 0.20Probabilistic

Random 0.45 (0.41 – 0.48) 0.73 0.22 0.29
Identical Random 0.64 (0.61 – 0.67) 0.90 0.43 0.17

Uniform 0.70 (0.65 – 0.75) 1.00 0.35 0.25
Proportional 1.00 (1.00 – 1.00) 1.00 1.00 0.00Intelligent

Random 0.61 (0.56 – 0.67) 1.00 0.23 0.33
Identical Random 1.00 (1.00 – 1.00) 1.00 1.00 0.00

Table 8.20: Meaning similarity � — summary for agents in a random world, with iden-
tical experiences. The table shows a summary of the final range and distribution of �
across 50 repetitions of each experiment, when agents have five sensory channels.

Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.91 (0.91 – 0.92) 0.96 0.83 0.03
Proportional 0.87 (0.85 – 0.88) 0.97 0.72 0.06Probabilistic

Random 0.77 (0.74 – 0.80) 0.95 0.50 0.14
Identical Random 0.89 (0.88 – 0.90) 0.97 0.74 0.05

Uniform 0.86 (0.84 – 0.89) 0.97 0.61 0.10
Proportional 0.96 (0.96 – 0.96) 0.98 0.93 0.01Intelligent

Random 0.79 (0.75 – 0.82) 0.97 0.50 0.16
Identical Random 0.96 (0.96 – 0.97) 0.98 0.92 0.01

Table 8.21: Communicative success � — summary for agents in a random world, with
identical experiences. The table shows a summary of the final range and distribution of
� across 50 repetitions of each experiment, when agents have five sensory channels.
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8.4 The Structure of the World

The world in which we live is not uniformly random; indeed, there are many constant

properties behind the phenomena we encounter, which can be described in terms of phys-

ical and chemical laws. We know, for instance, that unsupported objects will always fall

until they reach a lower surface. Scientists can measure the gravitational force which

causes this, and moreover, since Newton, we have known that this force is applicable to

all bodies, and its magnitude is proportional to the mass of the two bodies under consid-

eration and inversely proportional to the square of the distance between them. Despite

knowing these facts, and being able to build from them to Einstein’s theory of general

relativity and beyond, we also know, in practical terms, that the gravitational field apply-

ing to objects in our world does not differ, and is of no use whatsoever in distinguishing

objects from each other; in terms of a space of possible worlds containing different levels

of gravitational field, all the objects in our world are clumped together in one section of

the space, where the field is constant.

The structure of the world has been proposed as an explanatory factor for many problems,

including the acquisition of lexical vocabulary both in real infants and in simulation mod-

els. In section 3.3, I described the proposed whole-object bias, and we explored Bloom

(2000)’s description of how babies use the regularities in the structure of the environ-

ment around them, in particular the properties of objects like cohesion, to make sense of

the world. In computational simulations built to explain aspects of language evolution,

indeed, K. Smith (2003) has shown how compositional communication systems (those

where the meaning of a complex signal is made up a function of the meanings of its

constituent parts) are more likely to emerge in a population of generalising agents when

the environment exhibits a high degree of structure. In this section, I investigate whether

the structure of the world they inhabit can have an effect on the meaning similarity and

communicative success of the agents. The experiments discussed hitherto have been car-

ried out in a random world, where the objects were created at random and each of their

feature values distributed uniformly throughout the meaning space. In these experiments,

although I have investigated different kinds of cognitive biases, I have shown no moti-

vation for the existence of the biases, nor for how they might have arisen. If the agents’

cognitive biases are more relevant to the world in which the agents live, so that they

reflect the structure of that world, what effects will we find?

I introduce, therefore, the notion of a structured or clumpy world, where the objects’ fea-

ture values are clumped together in various ways. In particular, I implement structure

in the world by establishing groups of objects, where each member of the group has an
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identical feature value for some particular feature9. In the randomly-generated world,

it is vanishingly unlikely, given the fact that feature values are real numbers with many

significant digits, that any two objects will have exactly the same feature value, and so

objects are, in the limit, always distinguishable. In the clumpy world, however, the ob-

jects in a particular group are defined a priori to be indistinguishable from each other

on the chosen sensory channel, no matter how many times its discrimination tree is re-

fined, and so the objects can only be distinguished using meanings created on another

sensory channel. Compare, for example, the difference between trying to differentiate

a number of plain white sheets of A4 paper, and a similar number of students’ faces in

a lecture theatre; the sheets of paper are analogous to objects in my model which are

indistinguishable, but the individual faces are, by contrast, easily recognisable, as the

appropriate distinctive categories are created on the ‘face’ sensory channel.

In the randomly-generated world, in the limit, we could consider each object as a group

in itself, with each group containing just one object; in the clumpy world, I define the

number of groups arbitrarily according to the number of the sensory channel and number

of objects in the world. The number of groups on channel � , � � � � is defined as follows:

� � � � � �

� � �(8.2)

where
�

is the number of objects in the world. If there is no exact division, then � � � � is

always rounded up to the next whole number, so that we will always produce at least one

group on every channel. In a world of 20 objects, therefore, the number of groups on each

channel will be as shown in table 8.22. We can see that the channels towards the end of

the list have few groups, and so are much less likely to be of any use in a discrimination

game, though we also note that none is completely useless, where all objects fall into

one group (this would only happen if the agents had more sensory channels than there

were objects in the world). The groups are arbitrarily biased so that more distinctions

can be made on low-numbered sensory channels, just as the proportionally allocated

biases I described in section 8.2 were biased toward low-numbered sensory channels, thus

providing the potential for selectionist motivations for the introduction of proportionally

allocated biases, though I will not explore these motivations further in this thesis.
9The features are of course still abstract, but it is clear that such a mechanism allows for analogies with

the gravitational field between objects which I discussed above.
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Channel � 0 1 2 3 4 5 6 7 8 9
Groups � � � � 20 10 7 5 4 4 3 3 3 2

Table 8.22: Allocation of objects into groups in a clumpy world. The number of groups
for a particular sensory channel is defined by equation 8.2.

8.4.1 Probabilistic Tree Growth

If we run the experiments within the confines of a clumpy world, where the agents use

the probabilistic tree growth strategy, we find that there are no major differences in the

levels of meaning similarity � achieved, in comparison with those which we found within

a randomly-generated world. Tables 8.23 and 8.24, for instance, show results from simu-

lations based on uniform and random biases, and the only significant change occurs when

many channels are available and the biases are uniform. We found a similar pattern in

section 8.3, when we altered the agents’ experience of the world, also to no great effect;

we can conclude that environmental factors such as the agents’ experience or the struc-

ture of the world have no impact on the probabilistic tree growth strategy, which instead

leads to similar levels of meaning similarity under all these different circumstances.

If we turn to communication, however, we find a different story entirely, with enormous

increases in the communicative success rate � being returned for all cognitive biases,

compared to the same experiments in a randomly-generated world. Table 8.25 shows

experimental results for uniform biases, table 8.26 for random biases, and in all cases, the

level of communicative success is significantly higher than within a randomly-generated

world. Average communicative success rates of over 90% are common if the agents’

cognitive biases are the same, with slightly lower rates if the agents’ biases differ. For

instance, in figure 8.10, we again find very consistently high levels of both meaning

similarity and communicative success when the agents have uniform biases, while in

figure 8.11, with random biases, we find a much larger spread of values for meaning

similarity, as expected, and can see the enormous premium of communicative success

over meaning similarity, as all the points on the graphs are considerably higher than the

��� � diagonal.

It is clear, therefore, that while setting the experiments in a clumpy world does not im-

prove the level of meaning similarity very much compared to the corresponding experi-

ments in the random world, enormous improvements are seen in communicative success
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2)

2 0.80 (0.79 – 0.81) 0.88 0.68 0.06 0.14
3 0.75 (0.73 – 0.76) 0.86 0.63 0.08 0.10
5 0.71 (0.70 – 0.73) 0.82 0.56 0.08 0.20

10 0.70 (0.69 – 0.72) 0.79 0.55 0.07 0.48 **

Table 8.23: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on uniform channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.2, as shown in the far right-hand
column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.4)

2 0.45 (0.39 – 0.52) 0.83 0.00 0.52 0.14
3 0.48 (0.42 – 0.54) 0.93 0.04 0.42 0.20
5 0.44 (0.40 – 0.47) 0.81 0.19 0.29 0.14

10 0.44 (0.41 – 0.47) 0.63 0.20 0.22 0.26

Table 8.24: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.4, as shown in the far right-hand
column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.3)

2 0.96 (0.96 – 0.96) 0.98 0.91 0.01 0.42 **
3 0.95 (0.95 – 0.96) 0.98 0.89 0.02 0.44 **
5 0.94 (0.94 – 0.95) 0.98 0.88 0.03 0.64 **

10 0.92 (0.91 – 0.93) 0.98 0.80 0.04 0.88 **

Table 8.25: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on uniform biases. The table shows a summary of the final range and distribution of
� across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.3, as shown in the far right-hand column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.5)

2 0.85 (0.80 – 0.89) 0.99 0.31 0.20 0.28 *
3 0.84 (0.80 – 0.88) 0.99 0.34 0.18 0.32 **
5 0.82 (0.79 – 0.84) 0.98 0.50 0.12 0.42 **

10 0.80 (0.76 – 0.83) 0.96 0.45 0.14 0.58 **

Table 8.26: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on random biases. The table shows a summary of the final range and distribution of
� across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.5, as shown in the far right-hand column.
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Figure 8.10: Meaning similarity � (x-axis) against communicative success � (y-axis) in
a clumpy world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the probabilistic tree growth strategy based on uniform channel biases. The simu-
lation is repeated 50 times, with each run represented by a separate cross on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right).

levels. In a structured, clumpy world, the hearer’s interpretation procedure is made sim-

pler under the introspective obverter methodology because there are generally fewer se-

mantic hypotheses for it to consider; for instance, the hypothetical gravitational field fea-

ture is very unlikely to produce any possible meanings. Because each particular episode

will produce fewer semantic hypotheses to consider, the disambiguation process will take

less time and be more successful, which therefore leads to an enormous premium in the

level of � , which is much higher, compared to � , than in a randomly-generated world.

8.4.2 Intelligent Tree Growth

In the randomly-generated world, we found (see section 8.2) that the intelligent tree

growth strategy’s pressure to develop meanings on structures which were already con-

siderably refined led to low levels of both meaning similarity � and communicative suc-

cess � . Tables 8.27 and 8.28 show results for uniform and random biases respectively,



208 CHAPTER 8. MEANING CREATION AND COMMUNICATION

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.10)

2 0.94 (0.90 – 0.97) 1.00 0.50 0.13 0.54 **
3 0.93 (0.91 – 0.96) 1.00 0.64 0.11 0.80 **
5 0.83 (0.79 – 0.87) 1.00 0.46 0.17 0.68 **

10 0.81 (0.78 – 0.84) 1.00 0.59 0.12 0.96 **

Table 8.27: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on uniform channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.10, as shown in the far right-hand
column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.12)

2 0.95 (0.92 – 0.98) 1.00 0.50 0.11 0.56 **
3 0.91 (0.88 – 0.95) 1.00 0.56 0.13 0.72 **
5 0.80 (0.77 – 0.84) 1.00 0.53 0.16 0.82 **

10 0.81 (0.78 – 0.84) 1.00 0.56 0.14 0.91 **

Table 8.28: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on random channel biases. The table shows a summary of the
final range and distribution of � across 50 repetitions of the experiment. The distributions
were compared statistically with those shown in table 8.12, as shown in the far right-hand
column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.11)

2 0.97 (0.96 – 0.98) 0.99 0.80 0.03 0.38 **
3 0.95 (0.94 – 0.97) 0.99 0.71 0.05 0.72 **
5 0.91 (0.89 – 0.94) 0.98 0.61 0.10 0.70 **
10 0.89 (0.87 – 0.91) 0.98 0.70 0.09 0.92 **

Table 8.29: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
uniform biases. The table shows a summary of the final range and distribution of �
across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.11, as shown in the far right-hand column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.13)

2 0.96 (0.95 – 0.98) 0.99 0.65 0.06 0.50 **
3 0.94 (0.92 – 0.96) 0.99 0.70 0.07 0.58 **
5 0.91 (0.88 – 0.93) 0.98 0.64 0.08 0.64 **
10 0.89 (0.87 – 0.92) 0.98 0.70 0.09 0.83 **

Table 8.30: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
random biases. The table shows a summary of the final range and distribution of �
across 50 repetitions of the experiment. The distributions were compared statistically
with those shown in table 8.13, as shown in the far right-hand column.
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Figure 8.11: Meaning similarity � (x-axis) against communicative success � (y-axis) in
a clumpy world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the probabilistic tree growth strategy based on random channel biases. The simu-
lation is repeated 50 times, with each run represented by a separate cross on the graph.
Sub-figures show varying numbers of channels available to the agents: 2 (upper left), 3
(upper right), 5 (lower left) and 10 (lower right).

however, set within the context of a clumpy world, and we can see that the levels of mean-

ing similarity are much higher than we might have expected, and massively statistically

significantly higher than the results in a random world.

Because the intelligent strategy rejects many possible leaf nodes for refinement because

they would not have made a difference in the current discrimination game, agents using

this strategy do not waste time and effort growing detailed conceptual structure on sen-

sory channels (or parts of sensory channels) which cannot distinguish between objects

in the world. If we consider our hypothetical gravitational field feature, for instance, in

which all agents have exactly the same feature value, then we can see that the intelligent

strategy will always ignore such a sensory channel and will never develop any concep-

tual structure there. Instead, agents using the intelligent strategy concentrate on those

sensory channels which can make a difference; in this way they take account of the struc-

ture of the world, in respect of the objects’ feature values, or are ecologically rational,

in Gigerenzer and Todd (1999)’s phraseology. This exploitation of the distribution of the
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Figure 8.12: Meaning similarity � (x-axis) against communicative success � (y-axis) in
a clumpy world, after 1000 discrimination games and 5000 communicative episodes; the
agents have different experiences of the world and create individual meaning structures
using the intelligent tree growth strategy based on random channel biases. The simulation
is repeated 50 times, with each run represented by a separate cross on the graph. Sub-
figures show varying numbers of channels available to the agents: 2 (upper left), 3 (upper
right), 5 (lower left) and 10 (lower right).

objects in the world means that the agents do not create unnecessary conceptual distinc-

tions. Because the agents live in the same environment, and therefore both exploit the

same environmental structure, over time a much higher level of meaning similarity � is

achieved.

As the levels of meaning similarity are already so much increased when using the intel-

ligent tree growth strategy, the level of communicative success � cannot possibly show

the same enormous premium which we saw under the probabilistic tree growth strategy

above. Nevertheless, as we can see in tables 8.29 and 8.30, the levels of communicative

success are no less impressive for that, regularly topping 95%, and being significantly

higher than in the randomly-generated world in all cases. In figure 8.12, we can see

the high levels of both meaning similarity and communicative success, as the points are

clumped towards the upper corner of the graph, as well as the familiar relationship be-

tween the two variables. Having exploited the information structure in their environment

during meaning creation to eliminate unnecessary conceptual growth, the agents now

have fewer semantic hypotheses to consider while they are inferring the meaning of an
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Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.71 (0.70 – 0.73) 0.82 0.56 0.08
Proportional 0.60 (0.56 – 0.63) 0.95 0.33 0.20Probabilistic

Random 0.44 (0.40 – 0.47) 0.81 0.19 0.29
Identical Random 0.68 (0.65 – 0.71) 0.89 0.46 0.16

Uniform 0.83 (0.79 – 0.87) 1.00 0.46 0.17
Proportional 0.78 (0.73 – 0.83) 1.00 0.33 0.22Intelligent

Random 0.80 (0.77 – 0.84) 1.00 0.53 0.16
Identical Random 0.83 (0.79 – 0.87) 1.00 0.54 0.18

Table 8.31: Meaning similarity � — summary for agents in a clumpy world, with different
experiences. The table shows a summary of the final range and distribution of � across
50 repetitions of each experiment, when agents have five sensory channels.

Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.94 (0.94 – 0.95) 0.98 0.88 0.03
Proportional 0.90 (0.88 – 0.91) 0.96 0.70 0.05Probabilistic

Random 0.82 (0.79 – 0.84) 0.98 0.50 0.12
Identical Random 0.92 (0.91 – 0.94) 0.99 0.79 0.05

Uniform 0.91 (0.89 – 0.94) 0.98 0.61 0.10
Proportional 0.90 (0.87 – 0.93) 0.98 0.48 0.11Intelligent

Random 0.91 (0.88 – 0.93) 0.98 0.64 0.08
Identical Random 0.90 (0.87 – 0.93) 0.98 0.45 0.11

Table 8.32: Communicative success � — summary for agents in a clumpy world, with
different experiences. The table shows a summary of the final range and distribution of
� across 50 repetitions of each experiment, when agents have five sensory channels.

utterance through introspective obverter, so leading to much quicker and more accurate

inferences and near-optimal levels of communicative success.

8.4.3 Summary

In this section, I have investigated the effects of basing the communication experiments

in a clumpy, or structured world, and compared the results to our fundamental model, in

which the feature values of the objects in the world are uniformly distributed. Clearly, a

structured world is much more realistic an environment for agents to inhabit than a ran-

dom one, and given the completely abstract nature of the meaning creation and communi-

cation algorithms in the model, the results I obtain provide very encouraging supporting
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evidence that very successful communication can indeed evolve through the inference of

meaning, without explicit meaning transfer, knowledge of the topic of conversation or

feedback to guide the communication process. Tables 8.31 and 8.32 summarise the re-

sults for this section, and demonstrate the following findings for the experiments carried

out within a clumpy world:

� under the probabilistic tree growth strategy, levels of meaning similarity � are un-

changed, but levels of communicative success � are massively increased;

� under the intelligent tree growth strategy, levels of meaning similarity are greatly

increased, leading again to yet higher levels of communicative success, even when

the agents have different, random biases.

� in all cases, very high levels of communicative success are achieved as the agents

exploit the structure of the information in the world.

8.5 Summary

This concludes the first detailed analysis that I have made of the introspective obverter

algorithm for inferring the meaning of an utterance from its repeated use in different

contexts. Making use of introspective obverter means that we can avoid the problems

of explicit meaning transfer which have bedevilled other experimental simulations, and

can explore agents’ communicative prowess without the need for extra aid in the form

of mind-reading, information about the referrent of communication, or feedback from

any outside bodies about the success of the interpretative and communicative processes.

Motivated by research into how children acquire the meanings of the words in their lan-

guages, I have exhaustively explored the effects of different cognitive and environmental

biases on the agents’ construction of conceptual structures and on their communicative

success when they use the conceptual structures they have created. We have clearly seen

that the conditions under which the experiments are carried out are, unsurprisingly, cru-

cial to the results which the agents produce; the most important findings being:

� there is a strong relationship between the level of meaning similarity � in the con-

ceptual structures built by the agents and the communicative success � which those

agents can achieve using introspective obverter; the exact relationship varies ac-

cording to the experimental conditions, but it is always a logarithmic, J-shaped

curve, with the level of communicative success always higher than the level of

meaning similarity;
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� in a randomly-generated world, the sharing of cognitive biases between agents is

very important under the probabilistic tree growth strategy, but not at all important

under the intelligent tree growth strategy;

� if agents have the same experiences in the world and use the intelligent tree growth

strategy, then they will build similar meaning structures and communicate more

successfully, but if they build concepts probabilistically, then their experiences

have no effect;

� in a structured world, both strategies have different positive effects: if the agents

use probabilistic tree growth, their meaning similarity is not improved but yet they

still communicate highly successfully; if they use the intelligent tree growth strat-

egy, which takes account of the clumpiness of the world, to build their conceptual

structure, then the agents will produce very high levels of meaning similarity and

near-optimal levels of communicative success.

Most importantly, all these experiments show us conclusively that agents can communi-

cate effectively with their own, individually created meanings, by inferring the meanings

of words solely from their use in a variety of contexts, without the explicit transfer of

meanings, without knowledge of the topic of conversation, and without feedback about

the success of their learning or of the communication process in general. The inference

of meaning from context is successful under many conditions, but especially so when

the agents have developed their meanings intelligently, exploiting the information in the

environment to produce ecologically rational conceptual representations.





CHAPTER 9

Mutual Exclusivity Revisited

“For children to acquire vocabulary as rapidly as they do, they must be able to

eliminate many potential meanings of words. One way children may do this

is to assume category terms are mutually exclusive.” (Markman & Wachtel,

1988, p.121)

9.1 Introduction

In chapter 8, I showed experimentally that, when using the basic introspective obverter

algorithm to infer the meaning of words, there is a strong relationship between the level of

co-ordination between agents’ meaning structure and the level of communicative success

the agents can achieve. Moreover, I found that the sharing of cognitive biases produced

higher levels of meaning similarity, if the meaning creation process is driven probabilis-

tically by those same cognitive biases; that the experiences the agents have are very im-

portant for the level of meaning similarity if the agents build meanings in an intelligent

or ecologically rational way; and that this intelligent method of meaning construction

is especially helpful in a clumpy world, whose structured environment it can exploit to

develop near-optimal communication systems.

In chapter 3, our discussion about the possible existence of cognitive biases to explain the

lexical acquisition of vocabulary items was not restricted to biases on category creation,

but also included biases on interpretation. Many of these suggestions, by for instance

Barrett (1986), Merriman (1986), Clark (1987) and Markman (1989), essentially boil

down to the proposal that:

215
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“children should construct mutually exclusive extensions of the terms they

acquire.” (Merriman & Bowman, 1989, p.1).

We investigated in particular, in chapter 3, Clark (1987)’s Principle of Contrast, in which

a child assumes that every difference in form marks a difference in meaning, and Mark-

man (1989)’s Mutual Exclusivity Bias, in which she proposes that a child assumes that

the extensions of its categories are distinct sets which do not overlap; though there are

differences between them in terms of both theory and explanatory emphasis, I will treat

all these related proposal as different versions of an over-arching assumption of mutual

exclusivity.

9.1.1 Mutual Exclusivity Effects

Merriman and Bowman (1989)’s analysis of the implications behind the mutual exclusiv-

ity bias, moreover, show that there are at least three different, but related, ways in which

the bias could affect learning the meaning of a new word1:

disambiguation: if there is ambiguity in the reference of an unfamiliar word, the learner

could assume it refers to the novel referent;

correction: the learner could change the extension of a familiar word in order to accom-

modate the introduction of the new term;

rejection: the learner could reject the new word as a synonym of an existing word;

Disambiguation of reference has been shown experimentally a number of times, particu-

larly by Markman and Wachtel (1988), who investigated mutual exclusivity in pre-school

children, and by Merriman and Bowman (1989), who compared the use of mutual exclu-

sivity in both toddlers and pre-schoolers. Markman and Wachtel, for instance, describe

their experiments in which young children were presented with random pairs of objects,

one of which is familiar to them, such as a banana or a spoon, and one of which is unfa-

miliar, such as a lemon wedge presser or a pair of tongs. The children, on being presented

with both objects, were asked by the experimenters to “show me the x”, where x was a

randomly chosen nonsense syllable. Markman and Wachtel found that the children are

much more likely to interpret x as referring to the tongs, rather than the banana; they
1Merriman and Bowman also distinguish a restriction effect which could influence word generalisa-

tions, but it is clear that this is actually a sub-category of the correction effect.
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hypothesise that this is because the children already understand a word which means BA-

NANA, and they assume, under the mutual exclusivity bias, that the unfamiliar word must

therefore refer to the unfamiliar object, or, as they put it: “When children hear a novel

term in the presence of a familiar and unfamiliar object, children are able to use mutual

exclusivity to determine the referent of the novel term.” (Markman & Wachtel, 1988,

p.128)

Merriman and Bowman replicated these experiments and confirmed the results obtained

by Markman and Wachtel, and moreover discovered, by questioning the children about

the reasons for their choices of referent, that although both groups of children appeared to

use mutual exclusivity in naming new items, the older children justified their selections

explicitly in terms of the mutual exclusivity principle, while the younger children did not,

suggesting that children’s awareness of mutual exclusivity may emerge as they develop,

and may not be present from the beginning of language acquisition, as has been assumed

by Clark (1987) and Markman (1989), among others.

Merriman (1986) tested the immediate correction effect by teaching children a nonsense

name for a novel object. The children were then asked whether any of several other ob-

jects could be referred to with the new name, and if so, were taught a second, contrasting

name for this object. Merriman found, however, that there was no apparent use of mu-

tually exclusive extensions in this case, and no difference between children who were

taught a second name and those who were not. The third potential effect suggested by

Merriman, that of immediate rejection, whereby the children deny the appropriateness of

a new name explicitly given to an object, or merely ignore the experimenter, has not been

conclusively demonstrated, though this is not too surprising if we assume that category

creation is occurring simultaneously with word learning; immediate rejection requires

that the child is very confident that the categories it has created are correct and do not

need to be changed.

Both immediate correction and immediate rejection, however, rely on the explicit naming

of objects, and so there is no ambiguity of reference. Immediate rejection, as we have

seen, also requires that concepts are stable and is at odds with immediate correction,

which modifies concepts in response to conflicts of reference. The model of communica-

tion which I have been describing throughout this thesis, however, is of course based on

the inference of both sense and reference through exposure in multiple contexts. Clearly,

it is the disambiguation effect of mutual exclusivity which is most relevant to this model

which combines concept creation and development, communication through the infer-

ence of meaning, and lexical acquisition, and therefore the disambiguation of reference

will be the focus of the mutual exclusivity experiments in this chapter.
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9.2 Implementing Mutual Exclusivity

In this chapter, I shall implement the mutual exclusivity bias in the model and investigate

what effects its inclusion has on the development of co-ordinated meanings and suc-

cessful communication. This will be done by comparing communication systems built

by agents with an innate predisposition to use mutual exclusivity in disambiguating the

referent of an utterance with communication systems built by agents without this predis-

position; the latter experiments, of course, we have already explored in chapter 8. Two

factors, in particular, are crucial in triggering the use of mutual exclusivity, and must be

taken into account in developing the model; these are given below:

signal novelty: the utterance in question is novel, and unfamiliar to the learner;

disambiguation of reference through prior knowledge: the learner reduces the set of

meanings under consideration by excluding all objects for which it already under-

stands a word.

Under normal circumstances within my model, the hearer would, on hearing a word in

context, build a set of all possible semantic hypotheses and use these to decipher the

utterance, as I first described in section 6.5.2. The model must now be modified so that

the set of semantic hypotheses is reduced by the exclusion of all referents which are

already known, as described above. In addition to disambiguation of reference and the

inference of the meaning of an unfamiliar word, however, Markman and Wachtel also

hypothesise that mutual exclusivity can help the child to develop new meanings, when

they cannot interpret an unfamiliar word, because

“children would be left with a word for which they have not yet figured out a

meaning. This should then motivate children to find a potential meaning for

the novel term.” (Markman & Wachtel, 1988, p.153).

The interpretation process, therefore, must be further modified to take account of Mark-

man and Wachtel’s hypothesis that interpretation failure can itself trigger the develop-

ment of new conceptual structure. When the hearer encounters a new signal which it has

never before encountered, therefore, its interpretation process now follows the following

course:

1. it works through the objects in the context, excluding those objects for which it

already knows an appropriate word. An appropriate word is defined here as a
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word which the agent would use, in this context, to describe the object, and which

therefore represents a meaning which would distinguish this object from all the

other objects in the current context. These excluded objects, continuing the analogy

with Markman and Wachtel, can be referred to as ‘banana’ objects;

2. the agent is then left with a set of unfamiliar, ‘tongs’ objects, and it assumes, under

mutual exclusivity, that the speaker is referring to one of these objects. It therefore

creates a list of semantic hypotheses based only on the ‘tongs’ objects, and then

interprets the word as before, choosing the meaning in which it has the highest

confidence probability;

3. if no interpretation is possible, i.e. there are no appropriate meanings which distin-

guish any of the unfamiliar objects from all the others in the context, then the agent

searches through the unfamiliar objects in turn, trying to create a new, appropriate

meaning which will be appropriate to describe it in this context;

4. because this kind of meaning creation is triggered by mutual exclusivity, it pro-

ceeds by testing potential refinements on the appropriate leaf nodes of the sensory

channels, until it finds a node which, once refined, will distinguish this object from

all the other objects in the context, from both familiar ‘banana’ objects and unfa-

miliar ‘tongs’ objects. This method of meaning creation, although similar, is not

identical to the intelligent tree growth strategy, under which sensory channels are

checked to find an appropriate leaf node which could discriminate the target object

from the context; in this case, the hearer does not know the target object, but has

only reduced the set of possible referents to the ‘tongs’ objects; it therefore checks

each of these unfamiliar objects in turn until a suitable node is found;

5. the agent then creates this new meaning, and associates it with the new signal it has

just encountered.

This means that there are now two potential sources of meaning creation in the model:

not only failure in a discrimination game, as in all the experiments we looked at in chapter

8, but also encountering a novel signal and being unable to find an appropriate referent

for it from the context. In order to explore this kind of interpretation-driven meaning

creation process, it is therefore necessary to reconfigure the structure of the experiments.

Instead of a two-phase process, with 1000 discrimination games during which meanings

are created, followed by 5000 communication games during which meanings are not

developed and the meanings of the lexical items are inferred through usage, I implement

a one-phase process, with 5000 combined discrimination and communication games;



220 CHAPTER 9. MUTUAL EXCLUSIVITY REVISITED

both agents’ meaning creation processes continue throughout the whole experiment, but

are now activated by different triggers, as follows:

� The speaker creates meanings as a response to failure in the discrimination game;

� The hearer creates meanings as a response to failure in the interpretation of unfa-

miliar words in the communication process.

This implementation of the mutual exclusivity bias differs from my earlier implementa-

tion of the principle of contrast (A. Smith 2003a). Both sets of simulations use broadly

the same framework of meaning creation and communication as I describe in this thesis

and the hearer’s meaning creation algorithm is triggered by not being able to find any se-

mantic hypotheses, but the main and important difference between the two experiments

is that A.Smith (2003a) did not divide the objects in the context into familiar and unfa-

miliar sets before the hearer tried to interpret the utterance. This meant that the meaning

creation process was therefore triggered only very infrequently, and so the results for the

principle of contrast did not differ significantly from those without.

9.3 Mutual Exclusivity in a Random World

Without mutual exclusivity, in section 8.2, we found that there was an important differ-

ence between probabilistic and intelligent tree growth in a random world: high levels

of meaning similarity under probabilistic tree growth were dependent on the sharing of

cognitive biases, but this was unimportant under the intelligent strategy, where all the

results were both very similar to each other, and much lower than under the probabilistic

strategy. Communicative success levels were dependent on meaning similarity levels,

and thus much lower under intelligent tree growth than probabilistic tree growth. The

implementation of mutual exclusivity described in section 9.2 bears a number of similar-

ities to the standard intelligent tree growth strategy, as we have seen. We might expect,

therefore, that, when comparing simulations with mutual exclusivity to those without,

there might be fewer differences under the intelligent tree growth strategy and greater

differences under the probabilistic tree growth strategy.

Probabilistic Tree Growth

In table 9.1, we can see that the levels of meaning similarity are substantially reduced

when the agents have uniform biases and the speaker uses the probabilistic tree growth
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.2)

2 0.70 (0.68 – 0.73) 0.86 0.51 0.12 0.52 **
3 0.63 (0.61 – 0.65) 0.85 0.45 0.13 0.61 **
5 0.53 (0.50 – 0.56) 0.74 0.25 0.18 0.82 **

10 0.38 (0.35 – 0.40) 0.55 0.19 0.21 0.92 **

Table 9.1: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on uniform channel biases. The hearer’s meaning creation
is driven by interpretation failure and the assumption of mutual exclusivity. The table
shows a summary of the final range and distribution of � across 50 repetitions of the
experiment. The distributions were compared statistically with those shown in table 8.2,
as shown in the far right-hand column.

strategy, significantly lower than the corresponding results when the experiments were di-

vided into two distinct phases and did not assume mutual exclusivity (see table 8.2, where

for instance � � ��� � � , when ten channels are available, compared to only � � ��� � � in

the current experiment). Remember that in these experiments, the speaker and hearer are

now necessarily using both different triggers and different algorithms for meaning cre-

ation. This difference in trigger leads to differences in the type and amount of conceptual

structure which is created by the agents.

The speaker creates a lot of conceptual structure in response to failing the discrimina-

tion games, especially early in the experiments, and this conceptual structure is dispersed

throughout its sensory channels, according to its cognitive biases; the hearer, on the other

hand, hears relatively few unfamiliar words, and so creates much less conceptual struc-

ture. In addition, any structure the hearer does create is more useful, because it has served

to provide an appropriate meaning to the word, so there is much less redundant meaning

structure.

Under the probabilistic strategy in section 8.2, the most important factor which impacted

on meaning similarity was that the agents had identical biases. When mutual exclusiv-

ity is implemented, however, the hearer no longer uses its cognitive biases in meaning

creation, and so there is no benefit in the agents having identical biases.

Intelligent Tree Growth

If the speaker uses the intelligent tree growth strategy, on the other hand, as in table 9.2,

the levels of meaning similarity � are now significantly higher than without the assump-

tion of mutual exclusivity. Moreover, the intelligent tree growth strategy now produces
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.10)

2 0.93 (0.90 – 0.95) 1.00 0.50 0.11 0.36 **
3 0.80 (0.77 – 0.83) 1.00 0.32 0.20 0.48 **
5 0.59 (0.56 – 0.63) 0.86 0.29 0.23 0.40 **

10 0.41 (0.38 – 0.44) 0.59 0.14 0.26 0.34 **

Table 9.2: Meaning similarity � in a random world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on uniform channel biases. The hearer’s meaning creation is driven
by interpretation failure and the assumption of mutual exclusivity. The table shows a
summary of the final range and distribution of � across 50 repetitions of the experiment.
The distributions were compared statistically with those shown in table 8.10, as shown in
the far right-hand column.

Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.53 (0.50 – 0.56) 0.74 0.25 0.18
Proportional 0.41 (0.37 – 0.45) 0.72 0.15 0.36Probabilistic

Random 0.41 (0.37 – 0.44) 0.67 0.00 0.34
Identical Random 0.48 (0.45 – 0.51) 0.78 0.28 0.22

Uniform 0.59 (0.56 – 0.63) 0.86 0.29 0.23
Proportional 0.53 (0.49 – 0.58) 0.88 0.20 0.30Intelligent

Random 0.50 (0.45 – 0.55) 0.90 0.15 0.36
Identical Random 0.55 (0.50 – 0.60) 0.90 0.18 0.31

Table 9.3: Meaning similarity � — summary for agents in a random world, with different
experiences. The hearer’s meaning creation is driven by interpretation failure and the
assumption of mutual exclusivity. The table shows a summary of the final range and
distribution of � across 50 repetitions of each experiment, when agents have five sensory
channels.
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higher levels of meaning similarity than the probabilistic tree growth strategy, in a rever-

sal of the results in chapter 8. The exclusion of familiar objects from the meaning in-

ference process, which of course helps the disambiguation process considerably, focuses

the hearer’s meaning creation, and this may account for the rise in meaning similarity,

although it is quite probable that the extended timescale in these experiments, where

meaning creation can potentially take place at any point, also has an effect.

Although tables 9.1 and 9.2 refer only to the default scenario where the agents have

uniform biases, if we compare the summary table 9.3 to table 8.14, we find that the effects

of both the cognitive biases and the tree growth strategies have been largely neutralised

by the implementation of mutual exclusivity. Specifically, we can see that:

� meaning similarity rates have decreased considerably when agents have identical

biases and use the probabilistic tree growth strategy; when they have different ran-

dom biases, there is no change;

� meaning similarity rates have increased under the intelligent tree growth strategy,

so that these are now higher than the probabilistic results;

� cognitive biases now have very little effect on the level of meaning similarity, al-

though uniform biases always produce higher results than random biases, because

there is necessarily less variation in the configuration of the agents’ biases between

different runs of the same experiment.

Communicative Success

Given the strong relationship between meaning similarity and communicative success

which has been a feature of this model, we might expect that we would see a drop in

communicative success under the probabilistic tree growth strategy, and an increase in

communicative success under the intelligent tree growth strategy. Although this is indeed

what we see in table 9.4, where communicative success has fallen significantly under

the probabilistic tree growth strategy, there is actually no change under the intelligent

tree growth strategy, except when only two channels are available. Moreover, if we

compare all the results in table 9.6, we find that there are no major differences in the

level of communicative success at all; all the various permutations of tree growth strategy

and cognitive bias produce average levels of communicative success in the same range� ��� � ��� ��� � � ��� � .
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.3)

2 0.88 (0.86 – 0.90) 0.96 0.64 0.08 0.68 **
3 0.80 (0.77 – 0.82) 0.94 0.49 0.11 0.84 **
5 0.70 (0.67 – 0.72) 0.88 0.46 0.12 0.94 **

10 0.56 (0.54 – 0.58) 0.75 0.39 0.14 0.95 **

Table 9.4: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on uniform biases. The hearer’s meaning creation is driven by interpretation failure and
the assumption of mutual exclusivity. The table shows a summary of the final range and
distribution of � across 50 repetitions of the experiment. The distributions were com-
pared statistically with those shown in table 8.3, as shown in the far right-hand column.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.11)

2 0.91 (0.89 – 0.93) 0.99 0.57 0.08 0.35 **
3 0.82 (0.80 – 0.85) 0.98 0.54 0.14 0.21
5 0.73 (0.70 – 0.76) 0.96 0.42 0.15 0.24
10 0.58 (0.55 – 0.61) 0.78 0.34 0.17 0.14

Table 9.5: Communicative success � in a random world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
uniform biases. The hearer’s meaning creation is driven by interpretation failure and the
assumption of mutual exclusivity. The table shows a summary of the final range and dis-
tribution of � across 50 repetitions of the experiment. The distributions were compared
statistically with those shown in table 8.11, as shown in the far right-hand column.

Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.70 (0.67 – 0.72) 0.88 0.46 0.12
Proportional 0.72 (0.68 – 0.75) 0.92 0.49 0.16Probabilistic

Random 0.69 (0.66 – 0.72) 0.93 0.33 0.17
Identical Random 0.76 (0.73 – 0.78) 0.91 0.49 0.12

Uniform 0.73 (0.70 – 0.76) 0.96 0.42 0.15
Proportional 0.74 (0.71 – 0.77) 0.93 0.48 0.15Intelligent

Random 0.67 (0.64 – 0.70) 0.89 0.41 0.18
Identical Random 0.69 (0.66 – 0.73) 0.95 0.42 0.17

Table 9.6: Communicative success � — summary for agents in a random world, with
different experiences. The hearer’s meaning creation is driven by interpretation failure
and the assumption of mutual exclusivity. The table shows a summary of the final range
and distribution of � across 50 repetitions of each experiment, when agents have five
sensory channels.
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Full details of all these experiments and others not explicitly reported can be found in

appendix D, but it is clear that our expectations over the relative changes of the two

different tree growth strategies have been borne out: meaning similarity is much lower

under the probabilistic strategy, and slightly higher under the intelligent strategy.

In a random world, moreover, the assumption of mutual exclusivity in the disambiguation

process of interpretation, and the triggering of meaning creation when this fails, effec-

tively irons out many of the distinctions which we found in chapter 8, with regard to the

levels of communicative success which the agents achieve; this is no longer affected very

much either by the agents’ cognitive biases nor the speaker’s tree growth strategy.

9.4 Mutual Exclusivity in a Clumpy World

In a clumpy world without mutual exclusivity and interpretation-driven meaning cre-

ation, which I described in section 8.4, we found that very high, near-optimal average

levels of communicative success were achieved, as the agents exploited the structure of

the information in their environment, despite relatively low levels of meaning similarity,

particularly under the probabilistic tree growth strategy. Similar levels of communicative

success were achieved under all cognitive biases, though levels of meaning similarity

were much higher under the intelligent strategy than the probabilistic strategy (see table

8.31), as this strategy is much more able to take account of the structure of the world.

Probabilistic Tree Growth

When we introduce mutual exclusivity into a similar set of simulations, we find similar

results to those we saw in section 9.3, but the effect on meaning similarity is even more

pronounced; in table 9.7, we can see that average levels of meaning similarity
�� are ex-

tremely low indeed under the probabilistic tree growth strategy, significantly lower than

without the assumption of mutual exclusivity. This decrease is particularly noticeable as

the number of channels available increases, but in all cases, the value of the KS statistics

( �
�
� � ) implies that the two sets of distributions could not be more completely dif-

ferent from each other. Again, this happens because the agents are using completely dif-

ferent strategies for meaning creation, which have more pronounced effects in a clumpy

world. The speaker’s strategy, namely meaning creation in response to discrimination

failure, is essentially unaffected by the structure of the world, but is controlled by its

cognitive biases; the hearer’s, on the other hand, is driven by trying to interpret meaning

from context, and is very much affected by the structure of the world, which will lead it
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.23) KS(9.1)

2 0.50 (0.47 – 0.52) 0.66 0.26 0.18 1.0 ** 0.74 **
3 0.43 (0.41 – 0.46) 0.62 0.25 0.21 1.0 ** 0.73 **
5 0.35 (0.33 – 0.37) 0.55 0.24 0.17 1.0 ** 0.82 **

10 0.21 (0.20 – 0.22) 0.31 0.14 0.17 1.0 ** 0.85 **

Table 9.7: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the probabilistic
tree growth strategy based on uniform channel biases. The hearer’s meaning creation
is driven by interpretation failure and the assumption of mutual exclusivity. The table
shows a summary of the final range and distribution of � across 50 repetitions of the
experiment. The distributions were compared statistically with those shown in tables
8.23 and 9.1, as shown in the far right-hand columns.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.27) KS(9.2)

2 0.95 (0.91 – 0.99) 1.00 0.42 0.14 0.28 * 0.48 **
3 0.97 (0.95 – 0.99) 1.00 0.58 0.08 0.38 ** 0.75 **
5 0.92 (0.88 – 0.95) 1.00 0.60 0.12 0.32 ** 0.80 **

10 0.85 (0.82 – 0.89) 1.00 0.63 0.13 0.32 ** 0.98 **

Table 9.8: Meaning similarity � in a clumpy world, after agents have had 1000 different
discrimination games and created individual meaning structures using the intelligent tree
growth strategy based on uniform channel biases. The hearer’s meaning creation is driven
by interpretation failure and the assumption of mutual exclusivity. The table shows a
summary of the final range and distribution of � across 50 repetitions of the experiment.
The distributions were compared statistically with those shown in tables 8.27 and 9.2, as
shown in the far right-hand columns.

to build structure on those channels on which objects can be distinguished, and not on

those where there are clumps of objects as described in section 8.4.

Interestingly, however, when we look at the summary table 9.9, we can see that average

levels of meaning similarity with proportional biases produce higher levels, although

still relatively low in comparison with other experiments. Proportional biases, of course,

are designed to reflect the structure of a clumpy world to a larger extent than random or

uniform biases, and higher levels of meaning similarity result from both agents exploiting

the structure of the world in different ways.

Intelligent Tree Growth

Under the intelligent tree growth strategy, on the other hand, meaning similarity levels are

always subject to very large increases, with significantly higher levels of
�� in comparison
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Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.35 (0.33 – 0.37) 0.55 0.24 0.17
Proportional 0.52 (0.49 – 0.55) 0.78 0.23 0.22Probabilistic

Random 0.34 (0.31 – 0.38) 0.74 0.05 0.35
Identical Random 0.37 (0.34 – 0.40) 0.59 0.14 0.31

Uniform 0.92 (0.88 – 0.95) 1.00 0.60 0.12
Proportional 0.88 (0.84 – 0.91) 1.00 0.49 0.16Intelligent

Random 0.91 (0.87 – 0.94) 1.00 0.55 0.13
Identical Random 0.92 (0.89 – 0.95) 1.00 0.60 0.11

Table 9.9: Meaning similarity � — summary for agents in a clumpy world, with different
experiences. The hearer’s meaning creation is driven by interpretation failure and the
assumption of mutual exclusivity. The table shows a summary of the final range and
distribution of � across 50 repetitions of each experiment, when agents have five sensory
channels.

with experiments without mutual exclusivity. Moreover, these experiments also produce

significantly higher levels of
�� than the experiments in a random world which we looked

at in section 9.3.

Although the meaning creation algorithms for each role are still triggered differently, the

combination of a clumpy, structured world and intelligent tree growth in the speaker still

produces high levels of meaning similarity. Both agents are now exploiting the structure

of the world in deciding where to create conceptual structure, even though discrimination

is the motive for the speaker and interpretation the motive for the hearer. Of course, the

structure of the world is the same for both agents, therefore they will both tend to make

the same kind of distinctions in the world.

As long as the assumption of mutual exclusivity is included, then, consistently high lev-

els of meaning similarity are found when combining intelligent tree growth with all the

different cognitive bias allocations, which themselves now appear to play hardly any role

in determining the relative conceptual structures built by the agents. Overall, table 9.9

shows that there is now a marked difference between the two tree growth strategies in

terms of meaning similarity, and we can see that:

� in a clumpy world, high levels of meaning similarity can only arise if the speaker

uses an intelligent tree growth strategy, and complete synchronisation of concep-

tual structure is very much achievable;
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Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.25) KS(9.4)

2 0.83 (0.80 – 0.85) 0.94 0.49 0.11 0.94 ** 0.32 **
3 0.83 (0.81 – 0.85) 0.95 0.60 0.08 0.88 ** 0.22
5 0.81 (0.79 – 0.83) 0.93 0.57 0.09 0.90 ** 0.62 **

10 0.80 (0.78 – 0.82) 0.92 0.58 0.09 0.80 ** 0.87 **

Table 9.10: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the probabilistic tree growth strategy based
on uniform biases. The hearer’s meaning creation is driven by interpretation failure and
the assumption of mutual exclusivity. The table shows a summary of the final range
and distribution of � across 50 repetitions of the experiment. The distributions were
compared statistically with those shown in tables 8.25 and 9.4, as shown in the far right-
hand columns.

Channels Mean
�� CI Max( � ) Min( � ) CoV( � ) KS(8.29) KS(9.5)

2 0.94 (0.92 – 0.96) 0.99 0.59 0.08 0.26 0.34 **
3 0.93 (0.91 – 0.95) 0.99 0.68 0.07 0.36 ** 0.56 **
5 0.90 (0.88 – 0.92) 0.99 0.67 0.08 0.36 ** 0.72 **

10 0.86 (0.84 – 0.88) 0.97 0.57 0.10 0.24 0.94 **

Table 9.11: Communicative success � in a clumpy world, after 5000 communicative
episodes following meaning creation using the intelligent tree growth strategy based on
uniform biases. The hearer’s meaning creation is driven by interpretation failure and
the assumption of mutual exclusivity. The table shows a summary of the final range
and distribution of � across 50 repetitions of the experiment. The distributions were
compared statistically with those shown in tables 8.29 and 9.5, as shown in the far right-
hand columns.

� the particular cognitive bias mechanisms have very little effect on meaning simi-

larity.

Communicative Success

In table 9.10 we can see that despite the very low levels of meaning similarity, yet again

the agents communicate surprisingly well under the probabilistic strategy. When the

speaker uses the intelligent strategy, shown in table 9.11, we can again see very high

levels of meaning similarity, some of which are significantly different to those obtained

without mutual exclusivity, others of which are the same. Again, the intelligent strategy

produces slightly higher levels of communicative success, as we have seen throughout

the experiments, but the differences between the two strategies shown in table 9.12 are

very small indeed compared to the differences in meaning similarity seen in table 9.9.
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Tree Growth Mean Range
Strategy

Biases
�� CI Max ( � ) Min ( � ) CoV ( � )

Uniform 0.81 (0.79 – 0.83) 0.93 0.57 0.09
Proportional 0.82 (0.80 – 0.83) 0.92 0.62 0.08Probabilistic

Random 0.78 (0.75 – 0.80) 0.91 0.57 0.11
Identical Random 0.82 (0.79 – 0.84) 0.96 0.60 0.09

Uniform 0.90 (0.88 – 0.92) 0.99 0.67 0.08
Proportional 0.87 (0.85 – 0.89) 0.97 0.65 0.09Intelligent

Random 0.89 (0.87 – 0.91) 0.98 0.71 0.08
Identical Random 0.90 (0.88 – 0.92) 0.98 0.69 0.07

Table 9.12: Communicative success � — summary for agents in a clumpy world, with
different experiences. The hearer’s meaning creation is driven by interpretation failure
and the assumption of mutual exclusivity. The table shows a summary of the final range
and distribution of � across 50 repetitions of each experiment, when agents have five
sensory channels.
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Figure 9.1: Meaning similarity � (x-axis) against communicative success � (y-axis) in
a clumpy world, after 5000 combined discrimination and communicative episodes; the
speaker’s meaning creation is driven by discrimination game failure, using the probabilis-
tic tree growth strategy based on uniform channel biases, the hearer’s by communication
failure and the assumption of mutual exclusivity. The simulation is repeated 50 times,
with each run represented by a separate cross on the graph. Sub-figures show varying
numbers of channels available to the agents: 2 (upper left), 3 (upper right), 5 (lower left)
and 10 (lower right).
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The relationship between meaning similarity and communicative success which has been

so consistent throughout the experiments in chapter 8 appears now to be remarkably

different, with very high levels of � no matter what the level of meaning similarity;

figure 9.1, which shows uniform biases and the probabilistic tree growth strategy, is a

good example of this, with the crosses very bunched up towards the top left-hand corner

of the figures rather than clustering along the � � � diagonal, particularly when the

agents have many channels available.

It is clear that, although the level of meaning similarity in these experiments is very

dependent on the particular tree growth strategy chosen by the speaker, if we concentrate

on the communicative aspects of the model, the assumption of mutual exclusivity alone

allows agents to communicate very successfully in a clumpy world, without any need

to have very much conceptual structure in common at all. As we have seen throughout

this chapter, the agents create meaning structure in response to different pressures, which

leads to predictable differences in meaning similarity depending on the environment and

on the speaker’s tree growth strategy. In all cases, however, the hearer is driven to create

meanings only when they will enable the disambiguation of an unfamiliar word. The

meanings the hearer creates are characterised by two features:

� they are useful, in that they can be used to discriminate at least some objects

� they are relatively general, because there is relatively little tree growth on the

hearer’s sensory channels.

We already know from the Gricean nature of the agents (see section 7.5) that the agents

are likely to use meanings which are as general as possible to describe situations, and

we also know that hearers using mutual exclusivity to trigger concept growth do not, in

general, build massive conceptual structures. Even though the two agents have different

concepts, then, the pressures on communication will lead them to use the meanings which

the other is most likely to have, thus leading to communicative success which far outstrip

meaning similarity on which the basic obverter model is based, as we can see in figure 9.1.

Mutual exclusivity, therefore, promotes only relevant conceptual growth in the hearer,

and ensures that, even if divergent semantic structures are built, the meanings which

agents have in common are those which are used in communication.
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9.5 Summary

In this chapter, I have developed the model further to include an assumption of mutual

exclusivity into the hearer’s interpretation process, both in terms of excluding familiar

objects as possible referents of the unfamiliar utterance, and also of triggering meaning

creation when no possible meanings are found to map to the unfamiliar utterance. This

introduction of mutual exclusivity was motivated by many accounts of children’s word

learning, particularly those proposed by Barrett (1986), Merriman (1986), Clark (1987)

and Markman (1989), but, importantly, nothing else in the model has changed, so the fun-

damental assumptions of avoiding explicit meaning transfer, mind-reading and feedback

are still intact.

The introduction of the mutual exclusivity assumption to the hearer’s interactions with

the world has had some very interesting effects, the most important of which are:

� the different triggers and mechanisms of meaning creation used by the agents often

result in very low levels of meaning similarity, particularly in a clumpy world when

the speaker uses the probabilistic tree growth strategy, which does not exploit the

information in the world;

� despite these low levels of meaning similarity � , the agents can communicate very

successfully, with levels of � at around 70% in a randomly-generated world, and

90% in a structured, clumpy world. Levels of communicative success, indeed, are

determined only by the environment and the speaker’s tree growth strategy, not by

its cognitive biases;

In summary, the assumption of mutual exclusivity is a very powerful addition to the

model, which means that agents no longer have to have synchronised meaning structures

in order to communicate successfully. Without innate or explicitly transferable mean-

ings, without being able to read the minds of their interlocutors, without receiving any

feedback about the communication process, the agents still build a successful commu-

nication system. The introduction of a mutual exclusivity assumption into the hearer’s

interpretation process leads to the development of fewer, but more relevant meanings in

the hearer’s conceptual structure, and therefore to relatively high levels of communicative

success despite conceptual divergence.





CHAPTER 10

Conclusions

“Communication does not begin when someone makes a sign, but when

someone interprets another’s behaviour as a sign.” (Burling, 2000, p.30)

In this thesis, my principal aim has been to explore the construction of communication

systems, in populations of simulated agents, based on the inference of meaning from

context. This focus on the inference of meaning is based on the recognition that commu-

nication should be primarily viewed from the hearer’s point of view, as Burling (2000)

points out above. Communication can only occur when a hearer is available to receive a

signal and to interpret its meaning, rather than when a signaller produces a signal, even

if the signal is produced with the intention of conveying a meaning. Not only can com-

munication systems not start without an interpreter, but their complex development is

constrained by the speed of the development of the hearer’s interpretative capabilities.

Increases in signalling power are of no use whatsoever if the signals cannot be inter-

preted, but on the other hand increases in interpretative power can be useful, because,

in an inferential model, the speaker’s internal meaning representation and the hearer’s

internal meaning representation do not need to match, as we saw in section 6.3.2.

The burgeoning field of language evolution contains many recent contributions in the

forms of computational simulations, which provide an ideal environment for the rigorous

testing of the complex and dynamic systems which are at the heart of human language,

yet few experimenters pay any attention to the models of meaning representation and

meaning creation which their simulations assume. In contrast to this general trend, my

work in this thesis has been underpinned by the following assumptions:
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� agents do not have innate meanings, but instead construct their own semantic rep-

resentation of their environment;

� the meanings of signals are not explicitly transferred during the communication

process, but are instead inferred by agents from the contexts in which the signals

are spoken;

� agents cannot read the minds of their interlocutors, nor do they have access to any

of their interlocutors’ internal mental processes;

� agents are not provided with feedback about the results of their communication,

and are therefore not guided towards a communicative goal.

In the remainder of this chapter, I will outline the main findings of the work described

in the thesis, before moving on to discuss future promising directions for research using

inferential models of language and communication.

10.1 Summary

10.1.1 Empirical Meaning Creation

I showed in chapter 4 that although many computational models of the evolution of lan-

guage have an explicitly named ‘semantics’ or ‘meaning space’, these often had very

little to do with even a vaguely realistic semantic model. The majority of the models I

investigated, indeed, contained categories and semantic predicates which are innate and

pre-specified by the experimenters themselves, and which, more damningly, do not re-

fer to anything in a simulated external world. Perhaps just as surprisingly, few internal

sense relationships between the meanings were found either; instead the concepts were

regularly atomic and isolate, bearing no resemblance to each other, and simply appear-

ing and disappearing at the whim of the experimenter, rather than under the control of

the agents. We saw that the main reason for the inclusion of ‘semantics’ within these

models, in fact, was simply to act as a template for the agents, so that they are able to

generalise across signal-meaning pairs and thereby appear to develop a more powerful

‘syntax’ which parallels the pre-specified ‘semantics’.

In order to avoid such pitfalls, and to develop a communicative model based truly on the

empirical creation and interpretation of meanings, I looked first at the nature of meaning
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itself, in particular and at categorisation as the most basic form of meaning, by consid-

ering, in chapter 2, various different models of categorisation which agents can use to

independently build their own individual conceptual structures.

In chapter 5, I described a model of empirical meaning creation based on the discrimi-

nation game introduced by Steels (1996b), in which an agent must find a category which

describes one particular object, and distinguishes it thus from another set of objects. Fol-

lowing on from this, I simulated a simple model Steelsian world containing a number

of objects, each of which can be described in terms of the values of their observable

features. Simulated agents interact with the objects in the world using sensory channels;

they have the same number of sensory channels as the objects have features, and there is a

one-to-one mapping between them. Sensory channels are sensitive to the objects’ feature

values; specifically, they can detect whether a particular feature value falls between two

bounds on a sensory channel. The process of meaning creation itself takes place through

refinement, or the splitting of a channel’s sensitivity range into two discrete segments of

equal size. This results in the formation of two new categories, each of which is sensi-

tive to half the original range. Each category is itself a candidate for further refinement,

so producing, over time, a hierarchical, dendritic structure, with the nodes on the tree

representing categories, or meanings (Steels, 1999). This conceptual structure represents

sense relationships through its dendritic structure, and reference relationships through its

empirical grounding in the agents’ external environment.

Adaptation of an agent’s conceptual structure, and therefore the creation of meaning,

is triggered by failure in a discrimination game. Each agent has a tree growth strategy

for choosing a channel for refinement, which is based on its cognitive biases and/or the

details of the particular discrimination game which failed, as I described in chapter 8.

This flexibility in the meaning creation process allows different agents, however, to create

very different conceptual structures, each of which will nevertheless be able to distinguish

objects in the world; in order to compare these, I designed two similarity measures � and

� , which allow quantifiable comparisons of agents’ conceptual structures to be made.

10.1.2 Signal Redundancy and Inferential Communication

In chapter 6, we saw that any idealisation of communication which reduces semantic rep-

resentations to a simple template against which a coding scheme can be constructed, and

which must therefore assume the explicit transfer of meanings in conjunction with sig-

nals, leads damagingly to the design problem which I have called the signal redundancy

paradox, which is repeated in summary form below:
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� if meanings are transferable, then signals are redundant;

� but if signals are removed, then to what extent does the model represent communi-

cation?

For communication to occur, the agents must be able to decipher the utterances, and

learn to associate particular meanings with particular signals, despite not being provided

with the meaning which the speaker intended to convey. I assume that the most general

source for the inference of meaning is the environment in which the agent is placed,

and this in turn suggests that at least some of the meanings which agents talk about are

likely to be used to refer to objects and events which actually happen in the environment.

The existence of an external world from which meaning can be inferred is crucial to a

realistic model of meaning, for without it, any ‘meanings’ are necessarily abstract and

pre-defined, and realistic communication cannot emerge. If the meanings do not have

reference, they can only be ‘communicated’ through explicit transfer, which of course

entails the signal redundancy paradox. In order to avoid this, therefore, as I described in

section 6.2, there must be at least three levels of representation in the model:

1. an external environment, which is public and accessible to all, which provides the

motivation and source for meaning creation;

2. a private, agent-specific internal representation of meaning, which is not percepti-

ble to others;

3. a set of signals, which can be transmitted between agents and is in principle public.

Thinking of the communicative function of language as a simple coding system between

signals and meanings, however, is problematic not just in terms of the communication

model itself, but also in terms of the evolution of such a system. It is important to re-

member, therefore, that language is necessarily both reciprocal and cultural. There is no

communicative advantage in a single mutant obtaining a language acquisition device if

other individuals do not have one, as the communication process is by definition inter-

active, and must contain at least two individual agents. Neither, however, is there any

advantage in many mutants having a language acquisition device, while there is no lan-

guage existing in the community for them to acquire. Explanations of the emergence of

an LAD, therefore, must also explain the emergence of the first linguistic communica-

tion, the Bickertonian “magic moment” (Bickerton, 1990); how did the hearer of the first

signal know that the signal was meaningful and was conveying a meaning? Origgi and
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Sperber (2000), however, point out that mutations which allows individuals to infer the

meanings of signals can not only provide an explanation for how language got started,

but can also provide a plausible account of the progressive complication of language over

evolutionary time.

At the beginning of this chapter, I discussed Burling (2000)’s insight into the instantiation

of communication, which could only begin when a signal was interpreted as conveying a

meaning, notwithstanding the fact that such a meaning might never have been intended

by the signaller. In terms of linguistic evolutionary development, when the system is

already functioning to some extent, Origgi and Sperber (2000) discuss a possible genetic

mutation which allows the construction of a more complex semantic representation; if

communication is not based on inference, the explicit transfer of more complex, incom-

patible semantic structure from one agent to another will cause confusion and commu-

nicative breakdown, and, being communicatively harmful, such a mutation is unlikely to

maintain itself in the population. In an inferential model, on the other hand, the mismatch

between the speaker’s meaning and the hearer’s meaning does not have catastrophic ef-

fects on communication, because individuals can have very different internal represen-

tations of meanings, and yet can still communicate successfully. Those without the new

mutation, for instance, who therefore still possess only the more basic semantic repre-

sentation, could still communicate with other individuals in blissful ignorance of a more

complex semantic structure, while the mutants with the enhanced semantic representa-

tion might receive an additional advantage in terms of more accurate or detailed inference

of the meaning. Because of their advantage, they might, in time, develop new ways of

representing the patterns they accidentally find in this structure. This insight is enshrined

in my model through the use of reference identity to evaluate communication.

In chapter 6, I explored Hurford (1989)’s findings that lexical bidirectionality is very im-

portant in the evolution of optimal communication systems. One such communicative

algorithm, which explicitly encodes lexical bidirectionality is the obverter algorithm de-

scribed by Oliphant and Batali (1997). Unfortunately, however, this algorithm required

the agents to have access to each other’s internal mental representations, thus violating

one of the design goals of this work. Mindful of this, and of the primacy of interpretation

over production, I modified the obverter procedure so that the speaker’s production be-

haviour was itself based on interpretation. In my model, therefore, the speaker chooses

a signal by first putting itself in the hearer’s shoes, and choosing a signal which it would

understand, if it heard the signal in this same situation, and had to infer its meaning

from context. This modified, introspective obverter methodology allows agents to com-

municate without explicit meaning transfer, so avoiding the signal redundancy paradox,
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without knowledge of the topic of conversation, and without feedback about the commu-

nicative process itself.

10.1.3 Meaning Similarity and Communicative Success

In chapter 7, I demonstrated through a detailed series of experiments that there is a strong

correlation between the level of meaning similarity � and communicative success � in this

model. If meanings are allocated randomly, communicative success � is regularly higher

than meaning similarity � , because the hierarchical meaning creation process exerts pres-

sure in favour of balanced tree structures, and the meanings which are most likely to be

shared by agents are also those for which the agents prefer to use in communication, in

accordance with Gricean conversational maxims.

Learning the meanings of words, of course, is utterly unremarkable to children, who

effortlessly overcome Quine (1960)’s problem of indeterminacy. In view of this, in chap-

ter 3, I examined proposals concerning the existence of constraints within the learners

themselves which predispose them to disregard some of the theoretically possible mean-

ings of a signal, thus reducing the size of the set of semantic hypotheses, and making

Quine’s problem soluble. In chapter 8, I explored the effects of different cognitive and

environmental biases on the agents’ construction of conceptual structures and on their

communicative success thereafter, and found that the relationship between meaning sim-

ilarity � and communicative success � remains strong. In a randomly-generated world,

the agents cannot improve on creating meanings based on their cognitive biases, using a

probabilistic tree growth strategy; high levels of conceptual similarity will always arise

if the agents share similar values of these biases. In a structured, or clumpy world, on the

other hand, then it is much better for the agents to use a more intelligent, ecologically ra-

tional (Gigerenzer & Todd, 1999) tree growth strategy, which can exploit the information

in the environmental structure to a much greater degree.

Motivated furthermore by psychologists’ suggestions of interpretation biases which help

children learn vocabulary, I then implemented Markman (1989)’s mutual exclusivity as-

sumption, by which an individual uses prior knowledge to help disambiguate the refer-

ence of novel signals, a process which affects both the interpretation of utterances and the

building of new conceptual structure. In chapter 9, I show experimentally that agents no

longer need to have synchronised meaning structures in order to communicate success-

fully. The introduction of a mutual exclusivity assumption into the hearer’s interpretation

process leads to the development of fewer, but more relevant meanings in the hearer’s
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conceptual structure, and therefore to relatively high levels of communicative success

despite conceptual divergence.

10.2 Future Developments

The model of meaning creation and communication described throughout this thesis has

allowed me to present a number of important results, the most important of which is that

successful communication systems can be constructed by independent, unguided agents,

through the inference of meaning. It is tempting to conclude from this that, because

communication can arise without explicit meaning transfer, we can go back to building

simplified models which incorporate innate and transferable meanings. I believe how-

ever, that such a conclusion would result in missing an important opportunity for further

explanatory research, which is motivated by the realisation that the characteristics of

communication systems built on inferred meanings could in themselves explain univer-

sals of human language, both in terms of structural properties and dynamic processes,

which cannot easily be explained by appealing to an Chomskyan innate language acqui-

sition device alone.

In this respect, it is important to note that, although communication through the infer-

ence of meaning is very successful, especially in a structured world when ecologically

rational strategies are followed, it is rarely if ever perfect. We can easily see that these

imperfections in the communication process, which are not imposed by adding noise to

the model, but which arise simply through the inferential mechanisms through which

communication systems are developed, lead inexorably to variation in the agents’ lan-

guages and their conceptual structures. Human languages are by nature dynamic, and

just as inferential communication leads to synchronic variation, the very same synchronic

variation drives all historical language change (Trask, 1996). One profitable avenue of

research in this framework will certainly be the detailed investigation of different kinds

of structural linguistic change, including such processes as grammaticalisation (Hopper

& Traugott, 1993), in which more complex grammatical markers such as case markers

and complementisers are created from less complex lexical items over generations of in-

ference, which occur directly as a result of the dynamic and imperfect nature of the com-

munication process. Indeed, the process of grammaticalisation itself has been explicitly

described by leading researchers as “context-induced reinterpretation” (Heine & Kuteva,

2002, p.3), and it is clear that an inferential model of language such as that described

here directly parallels this view of grammatical change, providing an ideal framework
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for the exploration of grammaticalisation processes in particular, and language change in

general.

Models such as the iterated learning model (ILM) described by Hurford (2002), in which

language agents are situated in populations, and their knowledge is transmitted culturally

from adults to children, have already shown that social and population pressures can

lead in themselves to the emergence of linguistic structure (Kirby, 2001; Brighton, 2002;

Brighton et al., 2003). Vogt and Coumans (2003), indeed, have already shown, in a repli-

cation of some of the basic communicative simulations in this thesis, that the dynamics

of the ILM in themselves provide a boost to the time taken for communication success to

occur, and it seems reasonable to assume that such benefits might also be maintained in

larger populations, although this remains an open question for the time being.

I have shown in this thesis, therefore, that successful communication can emerge and

evolve through the repeated inference of meaning from context. In the longer term, I an-

ticipate that the overarching aim of research in this framework will be to explore whether

both the structural properties of language which have evolved over generations of use,

and the processes of language change itself, can themselves be explained as emergent

properties of the repeated cycle of signal production and the inference of meaning. I give

the final word on the potential value of this explanatory paradigm to the respected linguist

Ray Jackendoff:

“If some aspects of linguistic behaviour can be predicted from more general

considerations of the dynamics of communication in a community, rather

than from the linguistic capabilities of individual speakers, then they should

be.” (Jackendoff, 2002, p.101)



APPENDIX A

Model Outline

The model of meaning creation and communication which is used in this thesis can ap-

pear relatively complex, containing many different stages and procedures. This appendix

contains a brief description of the important parts of the model for reference.

1. Initialisation.

The world is initialised, and the following items are created according to the pa-

rameters of the experiment:

� Agents are provided with

– sensory channels with empty discrimination trees on which they will

build conceptual structure, one channel for each feature with which the

objects are described (see below);

– sensory channel biases for each of their sensory channels (see section

8.2.1);

– possibly innate meanings (see section 7.2);

– empty lexicons of signal-meaning pairs (see section 6.5).

� Objects are defined in terms of feature values:

– these can be randomly distributed through the feature value space

– or clumped together in groups (see section 8.4).

2. Interactive Episodes.

Each episode consists of an obligatory discrimination episode, possibly followed

by a communicative episode.
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(a) Discrimination (see chapter 5):

� Two agents are selected from the population and assigned to the roles of

speaker and hearer.
� A set of objects is constructed, and is called the context.
� One of these objects is chosen to be the target object.
� Both context and target are provided to the speaker, which searches through

its conceptual structure to try to find a meaning which describes the target

and does not describe the other objects in the context.
� If the speaker finds a suitable meaning, called the speaker’s meaning,

then the game succeeds, and the episode moves on to communication.
� If the speaker fails to find any suitable meaning, the game fails:

– the speaker chooses a sensory channel according to its tree growth

strategy (see section 8.2.2), and refines the node on this channel cor-

responding to the target object;

– the episode now ends, without the communicative episode taking

place.

(b) Communication (see chapter 6):

� The speaker chooses an utterance to express the speaker’s meaning it

found in the discrimination game, using the introspective obverter algo-

rithm (see section 6.5.1);
� The utterance and the context (but not the details of which object is the

target object) are provided to the hearer;
� The hearer compiles a list of possible referents:

– in the standard model, this list is simply all the objects in the context;

– if the agent is being guided by the mutual exclusivity assumption

(see chapter 9), however, and the utterance is novel, then the hearer

excludes all objects in the context for which it already has an ap-

propriate word, and is then left with a set of unfamiliar objects as

possible referents (see section 9.2).
� The hearer goes through the list of possible referents, and plays a separate

discrimination game for each of them, with the possible referent as the

target object.
� Each of these games produces zero or more meanings which could be

used to distinguish the temporary target object from the other objects in

the context;
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� Collating these meanings results in a list of possible meanings or seman-

tic hypotheses which the hearer considers;
� If there is at least one semantic hypothesis:

– The hearer associates, in its lexicon, all the semantic hypotheses with

the utterance;

– From the semantic hypotheses, it chooses the hearer’s meaning, which

is defined as the meaning in which it has the most confidence (see

section 6.5.2);
� If the list of possible meanings is empty, then a new meaning is created;

– If the agent is being guided by the mutual exclusivity assumption (see

chapter 9), then the meaning is created according to the procedure in

section 9.2;

– Otherwise, the agent chooses a sensory channel according to its tree

growth strategy (see section 8.2.2), and refines the node on this chan-

nel corresponding to an object chosen at random from the context;
� The hearer associates this new meaning with the utterance, in its lexicon,

and the new meaning becomes the hearer’s meaning;
� The object in the context which is referred to by the hearer’s meaning,

the hearer’s referent, is compared to the target object (see section 6.3.2):

– if they match, the communicative episode succeeds;

– if they do not match, the communicative episode fails.





APPENDIX B

Experimental Measures

Measure Symbol Description

Coefficient of Variation CoV( � ) The standard deviation of � expressed as a

percentage of the mean
�

� (see section 7.3).

Cognitive Bias
� �
� The cognitive bias on agent � ’s sensory

channel � (see section 8.2).

Communicative Success

Rate

� The percentage of successful communica-

tion episodes (see section 6.3).

Confidence Probability � � � � � � The conditional probability that, given a par-

ticular signal � , the meaning � can be ex-

pected (see equation 6.1).

Depth � � � � The depth in the discrimination tree of node
�

(see chapter 7.2).

Discriminative Success

Rate

�
The percentage of successful discrimination

games (see section 5.2.1).

Discriminative Success

Probability

� ��� ��� The probability of discrimination game �
succeeding because a distinctive category is

found on sensory channel � (see equation

5.12).
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Measure Symbol Description

Groups � � � � In the definition of a clumpy world, the num-

ber of groups on a sensory channel � (see

section 8.4).

Kolmogorov-Smirnov

Statistic

KS A comparative measure of whether two sam-

ple distributions are drawn from the same

population distribution function (see section

8.1.1).

Meaning Similarity � � � � � � � � The meaning similarity between two agents
� � and � � (see equation 5.15).

Number of Different

Possible Trees

� � � � The number of different discrimination trees

which can be created with � refinements (see

equation 7.2).

Proportional Bias Con-

stant

� The constant on which the allocation of pro-

portional biases is based (see equation 8.1).

Refined Leaf Node
� � � � The leaf node on sensory channel � which is

refined in the meaning creation process (see

8.2.2).

Tree Similarity � � � � � � � � The similarity between two trees � � and � �
(see equation 5.13).

Unique Discriminability � The percentage of objects in the model

which can be distinguished from all other

objects in the world (see section 5.2.3).

Usage � � � � � � The number of communicative episodes in

which signal � has been associated with

meaning � (see section 6.5).

Table B.1: Reference table of experimental measures



APPENDIX C

Experimental Results

This appendix contains comprehensive results for the experiments reported in chapter 8,

where levels of meaning similarity and communicative success are calculated under the

following different parameters:

Tree Growth Strategy: the strategy used by the agents in creating meanings following

discrimination failure;

Cognitive Biases: the method of bias allocation for the agents’ biases;

Structure of the World: the method of constructing the agents’ environment;

Agents’ Experiences: whether the agents have the same or different interactions with

their environment;

Hearer’s Meaning Creation: in appendix C, the hearer’s meaning creation is driven by

discrimination failure in all experiments.

For each experiment, the same summary figures and tables are shown:

� at the top right, a scatter plot shows the relationship between meaning similarity �
and communicative success � at the end of each simulation run;

� down the left, line plots show the progression of meaning similarity � (upper), and

of communicative success � (lower) over time; each simulation run is shown with

a separate line;

� to the right of these plots, the tables summarise the final results obtained, showing

the average, range and variation in the values of � and � respectively.
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Each figure itself consists of four sub-figures, which show results for experiments con-

ducted with different numbers of sensory channels/features, as follows:

upper left objects are defined by two feature values, and agents have two corre-

sponding sensory channels;

upper right objects are defined by three feature values, and agents have three cor-

responding sensory channels;

lower left objects are defined by five feature values, and agents have five corre-

sponding sensory channels;

lower right objects are defined by ten feature values, and agents have ten corre-

sponding sensory channels.
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C.1 Random World

Tree Growth Strategy: probabilistic
Biases: uniform
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.1: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.2: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: proportional (��� � �
	 )
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.3: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: identical random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.4: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: uniform
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.5: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.6: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: proportional (��� � �
	 )
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.7: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: identical random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.8: Meaning similarity � , communicative success � (see box for parameters).
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C.2 Identical Experiences

Tree Growth Strategy: probabilistic
Biases: uniform
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.9: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: random
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.10: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: proportional (��� � �
	 )
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.11: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: identical random
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.12: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: uniform
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.13: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: random
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.14: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: proportional (��� � �
	 )
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.15: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: identical random
World: random
Experiences: identical
Hearer’s Concept Creation

driven by: discrimination
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Figure C.16: Meaning similarity � , communicative success � (see box for parameters).
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C.3 Clumpy World

Tree Growth Strategy: probabilistic
Biases: uniform
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.17: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.18: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: proportional (��� � �
	 )
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.19: Meaning similarity � , communicative success � (see box for parameters).



268 APPENDIX C. EXPERIMENTAL RESULTS

Tree Growth Strategy: probabilistic
Biases: identical random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.20: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: uniform
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.21: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.22: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: proportional (��� � �
	 )
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.23: Meaning similarity � , communicative success � (see box for parameters).



272 APPENDIX C. EXPERIMENTAL RESULTS

Tree Growth Strategy: intelligent
Biases: identical random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: discrimination
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Figure C.24: Meaning similarity � , communicative success � (see box for parameters).



APPENDIX D

Mutual Exclusivity Results

This appendix contains comprehensive results for the experiments reported in chapter 9,

where levels of meaning similarity and communicative success are calculated under the

following different parameters:

Tree Growth Strategy: the strategy used by the agents in creating meanings following

discrimination failure;

Cognitive Biases: the method of bias allocation for the agents’ biases;

Structure of the World: the method of constructing the agents’ environment;

Agents’ Experiences: whether the agents have the same or different interactions with

their environment;

Hearer’s Meaning Creation: in appendix D, the hearer’s meaning creation is driven by

interpretation failure and the assumption of mutual exclusivity in all experiments.

The layout of the results follows the same pattern as seen in appendix C; for each exper-

iment, the following summary figures and tables are shown:

� at the top right, a scatter plot shows the relationship between meaning similarity �
and communicative success � at the end of each simulation run;

� down the left, line plots show the progression of meaning similarity � (upper), and

of communicative success � (lower) over time; each simulation run is shown with

a separate line;
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� to the right of these plots, the tables summarise the final results obtained, showing

the average, range and variation in the values of � and � respectively.

Each figure itself consists of four sub-figures, which show results for experiments con-

ducted with different numbers of sensory channels/features, as follows:

upper left objects are defined by two feature values, and agents have two corre-

sponding sensory channels;

upper right objects are defined by three feature values, and agents have three cor-

responding sensory channels;

lower left objects are defined by five feature values, and agents have five corre-

sponding sensory channels;

lower right objects are defined by ten feature values, and agents have ten corre-

sponding sensory channels.
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D.1 Mutual Exclusivity in a Random World

Tree Growth Strategy: probabilistic
Biases: uniform
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Meaning similarity and communicative success.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Ch �� CI Max
( � )

Min
( � )

CoV
( � )

KS
(C.1)

2 0.70 (0.68 –
0.73)

0.86 0.51 0.12 0.52
**

3 0.63 (0.61 –
0.65)

0.85 0.45 0.13 0.61
**

5 0.53 (0.50 –
0.56)

0.74 0.25 0.18 0.82
**

10 0.38 (0.35 –
0.40)

0.55 0.19 0.21 0.92
**

Meaning Similarity � against time. Summary of the final values of � .

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Ch �
� CI Max

( � )
Min
( � )

CoV
( � )

KS
(C.1)

2 0.88 (0.86 –
0.90)

0.96 0.64 0.08 0.68
**

3 0.80 (0.77 –
0.82)

0.94 0.49 0.11 0.84
**

5 0.70 (0.67 –
0.72)

0.88 0.46 0.12 0.94
**

10 0.56 (0.54 –
0.58)

0.75 0.39 0.14 0.95
**

Communicative success � against time. Summary of the final values of � .

Figure D.1: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.2: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: proportional (��� � �
	 )
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Meaning similarity and communicative success.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Ch �� CI Max
( � )

Min
( � )

CoV
( � )

KS
(C.3)

2 0.52 (0.48 –
0.55)

0.83 0.20 0.27 0.90
**

3 0.49 (0.47 –
0.52)

0.80 0.17 0.27 0.90
**

5 0.41 (0.37 –
0.45)

0.72 0.15 0.36 0.90
**

10 0.52 (0.48 –
0.55)

0.74 0.20 0.25 0.64
**

Meaning Similarity � against time. Summary of the final values of � .

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Ch �
� CI Max

( � )
Min
( � )

CoV
( � )

KS
(C.3)

2 0.81 (0.78 –
0.84)

0.95 0.34 0.14 0.96
**

3 0.80 (0.78 –
0.82)

0.93 0.48 0.13 0.83
**

5 0.72 (0.68 –
0.75)

0.92 0.49 0.16 0.74
**

10 0.72 (0.69 –
0.75)

0.91 0.29 0.17 0.61
**

Communicative success � against time. Summary of the final values of � .

Figure D.3: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: identical random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.4: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: uniform
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.5: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.6: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: proportional (��� � �
	 )
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.7: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: identical random
World: random
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.8: Meaning similarity � , communicative success � (see box for parameters).
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D.2 Mutual Exclusivity in a Clumpy World

Tree Growth Strategy: probabilistic
Biases: uniform
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.9: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.10: Meaning similarity � , communicative success � (see box for parameters).
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Experiences: different
Hearer’s Concept Creation
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Figure D.11: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: probabilistic
Biases: identical random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.12: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: uniform
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.13: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.14: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
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	 )
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.15: Meaning similarity � , communicative success � (see box for parameters).
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Tree Growth Strategy: intelligent
Biases: identical random
World: clumpy
Experiences: different
Hearer’s Concept Creation

driven by: communication
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Figure D.16: Meaning similarity � , communicative success � (see box for parameters).



APPENDIX E

Examples of Agents’ Lexicons

This appendix contains examples of the lexicons which are created by the agents. As

we saw in section 6.5, an agent’s lexicon stores its interaction history in terms of signal-

meaning associations. Each entry in the lexicon contains the following components:

� a signal � ;

� a meaning � ;

� a count of how many times the pair has been used � ;

� a confidence probability � , which represents the agent’s confidence in the associa-

tion between the signal and meaning.

The size of a complete lexicon is potentially very large, containing every signal-meaning

pair for which the agent has created an association. Table E.1, which extends over a

number of pages, shows details of an agent’s lexicon after 5000 communicative episodes.

The agent has five sensory channels, but is using the intelligent tree growth strategy,

and has not developed any conceptual structure on sensory channel 3. It is immediately

apparent not only that the lexicon is very large, but also that the level of confidence in

many of the signal-meaning pairs is very low. These particular associations are never

likely to be used in the communication process, but are nevertheless maintained, because

the lexicon contains a complete history of all the agent’s communicative interactions.

Note also the entry for the association between the signal klklv and the meaning � � � ;
although the agent has only made this association once, there were no other competing
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semantic hypotheses in the episode when the signal was received, and so the agent is cer-

tain of the association. Associations like this, which have a high confidence probability

� but a low usage � , however, are very unstable, as just one further exposure to the signal

in another context, where the associated meaning (here � � � ) is not a possible semantic

hypothesis, would completely undermine the mapping.

In section 6.5.1, however, I described the introspective obverter algorithm, and intro-

duced the notion of an active lexicon, or the lexical entries which, at any particular time,

represent signal-meaning pairs which could be used by the agent when it chooses a sig-

nal. Introspective obverter is based on choosing a signal which the agent itself would

interpret correctly, and so, at any time, there is only one meaning which the agent will

use to interpret a particular signal1. Therefore, to derive the active lexicon from a com-

plete lexicon, we perform the following process iteratively, until there are no entries left

in the original lexicon:

1. Find the signal-meaning pair with the highest confidence probability.

2. Move this entry to the active lexicon.

3. Delete all entries in the original lexicon which contain the signal from the chosen

pair.

Table E.2 shows the active lexicon which is derived from the complete lexicon in table

E.1. There are of course fewer entries, and those which are included are those in which

the agent has relatively high confidence, and so would prefer to use to interpret a signal.

1The actual interpretation will depend on the context in which the signal is presented, but this will be
ignored here.
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Table E.1: Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

ouy 0-0 118 0.323288

us 0-0 26 0.0641975

dt 0-0 1 0.0588235

qlokt 0-0 6 0.0588235

qj 0-0 14 0.0510949

ty 0-0 14 0.05

le 0-0 6 0.0454545

nvvb 0-0 12 0.0449438

ql 0-0 43 0.0388087

ms 0-0 10 0.0308642

kx 0-00 254 0.298824

isuyo 0-00 23 0.132948

wtz 0-00 46 0.126722

lho 0-00 85 0.111402

ms 0-00 36 0.111111

mtsb 0-00 36 0.108108

mtn 0-00 156 0.0977444

tg 0-00 41 0.0933941

ve 0-00 11 0.0808824

dt 0-00 1 0.0588235

co 0-000 57 0.311475

hp 0-000 18 0.163636

po 0-000 19 0.0678571

mtsb 0-000 18 0.0540541

cq 0-000 13 0.0439189

tg 0-000 19 0.0432802

jgy 0-000 27 0.0419907

ql 0-000 46 0.0415162

xc 0-000 40 0.0414079

ty 0-000 10 0.0357143

sz 0-0000 59 0.265766

cvf 0-0000 6 0.101695

cq 0-0000 10 0.0337838

continued on next page � � �
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

lho 0-0000 25 0.0327654

ve 0-0000 4 0.0294118

xj 0-0000 5 0.027933

hp 0-0000 3 0.0272727

zg 0-0000 4 0.0272109

xq 0-0000 17 0.0271565

le 0-0000 2 0.0151515

cvf 0-0001 16 0.271186

sz 0-0001 45 0.202703

ylf 0-0001 16 0.063745

lc 0-0001 9 0.0436893

xj 0-0001 5 0.027933

zg 0-0001 4 0.0272109

mtsb 0-0001 8 0.024024

cq 0-0001 7 0.0236486

hp 0-0001 2 0.0181818

le 0-0001 2 0.0151515

co 0-001 44 0.240437

hp 0-001 22 0.2

cvf 0-001 10 0.169492

djh 0-001 19 0.134752

po 0-001 24 0.0857143

ve 0-001 9 0.0661765

ty 0-001 16 0.0571429

jgy 0-001 35 0.0544323

bv 0-001 23 0.0490405

tg 0-001 20 0.0455581

jgy 0-01 225 0.349922

kx 0-01 104 0.122353

cvf 0-01 7 0.118644

xq 0-01 70 0.111821

co 0-01 20 0.10929

bv 0-01 49 0.104478

dka 0-01 20 0.104167

continued on next page � � �
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

px 0-01 61 0.102007

lc 0-01 20 0.0970874

ol 0-01 20 0.0947867

ba 0-010 112 0.34891

pgk 0-010 35 0.101744

ylf 0-010 24 0.0956175

po 0-010 21 0.075

sg 0-010 44 0.0708535

ty 0-010 18 0.0642857

dka 0-010 12 0.0625

ms 0-010 17 0.0524691

cq 0-010 11 0.0371622

ve 0-010 4 0.0294118

isuyo 0-0100 42 0.242775

we 0-0100 28 0.202899

zg 0-0100 7 0.047619

le 0-0100 6 0.0454545

px 0-0100 26 0.0434783

sg 0-0100 26 0.041868

ylf 0-0100 9 0.0358566

xc 0-0100 33 0.0341615

xj 0-0100 5 0.027933

co 0-0100 2 0.010929

pixg 0-01000 34 0.213836

kdf 0-01000 17 0.184783

djh 0-01000 6 0.0425532

us 0-01000 16 0.0395062

wtz 0-01000 11 0.030303

nvvb 0-01000 8 0.0299625

bv 0-01000 10 0.021322

dka 0-01000 4 0.0208333

qj 0-01000 5 0.0182482

qlokt 0-01000 1 0.00980392

kdf 0-01001 20 0.217391
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

pixg 0-01001 32 0.201258

djh 0-01001 7 0.0496454

nvvb 0-01001 10 0.0374532

wtz 0-01001 13 0.0358127

po 0-01001 10 0.0357143

us 0-01001 14 0.0345679

pgk 0-01001 10 0.0290698

lho 0-01001 18 0.0235911

qlokt 0-01001 2 0.0196078

we 0-0101 35 0.253623

isuyo 0-0101 39 0.225434

ol 0-0101 18 0.0853081

djh 0-0101 11 0.0780142

pixg 0-0101 8 0.0503145

lho 0-0101 38 0.0498034

zg 0-0101 7 0.047619

le 0-0101 6 0.0454545

sg 0-0101 26 0.041868

kdf 0-0101 3 0.0326087

wtz 0-011 124 0.341598

ba 0-011 86 0.267913

djh 0-011 20 0.141844

us 0-011 44 0.108642

ve 0-011 14 0.102941

ylf 0-011 25 0.0996016

isuyo 0-011 16 0.0924855

zg 0-011 13 0.0884354

ol 0-011 16 0.0758294

kdf 0-011 6 0.0652174

ylf 0-1 59 0.23506

ba 0-1 16 0.0498442

ol 0-1 7 0.0331754

sz 0-1 7 0.0315315

nvvb 0-1 8 0.0299625
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

isuyo 0-1 5 0.0289017

kdf 0-1 2 0.0217391

bv 0-1 10 0.021322

px 0-1 11 0.0183946

we 0-1 2 0.0144928

pgk 0-10 127 0.369186

wtz 0-10 32 0.0881543

djh 0-10 12 0.0851064

dka 0-10 16 0.0833333

po 0-10 23 0.0821429

sg 0-10 46 0.0740741

hp 0-10 7 0.0636364

lho 0-10 46 0.0602883

bv 0-10 28 0.0597015

kdf 0-10 5 0.0543478

xj 0-100 53 0.296089

nvvb 0-100 15 0.0561798

qj 0-100 13 0.0474453

xq 0-100 25 0.0399361

kx 0-100 32 0.0376471

mtn 0-100 58 0.0363409

xc 0-100 34 0.0351967

wtz 0-100 12 0.0330579

we 0-100 4 0.0289855

cq 0-100 7 0.0236486

qlokt 0-1000 28 0.27451

lc 0-1000 39 0.18932

dt 0-1000 3 0.176471

pixg 0-1000 22 0.138365

tz 0-1000 26 0.104418

tg 0-1000 38 0.0865604

bv 0-1000 38 0.0810235

px 0-1000 40 0.0668896

ve 0-1000 9 0.0661765
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

ql 0-1000 69 0.0622744

qlokt 0-1001 34 0.333333

tz 0-1001 18 0.0722892

dt 0-1001 1 0.0588235

pixg 0-1001 9 0.0566038

fo 0-1001 15 0.0511945

sz 0-1001 11 0.0495495

bv 0-1001 22 0.0469083

jgy 0-1001 30 0.0466563

qj 0-1001 11 0.040146

ba 0-1001 9 0.0280374

le 0-10010 22 0.166667

cq 0-10010 30 0.101351

tz 0-10010 25 0.100402

dka 0-10010 16 0.0833333

ouy 0-10010 25 0.0684932

ol 0-10010 14 0.0663507

ql 0-10010 73 0.0658845

dt 0-10010 1 0.0588235

hp 0-10010 5 0.0454545

sz 0-10010 10 0.045045

le 0-10011 30 0.227273

ve 0-10011 30 0.220588

mtn 0-10011 150 0.093985

cq 0-10011 23 0.0777027

xq 0-10011 48 0.0766773

ol 0-10011 14 0.0663507

ql 0-10011 73 0.0658845

isuyo 0-10011 11 0.0635838

dt 0-10011 1 0.0588235

sz 0-10011 13 0.0585586

tz 0-101 63 0.253012

xj 0-101 44 0.24581

qj 0-101 37 0.135036
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

nvvb 0-101 33 0.123596

cq 0-101 30 0.101351

kx 0-101 66 0.0776471

ms 0-101 22 0.0679012

fo 0-101 19 0.0648464

mtsb 0-101 21 0.0630631

dt 0-101 1 0.0588235

xc 0-11 306 0.31677

pgk 0-11 58 0.168605

bv 0-11 61 0.130064

ouy 0-11 47 0.128767

cvf 0-11 7 0.118644

ql 0-11 130 0.117329

co 0-11 20 0.10929

cq 0-11 31 0.10473

mtn 0-11 163 0.10213

nvvb 0-11 27 0.101124

ty 0-110 87 0.310714

zg 0-110 37 0.251701

pgk 0-110 37 0.107558

qj 0-110 18 0.0656934

fo 0-110 15 0.0511945

sg 0-110 30 0.0483092

kx 0-110 40 0.0470588

mtn 0-110 70 0.0438596

hp 0-110 4 0.0363636

xj 0-110 6 0.0335196

zg 0-111 47 0.319728

ty 0-111 61 0.217857

ol 0-111 17 0.0805687

qj 0-111 13 0.0474453

ms 0-111 13 0.0401235

kx 0-111 34 0.04

fo 0-111 11 0.0375427
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

hp 0-111 4 0.0363636

xj 0-111 4 0.0223464

ve 0-111 3 0.0220588

djh 1-0 38 0.269504

ylf 1-0 5 0.0199203

ol 1-0 3 0.014218

pixg 1-0 2 0.0125786

mtsb 1-0 4 0.012012

mtn 1-0 19 0.0119048

ql 1-0 13 0.0117329

isuyo 1-0 2 0.0115607

lho 1-0 8 0.0104849

qlokt 1-0 1 0.00980392

sg 1-00 182 0.293076

we 1-00 17 0.123188

po 1-00 34 0.121429

ty 1-00 34 0.121429

wtz 1-00 44 0.121212

jgy 1-00 73 0.11353

nvvb 1-00 30 0.11236

ylf 1-00 23 0.0916335

hp 1-00 10 0.0909091

ol 1-00 18 0.0853081

lc 1-000 57 0.276699

tg 1-000 75 0.170843

sz 1-000 31 0.13964

xc 1-000 71 0.073499

lho 1-000 52 0.068152

fo 1-000 19 0.0648464

dka 1-000 12 0.0625

ql 1-000 67 0.0604693

co 1-000 10 0.0546448

mtn 1-000 87 0.0545113

tg 1-001 122 0.277904
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

lc 1-001 42 0.203883

px 1-001 73 0.122074

dt 1-001 2 0.117647

sz 1-001 24 0.108108

fo 1-001 30 0.102389

cq 1-001 30 0.101351

xq 1-001 56 0.0894569

ql 1-001 98 0.0884477

mtsb 1-001 24 0.0720721

px 1-01 201 0.33612

fo 1-01 36 0.122867

us 1-01 42 0.103704

we 1-01 14 0.101449

xj 1-01 17 0.0949721

pixg 1-01 13 0.081761

ylf 1-01 20 0.0796813

po 1-01 19 0.0678571

zg 1-01 9 0.0612245

co 1-01 9 0.0491803

ms 1-010 91 0.280864

dka 1-010 40 0.208333

zg 1-010 19 0.129252

ve 1-010 16 0.117647

qj 1-010 29 0.105839

jgy 1-010 66 0.102644

xq 1-010 63 0.100639

xc 1-010 93 0.0962733

sg 1-010 58 0.0933977

hp 1-010 9 0.0818182

dka 1-011 46 0.239583

ms 1-011 51 0.157407

ouy 1-011 32 0.0876712

sg 1-011 48 0.0772947

isuyo 1-011 13 0.0751445
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

lc 1-011 15 0.0728155

tz 1-011 17 0.0682731

pgk 1-011 23 0.0668605

xc 1-011 64 0.0662526

le 1-011 6 0.0454545

xq 1-1 169 0.269968

lc 1-1 23 0.11165

ms 1-1 24 0.0740741

tg 1-1 32 0.0728929

dt 1-1 1 0.0588235

qlokt 1-1 6 0.0588235

mtn 1-1 90 0.056391

bv 1-1 24 0.0511727

ve 1-1 6 0.0441176

jgy 1-1 26 0.0404355

mtn 2-0 441 0.276316

ve 2-0 25 0.183824

nvvb 2-0 42 0.157303

ty 2-0 40 0.142857

ol 2-0 30 0.14218

dka 2-0 26 0.135417

kdf 2-0 12 0.130435

mtsb 2-0 41 0.123123

ba 2-0 32 0.0996885

djh 2-0 14 0.0992908

lho 2-1 1 0.00131062

ql 2-1 1 0.000902527

cq 2-10 81 0.273649

xq 2-10 44 0.0702875

po 2-10 19 0.0678571

kdf 2-10 5 0.0543478

pgk 2-10 18 0.0523256

xc 2-10 43 0.0445135

sg 2-10 26 0.041868
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

mtn 2-10 62 0.0388471

ve 2-10 5 0.0367647

ql 2-10 36 0.032491

fo 2-100 87 0.296928

us 2-100 49 0.120988

tz 2-100 24 0.0963855

wtz 2-100 32 0.0881543

px 2-100 51 0.0852843

kx 2-100 67 0.0788235

xc 2-100 62 0.0641822

xq 2-100 37 0.0591054

dt 2-100 1 0.0588235

we 2-100 6 0.0434783

us 2-101 124 0.306173

lho 2-101 106 0.138925

ba 2-101 39 0.121495

xc 2-101 117 0.121118

qj 2-101 30 0.109489

pixg 2-101 17 0.106918

wtz 2-101 37 0.101928

tz 2-101 22 0.0883534

le 2-101 10 0.0757576

xq 2-101 38 0.0607029

mtsb 2-11 103 0.309309

tz 2-11 26 0.104418

ql 2-11 114 0.102888

we 2-11 14 0.101449

us 2-11 38 0.0938272

le 2-11 12 0.0909091

ouy 2-11 33 0.090411

pixg 2-11 14 0.0880503

co 2-11 9 0.0491803

ylf 2-11 11 0.0438247

po 2-110 97 0.346429
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

hp 2-110 13 0.118182

dt 2-110 2 0.117647

jgy 2-110 75 0.116641

px 2-110 67 0.11204

sg 2-110 69 0.111111

xc 2-110 103 0.106625

xj 2-110 18 0.100559

ouy 2-110 35 0.0958904

xq 2-110 59 0.0942492

ol 2-111 54 0.255924

kx 2-111 93 0.109412

kdf 2-111 10 0.108696

lho 2-111 79 0.103539

djh 2-111 14 0.0992908

pgk 2-111 31 0.0901163

qlokt 2-111 9 0.0882353

ms 2-111 28 0.0864198

cq 2-111 22 0.0743243

dt 2-111 1 0.0588235

ql 4-0 345 0.311372

we 4-0 18 0.130435

us 4-0 52 0.128395

le 4-0 15 0.113636

ouy 4-0 40 0.109589

ylf 4-0 27 0.10757

sg 4-0 66 0.10628

fo 4-0 31 0.105802

tg 4-0 43 0.0979499

mtn 4-0 149 0.0933584

klklv 4-1 1 1

pgk 4-1 5 0.0145349

lc 4-1 1 0.00485437

jgy 4-1 3 0.00466563

ylf 4-1 1 0.00398406
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

po 4-1 1 0.00357143

cq 4-1 1 0.00337838

px 4-1 2 0.00334448

ba 4-1 1 0.00311526

wtz 4-1 1 0.00275482

nvvb 4-10 82 0.307116

dt 4-10 1 0.0588235

pixg 4-10 8 0.0503145

po 4-10 13 0.0464286

isuyo 4-10 6 0.0346821

cvf 4-10 2 0.0338983

wtz 4-10 11 0.030303

xj 4-10 5 0.027933

ylf 4-10 7 0.0278884

qlokt 4-10 2 0.0196078

bv 4-100 153 0.326226

mtsb 4-100 49 0.147147

le 4-100 15 0.113636

tz 4-100 28 0.11245

fo 4-100 30 0.102389

ms 4-100 32 0.0987654

ouy 4-100 35 0.0958904

kx 4-100 74 0.0870588

ba 4-100 26 0.0809969

kdf 4-100 7 0.076087

qj 4-101 104 0.379562

tg 4-101 49 0.111617

px 4-101 66 0.110368

cvf 4-101 6 0.101695

lho 4-101 73 0.095675

mtn 4-101 151 0.0946115

isuyo 4-101 16 0.0924855

mtsb 4-101 29 0.0870871

co 4-101 12 0.0655738
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Example of an agent’s complete lexicon

Signal Meaning Usage Conf. Prob

kdf 4-101 5 0.0543478

lho 4-11 232 0.304063

jgy 4-11 83 0.129082

qlokt 4-11 13 0.127451

hp 4-11 13 0.118182

bv 4-11 51 0.108742

kx 4-11 86 0.101176

sz 4-11 22 0.0990991

ylf 4-11 24 0.0956175

xj 4-11 17 0.0949721

cvf 4-11 5 0.0847458



307

Table E.2: Example of an agent’s active lexicon

Signal Meaning Usage Conf. Prob

klklv 4-1 1 1

qj 4-101 104 0.379562

pgk 0-10 127 0.369186

jgy 0-01 225 0.349922

ba 0-010 112 0.34891

po 2-110 97 0.346429

wtz 0-011 124 0.341598

px 1-01 201 0.33612

qlokt 0-1001 34 0.333333

bv 4-100 153 0.326226

ouy 0-0 118 0.323288

zg 0-111 47 0.319728

xc 0-11 306 0.31677

co 0-000 57 0.311475

ql 4-0 345 0.311372

ty 0-110 87 0.310714

mtsb 2-11 103 0.309309

nvvb 4-10 82 0.307116

us 2-101 124 0.306173

lho 4-11 232 0.304063

kx 0-00 254 0.298824

fo 2-100 87 0.296928

xj 0-100 53 0.296089

sg 1-00 182 0.293076

ms 1-010 91 0.280864

tg 1-001 122 0.277904

lc 1-000 57 0.276699

mtn 2-0 441 0.276316

cq 2-10 81 0.273649

cvf 0-0001 16 0.271186

xq 1-1 169 0.269968

djh 1-0 38 0.269504

sz 0-0000 59 0.265766
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Example of an agent’s active lexicon

Signal Meaning Usage Conf. Prob

ol 2-111 54 0.255924

we 0-0101 35 0.253623

tz 0-101 63 0.253012

isuyo 0-0100 42 0.242775

dka 1-011 46 0.239583

ylf 0-1 59 0.23506

le 0-10011 30 0.227273

kdf 0-01001 20 0.217391

pixg 0-01000 34 0.213836

hp 0-001 22 0.2

dt 0-1000 3 0.176471
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Abstract

In this article, I build on work exploring populations of simulated agents who
construct communication systems based on inferring the reference of unfamiliar
words from context. In child language acquisition studies, many biases and pre-
dispositions have been suggested to explain how the disambiguation of reference
appears so unproblematic for children; I explore in particular one of these, the as-
sumption of mutual exclusivity. Previous experiments have shown that, in a model
based on meaning inference, communicative success is highly dependent on lev-
els of shared conceptual structure, yet I find that, when the interpretation process
is driven by mutual exclusivity, the development of more communicatively rele-
vant conceptual structure is promoted, and communicative success occurs despite
conceptual divergence among agents.

Keywords: mutual exclusivity; communicative success; conceptual divergence;
meaning inference; meaning creation.

1 Introduction

Traditional explanatory accounts of the evolution of language frequently appeal to a
“conventional neo-Darwinian process” (Pinker & Bloom, 1990), assuming that hu-
mans have evolved an innate, genetically-encoded language acquisition device, which
specifies a formal coding of Universal Grammar (Chomsky, 1965), and which evolved
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incrementally through a series of steps via natural selection (Jackendoff, 2002). An al-
ternative approach focuses instead on the evolution of linguistic structures themselves,
as utterances used and understood by speakers and hearers (Christiansen, 1994; Croft,
2000). Under the latter approach, the continual cycle of expressing and re-interpreting
these utterances (Hurford, 2002) drives the cultural evolution of language. Other things
being equal, languages which can be readily interpreted and expressed through this cy-
cle are more likely to persist than those which cannot.

An explanation of the evolution of syntactic structure remains the holy grail of evo-
lutionary linguists by researchers in both these traditions, because syntax has been seen
as the defining characteristic which separates human language from animal communi-
cation systems, and in recent years, computational simulations have been used exten-
sively to shed light on this issue. Kirby (2002), for example, shows that structured
signals can develop from unstructured signals through the analysis of signal-meaning
pairs and the subsequent generalisation of rules based on the analysis; similar accounts
are presented by Batali (2002), whose agents combine and modify phrases based on
exemplars of signal-meaning mappings which they receive, and by Brighton (2002),
who shows how the poverty of the stimulus is an important factor in the emergence of
compositional syntax.

Despite these exciting findings, however, there are some problematic assumptions
in models such as these. In particular, the emergence of syntactic structure in the sig-
nal space is a direct result of the signals’ explicit association with pre-defined mean-
ings (Nehaniv, 2000), and of the explicit transfer of meaning in communication (Smith,
2001). Furthermore, the models often rely on reinforcement learning to guide the learn-
ers, although error signals are widely rejected in language acquisition (Bloom, 2000).
I have, however, developed a model of meaning creation and communication which
addresses these problems and have shown that communication can succeed through
the inference of meaning (Smith, 2001, 2003a, 2003b). Crucially, inferential commu-
nication allows the development of communication between individuals who do not
necessarily share exactly the same internal representations of meaning. This flexibility
then opens the possibility of a realistic evolutionary scenario, by allowing both for the
necessary variation among individuals, and also for mutations which might enhance
the inferential capabilities of one individual, while still allowing them to be commu-
nicatively consistent with the rest of the population.

In this paper, I extend my inferential model to explore the usefulness of one of
the main psycholinguistic biases proposed to explain how children learn the meaning
of words without explicit meaning transfer, Markman (1989)’s mutual exclusivity as-
sumption. The remainder of the paper is divided into four parts: In section 2, I describe
the signal redundancy paradox which is contained in other models; this pre-determines
the outcomes which are achieved and, to a large extent, undermines the strength of their
conclusions. In section 3, I focus further on Quine (1960)’s famous problem of the in-
determinacy of meaning, and on proposals made by psychologists and psycholinguists
to explain how children manage to solve this problem when they acquire language, in-
cluding, of course, the mutual exclusivity assumption. In section 4, I briefly describe
my model of individual, independent meaning creation and negotiated communication
which avoids these pitfalls and yet still allows successful communication. I show, cru-
cially, that there is a strong relationship between levels of meaning co-ordination and
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communicative success. Finally, in section 5, mutual exclusivity is added to the model,
and I show that, in contrast to expectations based on my earlier models, this can lead
to high levels of communicative success despite agents having divergent conceptual
structures.

2 The Signal Redundancy Paradox

Kirby (2002) and Batali (2002), among others, have shown how the simple ability to
generalise can result in the emergence of a compositional, ‘syntactic’ communication
system. In their simulations, agents initially create idiosyncratic rules to represent each
different meaning they need to express, and each of these rules generates just one sig-
nal. Over time, coincidental matches occur between parts of signals and parts of mean-
ing, and the agents create more general rules based on these matches; these rules use
symbolic variables and can therefore generate more than one signal. Brighton (2002)
shows that if there are pressures on agents which limit their exposure to the language,
such as the poverty of the stimulus, then the agents are more likely to encounter general
rules than idiosyncratic ones, and so these general rules are preferentially replicated
over generations, leading to the eventual evolution of a fully compositional commu-
nication system, where the meaning of a signal is made up of a combination of the
meanings of its parts and an algorithm for joining these together.

The successful emergence of syntax in such models, however, is completely de-
pendent on the signals being explicitly coupled to meanings which have a pre-defined
and complex structure. It is not coincidental that the emergent syntactic structure par-
allels this semantic structure exactly, as the semantic structure is effectively used as a
template against which the syntactic structure is constructed.

2.1 Explicit Meaning Transfer

Figure 1 shows a schematic diagram of the linguistic transfer in such a communicative
model, where the utterances are made up of pairs of signals and meanings. We can see
that the speaker (on the left of figure 1) utters a signal “zknvrt”, which is received by
the hearer. Simultaneously, the meaning in the speaker’s brain, represented in figure 1
by three symbols meant to resemble apples, is transferred directly to the hearer’s brain.
This explicit linkage of signal and meaning in the communication process means that
it is a trivial task for the hearer to learn the association between them.

Models which make this idealisation, therefore, ignore one of the most impor-
tant and difficult problems facing researchers into the acquisition of language, namely
Quine (1960)’s famous problem of the indeterminacy of meaning. Quine presented an
imaginary anthropologist, who observes a speaker of an unfamiliar language uttering
the word “gavagai” while pointing to a rabbit, and then shows that, logically, “gava-
gai” has an infinite number of possible meanings and, moreover, that the collection of
further relevant information by the anthropologist will never reduce the number of pos-
sible hypotheses which will be consistent with the data; no matter how much evidence
is collated, the meaning of “gavagai” can never be determined.
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� � � �

zknvrt

Figure 1: A communicative episode which consists of the explicit transfer of both a
signal ‘zknvrt’ and a meaning ‘three apples’ from speaker to hearer.

The consequences of the idealisation of the learning process as shown in figure 1 are
considerable, not least because if meanings are explicitly and accurately transferable
by telepathy, then the signals are not actually being used to convey meaning, and their
very role in the model must be called into question; if the agents can transfer meanings
between each other, there can be no justification for them to waste time and energy
worrying about learning a redundant additional system of signalling. This paradox,
which I call the signal redundancy paradox, arises whenever meanings are explicitly
transferred in communication:

� if the meanings are transferable, then the signals are redundant;

� but if the signals are removed, then to what extent does the model represent
communication?

The most obvious way out of this paradox is to conclude that meanings cannot be
explicitly transferred, but must be inferred from elsewhere.

2.2 Accessibility and Privacy

If there is no explicit meaning transfer, however, how does a hearer know which mean-
ing to associate with a particular signal? The hearer must be able to infer a meaning
from somewhere; the most obvious and general source for this is surely the environ-
ment in which the agent is placed. This in turn suggests that at least some of the mean-
ings agents talk about are used to refer to objects and events which actually happen
in the environment. In this way, the agents’ meanings are grounded (Harnad, 1990);
without the possibility of inferring the signals’ reference, real communication cannot
emerge. Indeed, the existence of an external world from which meaning can be inferred
is crucial to a realistic model of meaning, for without it, any ‘meanings’ are necessarily
abstract and pre-defined. If the meanings do not identify anything in the world, or do
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Figure 2: A model of communication which avoids the signal redundancy paradox
must have three levels of representation for the agents: an external environment (A); an
internal, private semantic representation, represented by the trees in the agent’s brain
(B); and public signals (C). The mappings between A and B, and between B and C,
represented by the arrows, must also be private and inaccessible to other agents.

not have reference, they can only be communicated through explicit transfer, which of
course entails the signal redundancy paradox.

In order to avoid the signal redundancy paradox, therefore, there must be at least
three levels of representation in the model, as shown in figure 2:

A: an external environment, which is public and accessible to all, which provides
the motivation and source for meaning creation;

B: a private, agent-specific internal representation of meaning, which is not percep-
tible to others;

C: a set of signals, which can be transmitted between agents and is in principle
public.

The mere existence of an external world, as for instance in Hutchins and Hazle-
hurst (1995)’s model of the emergence of a shared vocabulary, is not sufficient to
avoid the paradox; if the agents’ meanings are publicly accessible, either directly as
in Hutchins and Hazlehurst’s model where the external scenes are the meanings, or
indirectly through an accessible mapping between the environment and the meanings,
then the signals are again rendered unnecessary. For this reason, note in figure 2 that
the mappings between A and B and between B and C fall to the right-hand side of the
demarcation line between the public and private domains.
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2.3 Inferential Communication

There are at least two possible explanations for how the agents come to have meanings
which refer to things in their environment: either the meanings are innate, and have
evolved through biological evolution; or they are created by the agents, as a result of
their interactions with the environment. Innate meanings are not inherently implausi-
ble, but they seem to require either that the number of meanings useful to the agents is
small and fixed, or that the world in which the agents exist is very stable and unchang-
ing, so that the evolved meanings which were useful to their ancestors are still of use to
the current generation. In practice, then, it is more reasonable to assume that the agents
have an innate quality space, as suggested by Quine (1960), within which they create
meanings anew in each generation, based on empirical testing of their environment,
which allows them to discover which distinctions are communicatively relevant.

Thinking of the communicative function of language as a simple coding system
between signals and meanings, however, is problematic not just in terms of the com-
munication model itself, but also in terms of the evolution of such a system. From this
perspective, it is important to remember that language is necessarily both reciprocal
and cultural. There is no advantage, therefore, in a mutant obtaining a language acqui-
sition device if others do not have one. In addition, however, there is no advantage in
many mutants having a language acquisition device, if there is no language existing in
the community for them to acquire. As Origgi and Sperber (2000) point out, a mutation
which allows individuals to infer the meanings of signals can not only provide an expla-
nation for how language got started, through the accidental discovery of what another is
referring to, but can also provide a plausible account of the progressive complication of
language. For instance, a mutation which promotes the construction of a more complex
semantic representation does not, in an inferential model, cause catastrophic effects on
communication due to the ensuing mismatch between the speaker’s meaning and the
hearer’s meaning; instead, because communication is based on reference, individuals
can have very different internal representations of meanings, and yet still communicate
successfully, as I have shown through simulation experiments (Smith, 2003b). Those
without the enhanced semantic representation can still communicate with everyone in
blissful ignorance, while the mutants might receive an advantage in more accurate or
detailed inference of the meaning, and might, in time, develop new symbols to repre-
sent the patterns they find in this structure. Indeed, this process of structural develop-
ment is most obviously attested in historical processes of language change, particularly
in the case of grammaticalisation (Hopper & Traugott, 1993), where (more complex)
grammatical markers such as case markers and complementisers are created from (less
complex) lexical items over generations of inference, a process which has been explic-
itly described as “context-induced reinterpretation” (Heine & Kuteva, 2002, p.3).

The model I describe, then, departs from previous accounts which assume that
language learning is merely equivalent to learning a mapping between signals and pre-
defined meanings. Instead, I argue that it must include at least the construction of
empirical meanings, learning which of these meanings are relevant, and learning a
mapping between meanings and signals through the inference of meaning in context.
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3 Overcoming Indeterminacy

Learning the meanings of words, of course, is utterly unremarkable to children, who ef-
fortlessly overcome Quine’s problem of indeterminacy; a common suggestion for how
this happens is that they are explicitly taught by parents and teachers, by being given
feedback on their use of words. Despite the intuitive appeal of this idea, it is actually
very rarely observed in practice, and is by no means culturally universal. Lieven (1994),
for instance, describes cultures in which parents do not even speak to their children in
the initial stages of acquisition, much less provide them with either encouragement
or discouragement about their use of words. Bloom (2000), furthermore, describes a
study on mute children who clearly could not receive feedback on their own speech,
and yet still developed language normally. In view of this, researchers have explored
the existence of other constraints within the learners themselves which predispose them
to disregard some of the theoretically possible meanings, thus reducing the size of the
set of semantic hypotheses, thereby making the set finite and Quine’s problem soluble.

Macnamara (1972), for instance, argues that children naturally represent their en-
vironment in terms of the objects within it, and that, when learning words, they have
a similar object bias, under which they automatically assume that a new word refers
to a whole object, rather than particular parts or properties thereof. The object bias is
indeed a very useful tool in explaining how children might bootstrap language acqui-
sition, but it is not a sufficient explanatory tool for the larger problem, and so many
additional biases or restrictions have also been proposed in order to account for more
complex facets of word learning. Landau, Smith, and Jones (1988), for instance, dis-
covered experimentally that children are more likely to categorise new objects in terms
of their shape, rather than other perceptual features. Markman and Hutchinson (1984)
have shown that children categorise objects taxonomically (grouping on the basis of
type) rather than thematically (grouping on the basis of relationships between them)
when they are learning words, but not otherwise. For instance, when word learning is
not involved, a car and a car tyre can be grouped together thematically, but when the
car is given a name, and the children asked to find another object which can called by
the same name, they are much more likely to find the taxonomically related bicycle.

Interpretation biases, too, have often been proposed; in particular, many of these
suggestions, by for instance Barrett (1986), Clark (1987) and Markman (1989), can be
summarised by the proposal that “children should construct mutually exclusive exten-
sions of the terms they acquire” (Merriman & Bowman, 1989, p.1). Although there are
slight differences between these suggestions in terms of their theoretical and explana-
tory emphasis, in this paper I will consider them as related versions of an over-arching
mutual exclusivity assumption. Merriman and Bowman (1989) analyse the implica-
tions behind mutual exclusivity, and propose three crucial ways in which the bias could
affect the learning of new words; the most important of these, and the only one which
does not rely on the explicit naming of objects, is through the disambiguation of refer-
ence. This phenomenon has been shown experimentally a number of times, particularly
by Markman and Wachtel (1988), who describe experiments in which young children
were presented with random pairs of objects, one of which is familiar to them, such as
a banana or a spoon, and one of which is unfamiliar, such as a lemon wedge presser or
a pair of tongs. The children, on being presented with both objects, were asked by the

7



352 APPENDIX F. PUBLISHED PAPERS

experimenters to “show me the x”, where x was a randomly chosen nonsense syllable.
Markman and Wachtel found that the children are much more likely to interpret x as
referring to the tongs, rather than the banana; they hypothesise that this is because the
children already understand a word which means BANANA, and they assume, under the
mutual exclusivity bias, that “[w]hen children hear a novel term in the presence of a
familiar and unfamiliar object, children are able to use mutual exclusivity to determine
the referent of the novel term.” (Markman & Wachtel, 1988, p.128). In section 5, I ex-
plore how mutual exclusivity can improve the levels of communicative success relative
to the shared conceptual structure of agents in my model.

4 Details of the Model

4.1 Independent Meaning Creation

Before investigating the effects of mutual exclusivity, however, it is useful to give a
brief description of my basic model of meaning creation and communication, which
takes as its starting point the model initially described by Steels (1996). A simple
model world is simulated, containing a number of objects, each of which can be de-
scribed in terms of the values of their observable features. Feature values in the model
are real numbers, pseudo-randomly generated in the range [0.0. . . 1.0]; the features
themselves, however, are deliberately abstract, with neither specific nor pre-defined
meanings, although for ease of understanding, they can of course be considered anal-
ogous to features in human language such as ‘height’, ‘smell’ or ‘colour’. Simulated
agents interact with the objects in the world using sensory channels; they have the
same number of sensory channels as the objects have features, and there is a one-to-one
mapping between them. Sensory channels are sensitive to the objects’ feature values;
specifically, they can detect whether a particular feature value falls between two bounds
on a sensory channel. The process of meaning creation takes place through refinement,
or the splitting of a channel’s sensitivity range into two discrete segments of equal size.
This results in the formation of two new categories, each sensitive to half the original
range. Each category is itself a candidate for further refinement, so producing, over
time, a hierarchical, dendritic structure, with the nodes on the tree representing cat-
egories, or meanings (Steels, 1999). Such structures are shown schematically in the
agent’s private semantic representation in figure 2.

Interaction with the environment occurs through Steelsian discrimination games,
which are made up of the following four constituent parts:

scene-setting: the agent is presented with a specific set of objects, called the context,
one of which is chosen to be the target of discrimination.

categorisation: the agent goes through all the objects in the context, returning for each
an association with one or more of its existing semantic representations.

discrimination: the agent tries to find a distinctive category for the target. A cate-
gory is distinctive if it is a valid representation of the target, and is not a valid
representation of any other object in the context.
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adaptation: the agent modifies its internal conceptual structure, by refining one of the
sensory channels.

Adaptation of an agent’s conceptual structure is triggered by failure in a discrimina-
tion game. Each agent has a tree growth strategy for choosing a channel for refinement,
which is based on its cognitive biases and/or the details of the particular discrimina-
tion game which failed, as described in Smith (2003b). In a stable world, the agents
will eventually always develop a conceptual structure which can succeed in describing
every object in the world. Different agents, however, will create different conceptual
structures which will each be able to distinguish objects in the world, and so it is useful
to be able to measure the level of meaning similarity � between two agents’ conceptual
structures (Smith, 2003a).

4.2 Introspective Obverter

Having established that agents can create meanings which are helpful in describing
the world around them, I simulate communication without explicit meaning transfer
and without feedback by providing the agents with the ability to create simple signals
and transmit them without error, and also with a mechanism for associating signals and
meanings, an individual dynamic lexicon (Smith, 2003a). In a communication episode,
one agent (the speaker) is trying to convey a meaning to another agent (the hearer) by
the use of a signal.

Preparatory to communication, a successful discrimination game provides the speaker
with a distinctive meaning which has identified the target object from others in the
context, and it is this meaning which the speaker tries to convey; it utters a signal to
represent the meaning, either taking one from its lexicon, or, if none suitable exists,
creating a new one at random. The hearer then tries to infer the meaning of the sig-
nal from the context in which it is heard, attempting to deduce which of the objects
in the context was identified by the speaker. Successful communication is defined by
referent identity, which occurs when the object identified by the speaker is the same
object as that identified by the hearer. Note that it is not necessary that the agents use
the same agent-internal meaning, only that both agents pick out the same object in the
world. Importantly, neither speaker nor hearer is given any feedback on whether the
communication episode is successful.

This communication model, therefore, relies neither on explicit meaning trans-
fer meaning, nor on feedback guiding learning. The algorithms which determine the
agents’ behaviour, however, are crucial to its success, and are based on Oliphant and
Batali (1997)’s strategy for achieving an accurate communication system in a popula-
tion of agents, which they dub obverter. Essentially, the obverter strategy boils down
to the speaker choosing signals which it knows the hearer will understand correctly,
rather than choosing signals that it might prefer to say. Unfortunately, true obverter
learning in the theoretical situation defined by Oliphant and Batali assumes that the
speaker has access to the lexicons of the other members of the population, so that it can
choose the optimal signal for each meaning. Such mind-reading is of course unrealis-
tic, and returns us, more damagingly, to a telepathic world and the signal redundancy
paradox. In order to maintain the benefits of obverter, whilst also avoiding any reliance
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on telepathy, I implement a modification to the obverter algorithm, in which I allow the
agent to read only its own mind. The agent therefore uses introspection as a basis for
decision making, choosing a signal which it itself would be most likely to understand
if it heard the signal in this context.

Choosing a signal is relatively straightforward, but interpreting that signal is much
more difficult; the hearer, to whom this task falls, knows neither the object to which
the speaker is referring, nor the meaning which the speaker has in mind for the signal.
The hearer creates a list of possible meanings or semantic hypotheses, containing every
meaning in its conceptual structure which identifies any one of the objects in the context
and distinguishes it from all the other objects in the context. The hearer has no reason
to prefer any one of these possible meanings over another yet, so each of them is paired
with the signal in the hearer’s lexicon. Having done this for all the possible meanings,
the hearer searches through its list of semantic hypotheses, and chooses the meaning �

in which it has the highest confidence, which is, as Vogt and Coumans (2003) explain,
the highest conditional probability that, given the current signal, the meaning � is
expected. The object which the chosen meaning identifies is then compared to the
original target object of the speaker’s discrimination game to determine the success of
the communicative episode.

4.3 Communicative Success

In Smith (2003b), I show that, in such a model, where the agents infer the meanings
of words from the contexts in which they hear them, the percentage of successful com-
municative episodes, or the communicative success rate � , is highly dependent on the
level of conceptual similarity � between the agents. I experiment with various cog-
nitive biases, environmental factors and meaning creation strategies, to discover the
circumstances under which high levels of conceptual similarity are most likely to oc-
cur, and show moreover that in a randomly-generated world, the agents cannot improve
on creating meanings based on their cognitive biases, using a probabilistic tree growth
strategy; high levels of conceptual similarity will always arise if the agents share simi-
lar values of these biases. In a structured, or clumpy world, on the other hand, then it is
much better for the agents to use a more intelligent, ecologically rational (Gigerenzer
& Todd, 1999) tree growth strategy, which can exploit the information in the environ-
mental structure to a much greater degree.

5 Mutual Exclusivity

Successful communication, therefore, can emerge without the need for innate meanings
and without meanings being explicitly transferred between agents, if the agents use in-
trospective obverter to choose signals. On the other hand, communicative success rates
are highly correlated with levels of meaning similarity; the exact relationship varies ac-
cording to the experimental conditions, but it is always a logarithmic curve with com-
municative success in general slightly higher than meaning similarity. In this section,
I implement the mutual exclusivity bias in the model, to see what effects its inclusion
has on the development both of coordinated meanings and successful communication.
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Two factors, in particular, are crucial in triggering the use of mutual exclusivity, and
must be taken into account in developing the model, namely:

signal novelty: the utterance in question is novel, and unfamiliar to the learner;

disambiguation of reference through prior knowledge: the learner reduces the set
of meanings under consideration by excluding all objects for which it already
understands a word.

Under normal circumstances within my model, the hearer would, on hearing an
unfamiliar word in context, build a set of all possible semantic hypotheses and use these
to decipher the utterance, as described in section 4. Disambiguating the utterance’s
reference through prior knowledge, therefore, will allow this set of semantic hypotheses
to be reduced; the agent works through the objects in the context, and excludes from
consideration all those objects for which it already knows an appropriate word1. The
agent is then left with a set of unfamiliar objects, and it assumes that the speaker must
be referring to one of these objects. The list of semantic hypotheses is therefore based
only on these objects, from which the agent interprets the word as before, choosing the
meaning in which it has the highest confidence probability.

In addition to this, however, Markman and Wachtel also hypothesise that mutual
exclusivity can help the child to develop new meanings, when they cannot interpret
an unfamiliar word, because “children would be left with a word for which they have
not yet figured out a meaning. This should then motivate children to find a potential
meaning for the novel term.” (Markman & Wachtel, 1988, p.153). If no interpretation
at all is possible, therefore, i.e. there are no appropriate meanings which distinguish
any of the unfamiliar objects from all the others in the context, then the agent searches
through the unfamiliar objects in turn, trying to create a new, appropriate meaning
which will be suitable to describe it in this context. It tests potential refinements on its
sensory channels, until it finds a node which, once refined, will distinguish this object
from all the other objects in the context, and then creates this new meaning, associating
it with the unfamiliar signal.

The hearer’s meaning creation process is now very different from the speaker’s,
both in the mechanism by which it is triggered and in the algorithm through which it
is implemented; meaning creation in the hearer now occurs as a result of encountering
an unfamiliar word and is a direct attempt to find a relevant interpretation of this word,
but in the speaker occurs as a result of failure to discriminate a target object. This
implementation of the mutual exclusivity bias differs from my earlier implementation
of the principle of contrast (Smith, 2003b); although both sets of simulations use the
same framework of meaning creation and communication, in the earlier simulations,
the agent did not divide the context into two sets of familiar and unfamiliar words be-
fore interpretation, so the list of semantic hypotheses was not reduced, and the meaning
creation process was triggered very infrequently.

1An appropriate word is defined here as a word which the agent would use, in this context, to describe
the object, and which therefore represents a distinctive meaning which would distinguish this object from all
the other objects in the current context.
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Tree Growth Meaning Similarity Communicative Success
Strategy Mean

������ CI Mean
���� � CI

Probabilistic 0.53 (0.50 – 0.56) 0.70 (0.67 – 0.72)
Intelligent 0.59 (0.56 – 0.63) 0.73 (0.70 – 0.76)

Table 1: Meaning similarity � and communicative success � in a randomly-generated
world.

5.1 Experimental Results

In the results reported here, the agents in the model each had five sensory channels
with cognitive biases distributed uniformly, and the objects in the world were gener-
ated randomly. Each simulation consists of 5000 discrimination and communication
episodes, and was run 50 separate times, after which the levels of meaning similarity� and communicative success � were then averaged, and expressed together with 95%
confidence intervals (CI).

Table 1 shows that in this randomly-generated world, for both the probabilistic
and intelligent tree growth strategies, the levels of communicative success are indeed
slightly higher than those of meaning similarity, as we would expect. On the other
hand, we can also see that, in contrast to the experiments in Smith (2003b), there is no
significant difference between the tree growth strategies, as their confidence intervals
overlap; the large differences I found previously in levels of meaning similarity be-
tween these tree growth strategies are almost completely neutralised if the hearer uses
mutual exclusivity to guide its interpretation and meaning creation.

Table 2, on the other hand, shows similar experiments in a simulated clumpy world,
where the objects are grouped together and given identical values on some features, so
that they are a priori indistinguishable on that sensory channel. I showed in a previous
article (Smith, 2003b) that the intelligent strategy will produce much higher levels of
meaning similarity � under these circumstances, as it is much more able to exploit the
underlying information structure in the environment. We can indeed see in table 2 that
meaning similarity is much improved under the intelligent tree growth strategy, as this
would predict. Much more interestingly, however, the levels of communicative success
in these experiments no longer bear any close relationship with the levels of meaning
similarity. We can see that the communicative success levels are very high under both
strategies; in particular, even when agents have very dissimilar conceptual structures
( ���
	�� 
�� ) under the probabilistic strategy, the use of mutual exclusivity means that the
hearer can learn to associate the relevant meanings with the signals and communicate
much more successfully than results without mutual exclusivity would suggest.

Agents have different meaning creation processes, which promote very different
patterns of conceptual growth. Specifically, the speaker, who creates meaning in re-
sponse to discrimination game failure, has much more conceptual structure than the
hearer, who creates meaning is response to the need to understand unfamiliar words.
Moreover, in accordance with Grice (1975)’s conversational principles, the agents use
meanings in communication which provide sufficient information to identify the tar-
get object, but which are not unnecessarily specific. The meanings which the hearer
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Tree Growth Meaning Similarity Communicative Success
Strategy Mean ������ CI Mean ���� � CI

Probabilistic 0.35 (0.33 – 0.37) 0.81 (0.79 – 0.83)
Intelligent 0.92 (0.88 – 0.95) 0.90 (0.88 – 0.92)

Table 2: Meaning similarity � and communicative success � in a clumpy, structured
world.

creates under these circumstances are therefore necessarily communicatively relevant,
because they can be used to discriminate at least one unfamiliar object from a group of
others and therefore describe that object within a communicative episode.

Although the hearer has far fewer meanings, this leads to a situation where those
meanings it does have are more relevant and useful for communication, and so the level
of communicative success is much higher than might be expected.

6 Summary

I have presented in this paper a model of independent meaning creation and commu-
nication, which avoids the signal redundancy paradox and can yet produce successful
communication through the inference of meaning from context. The inference of mean-
ing is a crucial factor in the evolution of language, because it can explain both the gen-
esis and the incremental development of negotiated communication systems. Individ-
uals with non-identical semantic representations are able to communicate successfully,
while variation, necessary to drive language change, and flexibility, necessary to allow
mutation in semantic representation without catastrophic communication breakdown,
both occur naturally as by-products of the meaning inference process itself.

The level of meaning similarity between agents has previously been shown to be
very important in predicting the likely level of communicative success in previous sim-
ulations. In these experiments, however, the introduction of an assumption of mutual
exclusivity into the hearer’s interpretation process and the creation of meaning in or-
der to disambiguate the reference of unfamiliar words, leads to the development of
fewer, but more relevant meanings in the hearer’s conceptual structure, and therefore
to relatively high levels of communicative success despite conceptual divergence.
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disambiguation of reference, 143–144,

217–220

discrimination, 87

discrimination games, 86–89, 95

discriminative success, 101–109

distinctive category, 100, 141

duality of patterning, 41

ecological rationality, 209–211

empiricism, 3–4, 34–36

explicit meaning transfer, 121–127

family resemblances, 18

fast mapping, 57–59

features

characteristic, 22, 23

defining, 22, 23

necessary and sufficient, 17, 22

feedback

negative, see negative evidence

folk taxonomy, 24

gavagai problem, see problems of mean-

ing induction

grammaticalisation, 239–240

Gricean co-operative principle, 164–166

Gricean maxims, 164–165, 183

ground squirrels, 28

grue paradox, see problems of meaning

induction

heuristics

general cognitive, 58–59

of concept creation, 209–211

hieroglyphs, 40

hyponymy, 14–15, 80

and disjunction, 51–52

imprinting, 32

indeterminacy of translation, 42, 122

inference of meaning, 143–144, 233–

234, 236–237, 240

instance-based learning, 93

intelligent tree growth, see tree growth

strategies

based on random biases, 192–193

based on uniform biases, 190–192

in a clumpy world, 207–211

with identical experiences, 198–200

with mutual exclusivity, 221–223



386 REFERENCES

introspective obverter, see communica-

tive strategies

iterated learning, 240

joint attention, 131–134, 153

Kolmogorov-Smirnov statistic, 171

Language Acquisition Device, 3, 58, 59,

239

language as an organ, 4–6

language as an organism, 6–7

language of thought, 31

learning biases, see constraints on word

learning

lexical bidirectionality, 136, 138

lexical concept, 30

lexical gaps, 53

lexical innovation, 54

linguistic determinism, 65

linguistic registers, 53

linguistic relativity, 65–67

linguistic subsystems, 69

meaning

as a communicatively relevant situa-

tion, 75

circular definitions, 25–26

grounded, 26, 35, 37, 123–124, 178–

180

hierarchical structure, 14–16, 50

induction, see problems of meaning

induction

innate, 26–29

intuitive, 36

language-specific, 59–67

reference-fixing, 36, 37

semantic generality, 164–166

technical, 36

web of, 24–26, 29, 78–79

meaning creation

process of, 88–89

meaning representation

as multi-dimensional subspaces, 77–

78

as prototypes, 81–84

as trees, 80–81

as vectors, 74–78

as word-web, 78–79

in adaptive networks, 82–84

in dendrograms, 80–81

in predicate logic, 70–73

in simulation models, 70–84

meaning similarity, 112–113

between agents, 113

between trees, 112

meaning structure

divergent, 112–113

mutual exclusivity, see constraints on

word learning

implementation of, 218–220

mutual exclusivity effects, 216–217

correction, 217

disambiguation, 216–217

rejection, 217

naïve essentialism, 22–24

nativism, 1–3, 30–34

natural kinds, 18–19, 22–24

natural semantic metalanguage, 25–26

negative evidence, 43–44, 50, 93, 134–

135

negative feedback, see negative evidence

nominal kinds, 18, 20, 22

object bias, see constraints on word

learning

obverter, see communicative strategies

organisation
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taxonomic, 48

thematic, 48

perception of others’ intentions, 56–59

possible meanings, 143–144

predicate logic, 70

principle of contrast, see constraints on

word learning

principles and parameters of language,

4–6

probabilistic tree growth

based on identical random biases,

187–189

based on proportional biases, 185–

187

based on random biases, 181–183

based on uniform biases, 176–180

in a clumpy world, 205–207

with identical experiences, 197–198

with mutual exclusivity, 220–221

problems of meaning induction

gavagai problem, 42–43, 45

grue paradox, 42

properties

derived, 19

functional, 19

imperceptible, 22

perceptual, 17

radical concept nativism, 31–33

reinforcement learning, 43, 90–91, 134–

135

rhesus monkeys, 120

Rosetta Stone, 40

Sapir-Whorf hypothesis, 65–66

self-organisation, 120

semantic hypotheses, 143–144

semantic primes, 25–26

semantic relationships

antonymy, 15–16, 80

binary opposition, 15–16

dichotomy, 15–16

hyponymy, 14–15, 80

synonymy, 16–17

semantic universals, 25–26

sexist terminology, 65

shape bias, see constraints on word

learning

signal choice, 141–143

signal novelty, 216–220

signal redundancy paradox, 118, 122–

127, 131–132, 134, 235–236

signals, see communication

involuntary, 28

redundancy of, 122–123

similarity, 120–121

simple heuristic, 175

situation concepts, 78, 90–91

spatial specification strategies, 62

symbolic theft, 34–35

symbolisation, 35

synonymy, 16–17

taxonomic bias, see constraints on word

learning

theory of mind, 58

theory theory, 22–24, 58

tree growth strategies, 174–176

intelligent, 174–175

probabilistic, 175

unique discriminability, 101, 104–105,

107, 109–110

Universal Grammar, 1–3

universals

semantic, 25–26

use of prior knowledge, 216–220
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vervet monkeys, 27–29

Wernicke’s area, 59

whole-object bias, see constraints on

word learning


