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Abstract

Computer models of evolutionary phenomena often
assume that the fitness of an individual can be eval-
uated in isolation, but effective communication re-
quires that individuals interact. Existing models di-
rectly reward speakers for improved behavior on the
part of the listeners so that, essentially, effective
communication is fitness. We present new models in
which, even though ““speaking truthfully” provides
no tangible benefit to the speaker, effective commu-
nication nonetheless evolves. A large population is
spatially distributed so that “‘communication range”
approximately correlates with ““breeding range,” so
that most of the time “you’ll be talking to family,”
allowing kin selection to encourage the emergence
of communication. However, the emergence of al-
truistic communication also creates niches that can
be exploited by “information parasites.” The new
models display complex and subtle long-term dy-
namics as the global implications of such social di-
lemmas are played out.

1 Models of the Evolution of Communication

Although schoolbook treatments often leave the impression
that Darwinian evolution is about never-ending competition,
a ceaseless struggle for survival by individual creatures in a
nasty environment, it doesn’t take much wide-eyed observa-
tion of the natural world to see that cooperation among indi-
viduals also plays a huge role. Using communication to ac-
complish tasks is a central example, as many other forms of
cooperation presuppose a means of communication.

“Communication” is a very broad concept; here we focus
only on evolutionary issues related to sending and receiving
initially arbitrary signals about a shared environment. Focus-
ing on signals avoids the complexities of syntax and compo-
sitional semantics, while initial arbitrariness excludes certain
degenerate cases — a sudden change in direction, for exam-
ple, might be an“incidental communication” to others that a
predator is approaching. Though this may actually be the
most prevalent means by which information moves between
individuals, for present purposes it is uninteresting since such
behavior presumably will be selected for even if the individ-
ual is alone.
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We also wish to eliminate the possibility of “mimetic seman-
tics,” wherein an emitted signal somehow imitates the stim-
ulus it represents, as in the use of a hissing sound to denote a
snake. Such signals may be non-trivial from an evolutionary
point of view, if they provide no direct value to the signaller.
The question of why such signalling would evolve thus aris-
es, and that is indeed the central question we wish to explore.
However, although the motivation for sending a mimetic sig-
nal is non-trivial, the mechanism for understanding it is de-
generate. Initial arbitrariness forces us to consider the harder
problem of evolving both “speaking” and “‘understanding”
abilities simultaneously.

There are, principally, two recent simulation models of the
evolution of communication (MacLennan, 1991; Werner &
Dyer, 1991; see also Hutchins, 1991, for an interesting but
less closely related model), and it is useful to compare them
briefly with the approach we are taking. MacLennan (1991)
considers a population of simple machines, represented ge-
netically (and phenotypically) by truth tables, and creates a
shared environment through which the machines can pass ini-
tially arbitrary signals. A mostly conventional genetic algo-
rithm (Holland, 1975; Goldberg, 1989) is used to evolve the
population, based on a scoring function that measures how ef-
fectively communication is being used by the machines. Cru-
cially, for our present purposes, the scoring function is such
that the speaker, as well as the listener, is rewarded whenever
a “match” occurs, meaning that the listener performed an ac-
tion appropriate to the stimulus the speaker saw. One could
imagine a circumstance where “truthful speech” by a speaker
and “right action” by a listener causes food to rain down on
both. MacLennan observes effective communication evolv-
ing in his machines, but other phenomena typically associat-
ed with communication do not occur. Lying, for example, is
utterly pointless under such conditions: either both parties
benefit or neither does.

The model of Werner & Dyer (1991) is different in a number
of respects. Unlike MacLennan’s model, there is no explicit
scoring function; instead, effective communication allows
“males” to find “females” more rapidly and thus increases
the reproductive rate of individuals that communicate com-
pared to those that do not. One could imagine this as a sort of
“firefly” model, in which females in the grass below signal
to males flying above, using basically arbitrary signals for
more efficient mate-finding. In principle at least, one could
imagine more subtle communication phenomena emerging in
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FIGURE 1.

Model summary

this model — if, for example, during evolution the initial pop-
ulation divided itself into multiple species, a female of one
species might send a misleading signal to a male of another
species to impede his search for a suitable mate. Their model
does postulate a spatially-distributed population, so one could
imagine speciation along “territorial” lines occurring, and
they discuss such possibilities. However — perhaps because
of the globally-mixing reproduction strategy they employed
— neither speciation nor any more complex communication
phenomena were observed, so for present purposes the Wern-
er/Dyer model is akin to the MacLennan model, in practice if
not in principle, in that communication always turns out to be
a win-win proposition for those involved.

2 Model Description: Worlds Within Worlds

Figure 1 sketches the models we explore. There are three or-
ganizational levels, which we refer to as individual, local, and
global. The individual level captures the representation of ge-
netic information in a genotype, the behavioral characteristics
of a body or phenotype, and how a body is developed from a
genotype. The local level captures the environment within
which a group or subpopulation of individuals lives, the
mechanism for allowing communication among the individ-
uals of a subpopulation, the process of assigning a behavioral
score to each individual in a subpopulation, and a within-sub-
population strategy for birth and death. The global level cap-
tures principally migration between subpopulations, although
in two of the variations we present below, reproduction and
migration ar¢ at least partially coupled and therefore repro-
duction is a global issue as well.

The level are interdependent in various ways; here we start at
the local level, then go down to the individual level, and then
up to the global level. We try to be as complete about details
of the model as we can, not because we believe every detail
to be critical — some of them certainly seem minor — but to
be clear about what we have and have not built into the model
“up front”, and because, as experience with computer mod-
els of complex systems shows over and over again, it is nearly
impossible to be certain which details don’t matter.

Behavioral scoring: Deduct one each step Move is active. At trial end,
given individual's final position, add points from each applicable vector:

L 1 2 R / L 1 2 R
Left Pred -81 -42 -23 0 / 0 -23 -42 -81 Right Pred
Left Food 30 O 0 0o / O 0 0 30 Right Food

2.1 Local level: A day in the life

First, we consider the behavior of individuals in a subpopula-
tion, without worrying about how an individual implements
any particular behavioral pattern. A subpopulation consists of
eight individuals in a partially shared environment. The envi-
ronment can be envisioned as eight horizontal tracks separat-
ed by walls that block vision but allow (non-localized) sounds
to pass over. Each track is divided into four locations, labelled
L(eft), 1, 2, and R(ight), and one individual lives in each
track. An individual may move left or right along its track,
one location per step, and may also speak on any or all of six
independent audio channels (labelled 2—F).

Nasty, flame-throwing predators (P red) and delicious foods
(Food) can appear at either end of the tracks, or both. When
an individual is at L or R it will see either Pred, Food or
nothing depending on what stimulus happens to be at that
end; individuals at 1 or 2 see nothing. Also, each individual
may hear (labelled a—£) the sum of the speech emitted by the
subpopulation on the previous step.

A round of behavioral scoring, a day, begins by setting the in-
dividuals’ scores to zero, and is then followed of 36 indepen-
dent trials. The L and R stimuli are constant and identical
across tracks during a trial. The eight individuals are initial-
ized and placed at various starting locations in their tracks,
and they then react for three steps. After the trial, each indi-
vidual’s behavioral score is adjusted as a function of the L and
R stimuli, its final location, and how much it attempted to
move, as shown in Figure 1.

The 36 trials consist of four repetitions of the nine possible
combinations of L and R stimuli. The individuals’ starting lo-
cations are randomized except that each individual begins in
a different location on each repetition of a stimulus-pair, and
exactly two individuals start in each location. This behavioral
scoring procedure, though costly in simulation time, has the
analytically useful property that unless the individuals of a
subpopulation actually are communicating, the resulting indi-
vidual behavioral scores are completely deterministic. We
can compute, for example, that the best score possible in ab-



sence of communication is —12, and therefore any behavioral
score greater than —12 is proof that that individual, on that
day, definitely benefitted from signals emitted by the rest of
its subpopulation.

At the end of the day, depending on the model variation in-
volved, a local reproduction may occur. When it does, the fol-
lowing occurs: The eight individuals are ranked based on
their behavioral scores. Two parents are chosen uniformly at
random from the top half of the subpopulation, and an off-
spring is created (details in the next section). Then, one of the
eight existing individuals is chosen uniformly at random and
killed, and the offspring replaces it in the population.

2.2 Individual level: Genes and neurons

The previous section described the sensations and actions that
an individual may experience and perform; which of them are
actually used, and in what manner, is determined by the brain
of the particular individual, which, in tumn, is determined by
the individual’s genes. In the models we present in this paper,
no “plasticity” or ‘“adaptation” is involved — the genes
completely and permanently determine the “wiring” and
cognitive function of the individual.

An individual’s brain is a synchronously updated neural net-
work containing a total of 32 linear threshold units (Rumel-
hart, et al, 1986) assigned as follows: 12 sensor units, provid-
ing information about food, predators, location, and sound; 8
effector units controlling whether to move, which direction to
go, and what to say; a true unit that always has value 1; and
11 hidden units that have no prespecified function.

The genome of an individual defines a wiring diagram and
initial conditions for this architecture. A total of 448 bits of
genetic information is divided up into three groups: 19 bits
for the initial states of the effector and hidden units at the be-
ginning of each trial; 405 bits of synaptic specification genes
describing up to fifty connections between units; and 24 left-
over bits, pseudo genes that are never decoded.

The developmental process grows a network from a genome,
sequentially interpreting the synaptic specifications, operat-
ing in either source mode or destination mode. It begins in
source mode. The 405 synaptic specification bits are: a five
bit initial source group, and fifty connection specifier groups
of eight bits each. The initial source yields an integer from O
to 31, denoting a unit to use as the current unit. In source
mode, new connections are created from the current unit to a
unit determined by the next connection specifier; in destina-
tion mode, new connections are created fo the current unit
from a unit determined by the next connection specifier. A
connection specifier is a five bit connection unit index and a
three bit weight specifier. Two of the eight values of a weight
specifier are mode shift codes: value zero means *“set the cur-
rent unit to the connection unit and enter source mode”’, and
value seven means “if the connection unit is a sensor unit, do
nothing, otherwise set the current unit to the connection unit
and enter destination mode.” The other six values of the
weight specifier indicate that a specifically-weighted connec-
tion is to be grown between the current unit and the connec-
tion unit, as indicated in Figure 1.

This scheme for neural development, though devised mostly
to conserve computer memory, has the effect that small
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changes in the genome can lead to large changes in the result-
ing phenotype. A single bit flip in the connection unit group
of a mode-shifting connection specifier, in particular, can
transfer many synapses from one source or destination to an-
other.

At the beginning of each trial, the effector and hidden units
are initialized from the initial states genes. On each step, the
network reacts: first, the sensor unit values are determined
from the environment: zero or one for the Pred, Food, L, 1,
2, and R units, as appropriate, and zero to eight for each of the
six hearing ears — the sum of all speech from the previous
time step (all zeros are always heard on the first step). Then,
an update pass over the effector and hidden units is done: For
each unit, the weighted sum of its inputs is computed, and if
that sum is greater than zero, the unit adopts value one, oth-
erwise it adopts value zero. Two passes over the network are
performed each step, making it possible, for example, for a
hidden unit to contribute to the decision about what to do now
based on the latest environmental input. After both passes are
concluded, the effector unit states are read off and executed
— attempting to move left or right, or not, as directed, and
contributing speech on channels A..F, or not.

The only individual level aspect we have not discussed is the
way an offspring genotype is derived from two parent geno-
types. There is one almost certainly inconsequential detail,
and one very likely consequential detail, about how we do
this. The basic mechanism we employ is genetic recombina-
tion, or crossover; the specific variation we use is, in the ge-
netic algorithms literature, called parameterized uniform
crossover (Spears & De Jong, 1991; Ackley, 1987) with a
crossing probability of 0.05 per byre — and that is the almost
certainly inconsequential detail: It is impossible, in this
scheme, to cross more than once in a single byte of genotype.

The likely consequential detail is this: In these studies, we use
no mutation at all. Recombination is the only genetic opera-
tor we employ. This is out of step with most genetic algo-
rithms research — if anything, the trend in the last decade has
been towards higher mutation rates, to combat the “prema-
ture convergence” problem that genetic algorithms often dis-
play on optimization tasks. One of us has actively champi-
oned that trend, in fact, in previous writing (Ackley, 1987).
Why do we reverse direction in this case?

As we explored early versions of this model, hoping to see ef-
fective communication without “paying off” the speakers,
we found ourselves turning the mutation rate lower, and see-
ing the results becoming more promising. Even a low muta-
tion rate, it seemed, destroyed communicating subpopula-
tions, eating them up from the inside out. With some trepida-
tion, we decided to turn mutation off entirely... and the model
behavior became much more interesting. We will return to
this issue in Section 4.

2.3 Global level: Reproductive and migratory

Now we have discussed how an individual works, from its
genes up to its sensorimotor interface and *‘cognitive func-
tion”, and how individuals in subpopulations are evaluated,
bred, and slaughtered. Just that much is a complete algorithm,
in the sense that one could simulate one such group of eight
individuals, and watch what happens. We did just that, during
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exploratory simulations — and what happens is not very in-
teresting. The tiny group converges, genetically, in a flash,
usually with very poor behavioral scores for the individuals.
To make the model really cook, we need to have many such
subpopulations evolving at once, and then consider what hap-
pens when individuals move between subpopulations. That is
what the global level of the model does.

As in some prior work (Ackley & Littman, 1993), we de-
signed the global structure of our model to match the overall
characteristics of the fairly large parallel computer we were
fortunate to have available. Overall, the world is a square ar-
ray of 128x128 cells, each of which contains a subpopulation
of eight individuals, for an aggregate population size of
131,072. The neighborhood of each cell are the eight closest
cells on the array; the array overall is configured as a torus. A
quad of cells is any 2x2 group of adjacent cells.

In the case studies described in the next section, we employ
two global level mechanisms, alone and in combination. The
first mechanism, wind, implements simple migration. Windy
days occur at regular intervals, with a frequency that varies
from case to case. On a windy day, first, all the normal daily
events occur. A global wind direction is then chosen uniform-
ly at random from the eight compass directions. In each sub-
population, an individual is then selected uniformly at ran-
dom, then all the selected individuals migrate to the “down-
wind” neighbor cell. The immigrant immediately takes up
residence in the track vacated by the emigrant.

The second mechanism, festival, implements a combination
of reproduction and migration. Festival days, like windy
days, occur at regular intervals with a case-specific frequen-
cy. On a festival day, first, the normal behavioral evaluation
occurs. Then, instead of performing a local reproduction in
each cell, festivals are held in each of 4,096 quads. The 32 in-
dividuals from the four cells of a quad are ranked in a single
list based on their behavioral scores for that day, and a quad
reproduction is performed, selecting two parents uniformly at
random from the top quarter of the ranking, crossing them as
in a local reproduction, killing an individual chosen uniform-
ly at random from all 32, and placing the offspring in the sub-
population the dead individual was part of.

Two details conclude the description of the global level, and
of the model overall: First, on successive festival days, the
phase of the assembled quads is shifted, so that after four fes-
tivals, any given cell will have interacted with all eight of its

neighbors. Second, in the case where it is possible to have
windy festival days, the festival occurs first, and then the wind
blows.

3 Case studies: Results and Observations

As the previous section should have made clear, although our
model is but a pale shadow of even a small natural world
ecology, it is a significant computational challenge. Despite
efficient programming, the running time for each simulation
reported here is measured in multiples of weeks. As a result
— like many natural world experimenters, but unlike most ar-
tificial life researchers — we have not had the luxury of run-
ning many repetitions of each model variation to assess noise
sensitivities. This is significantly less worrisome then it
would be in a smaller model — for example, since we have
over sixteen thousand subpopulations being simulated in par-
allel, random variations in the initial subpopulations tend to
average out spatially in the early stages of a single run — but
nonetheless, fair warning should be given.

We have focused on longitudinal empirical explorations, per-
forming an extended simulation of each of three global strat-
egies: wind-only, wind+festival, and festival-only. The festi-
val-only strategy was so successful that we invested in a sec-
ond run, varying only the pseudo-random number seed.
Although the runs were unique in many details, the qualita-
tive phenomena we discuss below appeared both times.

3.1 Case 1: Wind-only

In the first variation we used wind migration, with every fifth
day being windy. We ended up letting it run for 13,110 simu-
lated days before deciding we had seen most of the phenom-
ena it was going to display. Some overall statistics are sum-
marized in Figure 2. The upper curve represents the highest
average behavioral score for a subpopulation and the lower,
dotted curve displays the average of all behavioral scores
over the entire array. The individual dots are average behav-
ioral scores for randomly-selected subpopulations to help
show the spread in the population. The average steadily
grows and ends up just shy of the —12 mark. The mode sub-
population is —56 from around day 1000 to almost day 3000.
From then on, the —12’s dominate the array — the sample
dots fuse into a line.

As we watched that data coming in, at first we were excited,
when the maximum behavioral scores jumped to 42 — com-
munication was definitely beginning to happen! — and then
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FIGURE 2. Behavioral scores verus time: Case 1 — Wind-only




we were disappointed when they fell back to 26, since it was
“heading the wrong way” and we knew from first principles
there were communication strategies that could score far
higher than 42.

Our understanding was aided by watching “movies” of the
spatial dynamics, based on data files written by the simulator.
Plate 2 consists of six frames taken from the wind-only sim-
ulation. Each frame contains 128x128 pixels, one for each
subpopulation, each assigned a color on the basis of the aver-
age of the behavioral scores in the corresponding subpopula-
tion on a given day. The mapping from behavioral score to
solid and horizontally striped colors, shown at the bottom of

each plate, was chosen only to highlight score differences,

and it is repeated beneath each of the frames along with a
compressed histogram of the number of subpopulations ver-
sus subpopulation-average behavioral score.

We made movies for each of the model variations, and all
shared distinctive features, supporting the idea that many of
the effects are repeatable and depend more on the overall
structure of the model and less on noise effects specific to a
particular case. The following discussion of the initial part of
the wind run can serve as an introduction to early features
shared by all the cases.

We refer to an organism type by the score it obtains in a sub-
population of “clones,” since that is deterministic. A creature
described as, say, a “26,” may receive a completely different
score in a mixed population.

The nature of the neural architecture and the developmental
process is such that, for a randomly generated genotype, by
the far the most probable resulting behavior pattern is never
to move at all. Such individuals receive behavioral scores of
—696 and are so common at day O (Plate 2a) that subpopula-
tions made up entirely of such stiffs are the most common
shade of grey in the first frame. These sessiles are soon rooted
out by more active strategies, which have spread and taken
over small patches of the array by day 430 (Plate 2b).

By day 1620 (Plate 2c), more improvements have been dis-
covered and spread to the majority of the array. The most pop-
ular organisms at this time score —~56 and appear dark green.
The —56’s combine a default strategy of running to one end
of the track with an overriding strategy of running the other
way if a predator is seen. The medium green subpopulations
visible in the same picture consist of —~12 ’s, which implement

the same strategy as the —56’s except that they default to
whichever end is nearer at the start of each trial. As men-
tioned in Figure 2.1, this is actually the best a non-communi-
cating individual can do.

By day 3800 (Plate 2d), these self-reliant creatures dominate
the array, forming the global “cellular” structures typical of
these simulations. The borders between regions usually have
lower behavioral scores resulting from crosses between in-
compatible organisms. (Some properties of such mixing
zones are discussed in Ackley & Littman, 1994).

In all three cases we’ve explored, patches of communicating
individuals do arise and expand. Some examples are visible
in Plates 2c — 2f as yellow/orange (26°s) and light green (4’s)
patches. Under the wind model, however, these communicat-
ing subpopulations are ephemeral. Before growing large, they
are squeezed out by —12 ’s that have discovered ways to mis-
lead and deceive them. As we observed the wind model dy-
namics, we realized we “‘could have predicted it”: After each
windy day, at least potentially, “you’ll be talking with strang-
ers”, so kin altruism has a hard time stabilizing, and cheaters
have an easy time invading.

From that perspective we were impressed that, from day 4150
until we killed the run, the 26’s manage to stave off extinction
without ever controlling more than a handful of subpopula-
tions at a time. They seem to survive because they “trust their
ears” only in limited circumstances: Most of the time they
follow the optimal non-communicating strategy of the —12 ’s,
and rely on signalling only to avoid fleeing from one predator
to the other in the dangerous Left Pred/Right Pred trials.
Given the “anything goes” nature of wind, the emergence of
such “cautious communicators” was a satisfying result.

3.2 Case 2: Festivals and wind

Despite the persistence of the cautious communicators in the
wind run, they never manage to hold a significant portion of
the array for very long. We devised festival reproduction to
increase the cohesion of groups in the hope that cautious
communicators might be able to stabilize and more trusting
communicators might appear.

Festival reproduction is in a sense a score-sensitive migration
mechanism since only individuals with behavioral scores in
the top quarter of their quad are given opportunities to repro-
duce into neighboring subpopulations. We expected that us-
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ing more festivals than wind would allow for greater stability
of high scoring subpopulations, and greater resistance to in-
truders from other subpopulations.

We ran the simulator with festival reproduction every other
day and wind migration every 10th day for a span of 14,580
days. Our predications were only partially borne out, as can
be seen in Figure 3 and Plate 3. In the figure, notice that the
cautiously communicating 26’s are populous enough to be
clearly visible in the random samples. Furthermore, for a
brief time between day 3000 and day 5000, the population av-
erage actually exceeds —12 : The average subpopulation was
communicating.

Plate 3 tells the story of ongoing battles between cooperating
communicators and competing individualists. By day 2000
(Plate 3a) a large cast of characters is onstage: dark green
—56 s, arogue’s gallery of green —12 ’s, a vigorous species of
yellow/orange 26’s, and a colony of orange/red 58’s. Over the
next several hundred days, the 26’s spread over the —12 spe-
cies east and west of them, even as embedded species of —12
eats them up from the inside. By day 3440 (Plate 3b), the 26’s
hold substantial territory, but have been chopped completely
in two by the (no-longer-embedded) —12 ’s. Also, a group of
light green 4’s can be seen overrunning a patch of —~12°s
(right of center). By day 4020 (Plate 3c) those 4’s have been
taken over by orange/red 58’s, while marauding —12 ’s con-
tinue to pressure the (now-reconnected) 26’s.

The balance of power shifts over a few thousand days
(Plates 3d and 3e) and by day 8400, few communicating spe-
cies remain. A reemergence of 58’s around day 11,000
(Plate 3f) is soon quashed by disruptive breeds of —12°s.
Communicators spread farther and faster in the wind-+festival
model than in wind-only but they are still unstable.

3.3 Case 3: Strictly festival

Wind migration tends to favor disruptive species, allowing
them to infect and parasitize communicating species. By per-
mitting migration by festival reproduction only, we hoped to
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shift the balance still further towards group-cohesion. We ran
the simulator using festival reproduction every two days for
99,980 days. A second run of 26,400 days yielded similar re-
sults. Only the longer run is reported here.

Figure 4 shows the behavioral summaries for the run. The
global population average behavioral score exceeds —12
around day 5000, continues to rise through most of the run
and reaches almost 100 — though that sharp decline in the av-
erage behavioral scores in the mid-20000’s demands investi-
gation.

Plate 4 illustrates some of the history of this run. Early on
(day 2000, Plate 4a), the array is dominated by growing
—12’s (green) and dwindling —56°s (dark green) but two
large communicating populations (both orange/red) have ap-
peared. On the left is a species of 59’s, on the right, 58’s.

By day 5600 (Plate 4b), species of —12 ’s have taken over the
entire array except for the two orange/red areas and a third
light red patch of 62’s that is just beginning to be conquered
by a species of 142’s (pink) — then the most successful com-
municators discovered.

As time passes, the 58’s and 59’s expand, and cautiously
communicating 4’s (light green) slowly replace the back-
ground species of —12 ’s. At day 20,700 (Plate 4c), a group of
striped orange 42’s is growing from the base of the 142 patch,
and the 58’s and 59°s have just met up. In direct competition,
the 59’s dominate the 58’s and overrun their positions in the
array. The leading edge of the 59 invasion wave is visible in
the frame.

The increased genetic diversity resulting from the flood of
59’s mingling with a new set of genes results in several break-
throughs which hone the 59’s into individuals scoring 71
(dark red). At day 24,340 (Plate 4d), the new species can be
seen sweeping back across the territory of the former 59’s. At
the same time, however, another new breed has started to
spread. Individuals of this breed score an abysmal —175
when cultured in isolation yet they displace the new 71’s very
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rapidly. The —175 ’s decimate the 59/71’s only to be eliminat-
ed themselves by opportunistic —56 ’s and then —12 ’s. By day
48,780, Plate 4e, only traces remain of the orange/red popu-
lations.

That is the sequence of events that caused the temporary
crash in the global average, and it highlights a basic differ-
ence between this world and the function optimizations per-
formed by conventional genetic algorithms. The fitness
scores in a GA form a total order — any pair of individuals
always stand in the same relationship to each other: more,
less, or equally “fit.” With subpopulation-dependent behav-
ioral scoring, there is no such simple dominance. In this par-
ticular simulation, for example, the 71’s are “more fit” than
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the surrounding —12 ’s since they slowly displace them. The -

—175 ’s are “more fit” than the 71’s since they destroy the 71’s
in direct contact (see the next section) but, completing the cir-
cle, the —12 ’s are “more fit” than the —175 ’s and tend to re-
place them in the population.

By day 48,780 (Plate 4¢), the after-effects of the 58-59 colli-
sion have mostly died down. The pink 142’s still hold nearly
the same area of the array and a sequence of species has arisen
from the ashes of the earlier conflagrations. These consist of
126s, 128’s, 132’s and 134’s, and appears as various shades
of pink spreading up towards the 142’s. Over the next 50,000
days (Plate 4f), the dark pink 134’s conquer most of the
world. Successful communication dominates.

3.4 Analysis: War and Pestilence

The stories and pictures in the previous sections suggest the
complexity of the evolution of communication in our simula-
tions, but such global stories only describe what happened. To
understand why things happened we must delve into the local
and individual levels of the model.

Similar to Ray (1991), we use culturing to analyze interaction
effects between various species at the local level. We take a
sample of two evolved genotypes, call them A and B, from
the simulator’s data files. Using the local level of the simula-
tor, we find behavioral scores for a subpopulation of 8 A’s.
Because of the way the evaluation procedure is designed, an
individual cultured with clones will always receive the same
behavioral score.

The score tells us how a completely converged subpopulation
of A’s would do “in the wild.” We also evaluate a population
of 8 B’s, and then do 50 evaluations for each of the 7 possible
combinations of i A’s and 8-i B’s. The results show how the
scores of A’s and B’s change when in contact with members
of the other species. (Note that they tell us nothing about the
result of mating A’s and B’s.) We plot the results for both spe-
cies as a function of the number of A’s, with 95% confidence
intervals if there is any variation.

As an example, we used this tool to examine the evolution of
the —12 ’s. Figure 5 shows the result of culturing two different
species of —12 s, an “archaic” breed from near the beginning
of the festival run and a more “modem” one from close to the
end. Though both species score —12 when cultured with
clones, and also in silence (determined in a separate experi-
ment), the archaic —12 ’s obtain terrible behavioral scores in
the presence of even one modern.

100 T T T T T T T
modern ~127s -o--
archaic -12's —+—
[ S, O nnnnns Onmneeenn Omeeees Onnneees Gerennnenn & nnnens ° +
. .
o -100 | -
3]
19]
o —200 | -
~
o
3
= —300 - -
<
[
Q
-400 | 1
-500 | -
H 1 1 1 1 i
0 1 2 3 4 5 6 7 8
number of archaic -12's
FIGURE 5. Archaic —12’s versus modern —12’s

The keys to success for the modermn —12’s are two abilities:
On the one hand they are broad-spectrum noise generators,
and on the other hand they are themselves resistant to ambient
noise. They are “ether warriors”: They jam the signals of
communicating groups, and confuse organisms that are sen-
sitive to the ether, even if they don’t signal themselves. An
examination of the neural networks of these two species
shows this clearly. The archaic —12 ’s are sensitive to sounds
on several channels and speak on F. The modern ~12 ’s have
no “ears” at all and they are *“wired for speech” on all chan-
nels (although only CDEEF seem to occur in practice for this
breed). They pollute the ether — tending to lower the score of
communicators in the subpopulation — without affecting
their own scores at all. Such “scorched ether” strategies are
very common in the wind and wind+festival studies.

Under the festival-only model, it is generally not possible for
one disruptive individual to enter and exterminate a high-
scoring subpopulation without first understanding its signals.
Thus, instabilities in this variation are of more subtle types.
The fall of the 59/71°s to the ~175 ’s is an excellent example
of the takeovers that occur. The —175 ’s are perfectly adapted
not only to parasitize the 71’s, but to wipe them out entirely.
As seen in Figure 6, a single —175 in a population of 71’s ex-

150 T T T T T T T
100
g sof
o
5}
[
— oF
©
5
4 =50 F
>
s
S-100f ¥
95% confidence ro—
. 71’s —
-150 95% confidence H— 7]
¥
200 1 f i 1 1 1 1
0 1 2 3 4 5 6 7 8

number of 71’s
FIGURE 6. Altruistic 71’s versus parasitic —175's

ploits the signals generated by the 71’s to obtain a superior
behavioral score. The —175 ’s are then preferentially repro-
duced — there tend to be more —175’s and fewer 71’s. Al-



though both species then score worse than they did when
there were more 71’s, in every possible combination, the
~175s score higher. The 71’s in the subpopulation are soon
exterminated.

There is a second critical factor in the —175 epidemic dis-
cernible in Figure 6. Recall that in this simulation, the only
way to migrate is to win at festivals. For taking over a single
cell, all that is necessary is that the attacker score better than
the defender in the cell: An invader to a group of 71’s, for ex-
ample, could take it over by scoring 50 if it could confuse the
71’s into scoring 40’s. In such a case, though, the invader
would never win in festivals with adjacent uninfected groups
of 71’s. It would be stuck. In Figure 6, by contrast, we see that
the canny —175’s obtain scores that win festivals against
neighboring 71’s even when they’ve taken over fully half a
cell, providing plenty of time to infect neighboring subpopu-
lations before the inevitable crash.

An examination of the genomes reveals that the —175 ’s are
closely related to the 71’s they wipe out, sharing 97.8% of
genes. A naive notion of kin selection might predict increas-
ing altruism with increasing levels of genetic overlap, but
clearly this need not be. On the contrary, by sharing genes
with the 71’s, the —175 ’s are in a good position to understand
their signals and thereby exploit them.

4 Discussion: Mutation and Migration

We have demonstrated that effective communication based
on the exchange of initially arbitrary signals can evolve and
stabilize even when it provides no benefit to the individual
speaker. We believe that the principal feature of our model
that makes this possible is the partial alignment of communi-
cation and reproduction domains. To the degree they are the
same, the potential beneficiaries of a speech act will tend to
be close genetic kin to the speaker, and then the “kin selec-
tion” or “kin altruism” arguments from evolutionary theory
(Hamilton, 1964, and many since) apply and one may hope to
see the emergence of altruism. On the other hand, unless com-
munication and reproduction domains are at least sometimes
different, subpopulations will tend to converge, and the
search for improved forms will be slowed. The case studies
presented in the previous section only hint at the scope of the
phenomena we have observed; here, we close with brief dis-
cussions of two issues that the models raise.

From an evolutionary computation point of view, perhaps the
most striking aspect of these studies is that they make no use
of mutation. As mentioned earlier, we were pushed to this de-
sign decision, against our own preconceptions, simply be-
cause it worked better — but what makes this case different?

In the majority of the evolutionary computation models in the
literature, individuals are evaluated in isolation from each
other. Consequently, the effects of a mutation are, initially,
limited to only one individual. In our models — and in any
co-evolutionary system in which relatively small groups of
individuals can interact during the process of selection — the
picture is quite different. Individuals in such systems will
evolve towards dependence on the typical behavior patterns
of the group they are part of whenever it provides an advan-
tage. A mutation in one individual can have a much more dis-
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ruptive effect, impacting other individuals immediately, in
the same generation.

In his paradigm-creating book on genetic algorithms, Holland
(1976) argued that crossover is more important than mutation
as a genetic operator, and offered mathematical arguments for
the hypothesis that the reason it is so important is because it
improves the efficiency of an evolutionary search for highly-
fit individuals. Although his arguments were insightful and
elegant, in the nearly two decades of ensuing research, con-
vincing empirical demonstrations in which crossover is more
important than mutation have remained elusive; so much so
that Holland has recently returned to this question, collabo-
rating on a paper entitled ‘““When will a genetic algorithm out-

- perform hill-climbing?”” (Mitchell, Forrest, & Holland, 1994,

to appear).

Studying the evolution of communication, we are lead to pro-
pose a slightly different hypothesis: Crossover is a critical ge-
netic operator, but not necessarily or even principally because
it improves search in highly diverse populations. We suggest
that the reason crossover is so important is because it amounts
to a convergence-sensitive variable mutation rate. With a sin-
gle mechanism, one can on the one hand generate radical new
combinations when no particular strategy is dominant, as ev-
idenced by a diverse genetic pool, while on the other hand
preserve all the genetic structures that are “proven winners,”
as evidenced by their fixation in the population.

Note that to the degree that a system can be viewed as an iso-
lated-individual optimization problem, with a “fitness func-
tion” that is stable over evolutionary time, Holland’s account
and ours are largely complementary takes on the same idea —
“effective generation of new structures when diverse” versus
“effective preservation of old structures when converged.”
In such systems his account is preferable because it makes
non-trivial claims about why crossover’s particular approach
to new structure generation is desirable, whereas on the flip
side there’s basically only one possible strategy for old struc-
ture preservation.

However, to the degree that a system is best viewed as a co-
evolving organization of relatively converged populations,
where the behavioral score of assigned to a genome. can
change even if the genome remains constant, the situation is
different. Clever search techniques that generate novel candi-
dates by extracting information from behavioral scores effi-
ciently are of less value, because the information necessary
for success changes. On the other hand, the high-fidelity re-
production of individuals in converged groups has much
higher value, because the group members can work together
to improve all their behavioral scores if everybody cooper-
ates. As we saw in Section 3, cheaters need not be strangers,
so even “rare” changes due to mutation can have disastrous
large-scale effects. We suspect many natural systems — and
many human and artificial systems as well — are less like di-
verse population, static optimization problems, and more like
co-evolutionary processes involving relatively converged
populations. In such cases, crossover may outrank mutation,
not because it searches effectively, but because it preserves
selectively.

Still, even if this account of the roles of mutation and cross-
over is accurate, that wouldn’t imply that the mutation rate



should optimally be reduced all the way to zero, as we did in
the studies reported here. The uniformity of color over large
areas in the Plates, for example, suggests that there are many
converged subpopulations in which no search at all is taking
place (although, as the lone pixel visible in the middle of the
pink patch in Plate 4d indicates, even deep in apparently con-
verged regions there are some usually-silent variant alleles
that occasionally are revealed via crossover.) The preliminary
studies that prompted us to turn mutation off were all based
on wind migration. In the festival model, by contrast, perhaps
a sall amount of mutation could enhance the search process
without disastrous global consequences, and this is a possibil-
ity we are pursuing.
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More generally, these studies suggest that intra-population -

genetic operators may be less important than inter-population
migratory mechanisms in determining the qualitative behav-
ior of distributed population models with subpopulation-de-
pendent behavioral scoring. As a comparison between the
wind+festival and strictly-festival studies shows, simple
score-insensitive migration — even if relatively infrequent
——-can have a dramatic impact on the dynamics of the system.

There is a sense in which score-sensitive migration mecha-
nisms such as the festival are fundamentally questionable.
Consider ourselves as humans: As members of a communi-
cating species we are products both of our genetic heritage
and the communities within which we reside. Though we car-
ry our genotypes with us when we (or our offspring) migrate,
the communities we depended upon are left behind. For the
artificial creatures in the festival model, although the partici-
pating individuals compete on the basis of their behavioral
scores, those scores were obtained back in the individuals’
“home” cells, not in the context of the whole quad. Such a
score may be wholly unrepresentative of how that genotype
would perform in another cell (even in absence of any genetic
modifications). Using individual behavioral scores to deter-
mine who shall cross a score-dependent border is, in a signif-
icant way, an unprincipled use of the data.

To the degree that neighboring subpopulations differ from
each other, a festival is comparing apples and oranges. As the
genocide of the alruistic 75’s at the hands of the grossly in-
competent —175’s showed, sometimes it can go wrong with
disastrous consequences for certain species. But — barring
degenerate “group selection” mechanisms, wherein entire
subpopulations compete, reproduce, and displace each other
as units — what choice is there? We didn’t even bother with
parallel simulations of the no-migration case, since the se-
quential simulator showed us that conmipletely isolated sub-
populations converge rapidly to usually awful scores. Using
wind amounts to refusing even to attempt to compare apples
and oranges. Despite its perplexing theoretical motivation,
the success of the festival mechanism suggests that it is a
game worth playing.
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