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Cycles and Stability in Linguistic Signaling

Abstract
This dissertation advances our understanding of the roles played by pragmatic and grammatical competence
in theories of language change by using mathematical and statistical methods to analyze the cross-linguistic
change in the expression of negation known as Jespersen's cycle. In the history of Middle English this change
is characterized by two transitions: from pre-verbal ne to an initially emphatic embracing ne...not; from
embracing ne...not to post-verbal not. This description conflates two often related process: the formal cycle
describes changes in the forms of negation available and consists of the transitions from pre-verbal to
embracing to post-verbal negation; the functional cycle describes changes in how forms are used to signal
meaning and consists of the transition from pre-verbal to embracing negation.

Using tools from evolutionary game theory, we show that the functional cycle can be explained by limits on
our pragmatic competence. The incoming embracing form is initially restricted to negating propositions that
are common information between interlocutors. But, experimental evidence shows that speakers have
difficulty in distinguishing common and privileged information. Speakers use the initially restricted form in
more and more contexts that are less and less closely tied to the discourse, and it undergoes a kind of
informational bleaching. Applying statistical methods developed in population genetics, we show that
grammatical competence, and the process of acquisition through which it is formed, predict stability rather
than change in both transitions of the formal cycle unless the observed transitions are the result of the
accumulation of small random changes akin to genetic drift in finite populations. We show that we can reject
this possibility in the first transition of the formal cycle, but not in the second. The possibility of random
change in the second transition of the formal cycle offers some insight into the varying amount of time it takes
across languages.

The main contribution of this dissertation is demonstrating the need for articulated models of both pragmatic
and grammatical competence in explanatory theories of language change, while also offering a set of tools and
methods for analyzing different factors in historical corpora.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Linguistics

First Advisor
Robin L. Clark

Keywords
Evolutionary game theory, Historical linguistics, Jespersen's cycle, Language change, Mathematical modeling,
Negation

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1578

http://repository.upenn.edu/edissertations/1578?utm_source=repository.upenn.edu%2Fedissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Linguistics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1578

http://repository.upenn.edu/edissertations/1578?utm_source=repository.upenn.edu%2Fedissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages


CYCLES AND STABILITY IN LINGUISTIC SIGNALING

Christopher Andrew Ahern

A DISSERTATION

in

Linguistics

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2016

Supervisor of Dissertation

Robin Clark, Professor of Linguistics

Graduate Group Chairperson

Rolf Noyer, Associate Professor of Linguistics

Dissertation committee
Mark Liberman, Professor of Linguistics
Florian Schwarz, Assistant Professor of Linguistics



CYCLES AND STABILITY IN LINGUISTIC SIGNALING

COPYRIGHT

2016

Christopher Andrew Ahern



Everything changes and nothing remains still...you cannot step into the same stream twice.

–Heraclitus, as quoted in Plato’s Cratylus

Why do you go away? So that you can come back. So that you can see the place you came

from with new eyes and extra colors...Coming back to where you started is not the same as

never leaving.

–Terry Pratchett
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ABSTRACT

CYCLES AND STABILITY IN LINGUISTIC SIGNALING

Christopher Andrew Ahern

Robin Clark

This dissertation advances our understanding of the roles played by pragmatic and gram-

matical competence in theories of language change by using mathematical and statistical

methods to analyze the cross-linguistic change in the expression of negation known as

Jespersen’s cycle. In the history of Middle English this change is characterized by two

transitions: from pre-verbal ne to an initially emphatic embracing ne...not; from embrac-

ing ne...not to post-verbal not. This description conflates two often related process: the

formal cycle describes changes in the forms of negation available and consists of the tran-

sitions from pre-verbal to embracing to post-verbal negation; the functional cycle describes

changes in how forms are used to signal meaning and consists of the transition from pre-

verbal to embracing negation.

Using tools from evolutionary game theory, we show that the functional cycle can be

explained by limits on our pragmatic competence. The incoming embracing form is ini-

tially restricted to negating propositions that are common information between interlocu-

tors. But, experimental evidence shows that speakers have difficulty in distinguishing com-

mon and privileged information. Speakers use the initially restricted form in more and

more contexts that are less and less closely tied to the discourse, and it undergoes a kind

of informational bleaching. Applying statistical methods developed in population genetics,

we show that grammatical competence, and the process of acquisition through which it is

formed, predict stability rather than change in both transitions of the formal cycle unless

the observed transitions are the result of the accumulation of small random changes akin

to genetic drift in finite populations. We show that we can reject this possibility in the first
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transition of the formal cycle, but not in the second. The possibility of random change in

the second transition of the formal cycle offers some insight into the varying amount of

time it takes across languages.

The main contribution of this dissertation is demonstrating the need for articulated mod-

els of both pragmatic and grammatical competence in explanatory theories of language

change, while also offering a set of tools and methods for analyzing different factors in

historical corpora.
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Chapter 1

Introduction

I am, however, enough of a rationalist to want to find a basis that underlies these facts,

undeniable though they may be; I would like to be able to think of the standard type of

conversational practice not merely as something that all or most do in fact follow but as

something that it is reasonable for us to follow, that we should not abandon.

–Paul Grice (1975:29)

Intuitively, everyone can agree that languages change. But, this intuition depends on

exactly what we mean when we say language. On the one hand the term can be used to

refer to the various nuanced ways that different linguistic forms are used in communication,

and on the other hand it can also be used to refer to the unique human faculty that allows

for the acquisition of that combinatorially rich set of linguistic forms. Broadly speaking

then, change can refer to either a difference in the grammatical knowledge that learners

internalize, or a difference in how that grammatical knowledge is externalized and put

towards communicative ends. So, our intuitive agreement about change may persist, but

we might seem to differ in what we take to be changing or, perhaps more importantly, how

we can study and ultimately understand the causes of such change.
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Grammar n

Data n

Grammar n+ 1

Figure 1.1: The process of language acquisition

Indeed, much of linguistics, the generative tradition in particular, has focussed almost

exclusively on characterizing how the grammatical knowledge internalized through the pro-

cess of acquisition might lead to change. In the terms of Chomsky (1986), language change

proceeds as the process of language acquisition maps the externalized E-Language of one

generation to the internalized I-Language of the next. We can visualize this schematically

as in Figure 1.1 where the output from one generation serves as the input for acquisition in

the next generation. The definition of change under this conception is expressed in terms of

differences between subsequent grammars. In fact, as Chomsky and Halle (1968:249) put

it, an observed change can only come about through a change in the underlying grammars

in subsequent generations.

Yet, while this may be true, it does not necessarily reveal the underlying cause of the

change. Crucially, the process of acquisition does not act in a vacuum. The output of one

generation serves as the input to the next. And, while this input to acquisition arises from

the interplay of many factors, it is not arbitrary. Rather, it is governed by a pragmatic

competence that “underlies the ability to use [grammatical competence] along with the

conceptual system to achieve certain ends or purposes” (Chomsky 1980:59). Or, in Gricean

terms, the output from the previous generation arises from the rational use of an internalized

grammar. We can visualize this schematically as in Figure 1.2 where the output of one

2



Grammar n Grammar n

Data n

Figure 1.2: The process of language use

generation arises through the strategic use of the forms made available by an internalized

grammar. Where grammatical competence is formed by a mapping from one generation’s

E-Language to I-Language of the next, pragmatic competence is what governs the mapping

from each generation’s I-Language to its E-Language.

Taken together, we can summarize the interaction of these two processes as in Figure

1.3, where both use and acquisition are entwined in the process of change. So, while we

can certainly define change in terms of the internalized grammars of speakers at different

points in time, the process of acquisition is not the only locus of change. That is, both

the process of externalization, internalization, and the interaction between the two can lead

to change in the grammars acquired over time. The central goal of this dissertation is to

provide the mathematical tools for defining and analyzing models of change stemming from

both use and acquisition. In doing so, we aim to demonstrate that the notion of pragmatic

competence can be integrated into broader theories of change, and is not only incredibly

useful but sometimes necessary to explain linguistic change.

At the center of this endeavor will be a diachronic process that implicates both use and

acquisition, the development in the expression of sentential negation over time known as

Jespersen’s cycle (1917). The process is often described as the result of two transitions. The

first transition occurs when a preverbal form of negation is replaced by an embracing form,

3



Grammar n

Data n

Grammar n+ 1

Data n+ 1

Use
Acq

uis
itio

n

Figure 1.3: The iterated process of language change through acquisition and use

which is initially characterized as being more emphatic. The second transition occurs when

this embracing form is subsequently replaced by a purely postverbal form. In the history of

English, we observe both of these two transition in Middle English from ne to ne...not and

from ne...not to not. Our goal will be to determine the role of use and acquisition in each

of these transitions.

In Chapter 2 we begin by distinguishing between two phenomena that have often been

conflated in investigations of Jespersen’s cycle. In particular, we argue that Jespersen’s

cycle as it is often described consists of both a formal and a functional cycle. The formal

cycle describes the change in the formal complexity of negation over time. It takes place as

negation becomes more and then less formally complex, as can be seen in the transitions in

the history of English from ne to ne...not to not. The functional cycle describes the way that

different forms of negation are used to signal meaning. It takes place as one form of plain

negation is replaced by another form. This can be seen in the history of English from ne

to ne...not where the originally empathic ne...not displaces ne as it increases in frequency,

loses its emphasis, and comes to signal plain negation. We note the logical and empirical

relationship between the two cycles: the functional cycle can occur independently of the

formal cycle. This result informs the structure of the rest of the dissertation; we start by

addressing the functional cycle before turning to the formal cycle.

The first part of this dissertation addresses the functional cycle. In Chapter 3 we intro-

duce the mathematical tools we will use to model the functional cycle. In particular, we

4



show how we can use evolutionary game theory to describe how meaning is signaled in a

population over time. Importantly, these tools allow us to model a qualified kind of Gricean

rationality. That is, individuals are boundedly rational insofar as they have limited cogni-

tive and informational resources (Simon 1955, 1957). Yet, these tools allow us to show

how the actions of individuals can give rise to change at the population level, even when

those small decisions are not the product of conscious deliberation (Keller 1994). This is

particularly important when we turn to the functional cycle in Chapter 4, where we show

that the first transition from ne to ne...not can be explained as the result of speakers’ limita-

tions in keeping track of common versus private knowledge. So, just as Gricean rationality

has been used to explain particular patterns of synchronic use, a kind of bounded rationality

allows us to explain the functional cycle. So, how we use these two forms explains why

they change over time, and the transition from ne to ne...not.

However, the same model does not apply to the transition from ne...not to not, so we

turn to the formal cycle in the second part of this dissertation. In Chapter 5 we describe a

model of syntactic acquisition and determine its predictions for both of the transitions of

the formal cycle. In particular, we show that acquisition cannot explain either of the two

transitions from ne to ne...not or from ne...not to not, other than as the result of a random

change in the grammars acquired. In Chapter 6 we test this possibility using statistical

methods developed in population genetics to test for random drift versus selection. We find

that we can reject random drift in the case of the first transition from ne to ne...not, but

we cannot reject drift in the case of the second drift from ne...not to not. This first result

suggests that use is the driving force behind the first transition as part of the functional

cycle. The second result shows that acquisition does not play a role in any of the observed

transitions. So, insofar as we can offer an explanation of either of the observed changes,

we need the notion of pragmatic competence to do so.

5



Chapter 2

Jespersen’s Cycles

The history of negative expressions in various languages makes us witness the following

curious fluctuation: the original negative adverb is first weakened, then found insufficient

and therefore strengthened, generally through some additional word, and this in its turn

may be felt as the negative proper and may then in course of time be subject to the same

developments as the original word. (Jespersen 1917:4)

Originally coined by Dahl (1979), the term Jespersen’s cycle is often used in reference

to the observation cited above. It is certainly the most quoted aspect of Jespersen’s (1917)

seminal work, which prefigures many of the current empirical and theoretical issues in the

study of negation (cf. Horn 1989). Yet, this passage is also interpreted in two very distinct

ways. This fundamental ambiguity stems from the fact that Jespersen noted both formal

and functional patterns in the expression of sentential negation over time.1 Both patterns

can be conceived of as cycles in their own right. That is, we can find a series of transitions

1Sentential negation refers to the semantic property of negating an entire proposition, not just some sub-
part. It can be distinguished from morphological (e.g. un-, non-) and constituent negation (e.g. John might
have not understood) using several diagnostics such as tag questions (Klima 1964) and performative para-
phrases (Payne 1985). Sentential negation is also distinct from but related to the syntactic notion of standard
negation (Miestamo 2005), which refers to constructions that can reverse the truth value of a proposition.
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from and back to states that are in some sense formally or functionally equivalent. But, the

term Jespersen’s cycle is often used in one of these two senses or the other, without clear

distinction.

Perhaps even worse, the canonical presentation of what is referred to as Jespersen’s cy-

cle conflates these two uses (Posner 1985, Schwegler 1988, 1990, Ladusaw 1993, Schwen-

ter 2005, 2006). Where parentheses at the second stage indicate an optional post-verbal

element that is characterized as being emphatic, the following stages are posited.

1. NEG V

2. NEG V (NEG)

3. NEG V NEG

4. V NEG

This chapter is devoted to defining and distinguishing the two uses of the term intertwined

in this representation, which we will call the formal and functional Jespersen cycles. In

short, the distinction is between changes in the forms of negation available and changes

in how those forms are used to signal meaning, respectively. Our goal is to clarify the

relationship between the two cycles and what would count as an explanation of each.

First, we outline the formal aspects of how negation is expressed at the stages of the for-

mal cycle. We provide a historical description of the structural forms that express negation

at different points in the history of English, and compare this trajectory with that of French

to emphasize particular aspects of the formal cycle. Second, we outline the function of

those forms at different stages of the functional cycle. We provide a historical description

of the functions of the different forms at points in the history of both English and French,

noting the relationship between optionality and these different functions. We also note the

logical relationship between the two cycles: the formal cycle entails the functional cycle,

but not vice versa. Third, in light of our definitions and the logical relationship between
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the two cycles, we discuss two ways of conceptualizing the causes of the cycles and the

potential role of syntactic acquisition and pragmatic use in both.

While the main motivation of this chapter is terminological, distinguishing between the

two kinds of cycles has an important consequence. Given the logical relationship between

the two cycles, an explanation of the formal cycle requires an explanation of the functional

cycle. This informs the structure of the dissertation. Since an explanation of the functional

cycle must be our first priority, we begin in Part I by pursuing such an explanation. In

Chapter 3 we present a mathematical framework for understanding how different functional

meanings are signaled in populations over time. In Chapter 4 we apply this framework to

model the functional cycle in the history of English. With this in place, in Part II we turn to

the formal cycle. In Chapter 5 we evaluate a model of syntactic acquisition and the role it

might play in an explanation of the formal cycle. In Chapter 6 we consider the possibility

that stochastic processes may lead to the transitions in the formal cycle. So, our goal in this

chapter is to set the foundation for the rest of the dissertation by clarifying the distinction

between the two kinds of cycles.

2.1 The formal cycle

The formal cycle is defined in terms of the forms that are used to express negation over time,

and consists of two transitions. At the start of the formal cycle, a single element is used

to express negation. The first transition occurs when this single element is supplemented

by additional lexical material. The second transition occurs when the original negative

element is subsequently lost, leaving the added lexical material as the only expression of

negation. In the most general sense, the formal cycle occurs when the form of negation

becomes more and then less complex. It is cyclic in the sense that the forms of negation at

the start and end of the cycle are of equal formal complexity.
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1

Formal
complexity

Figure 2.1: The formal Jespersen cycle

This can be shown schematically as in Figure 2.1, where the vertical axis represents

the degree of formal complexity. The first transition takes place from 1 to 2 with the

addition of material. The second transition takes place from 2 back to 1 with the loss

of material. The addition of material leads to an increase in formal complexity of negation

and the loss of material leads to a decrease. The formal cycle is then just a cycle from and

back to a less complex form of negation: negation is expressed by some stuff, then more

stuff, then less stuff.

For example, Jespersen noted that in the history of several European languages, includ-

ing English and French, a pre-verbal negative element is supplemented by a post-verbal

element, and the pre-verbal element is subsequently lost. This can be shown schematically

as in Figure 2.2 where the different forms of negation are arranged according to formal

complexity on the vertical axis and time along the horizontal axis. At both the start and the

end of the formal cycle a single element expresses negation. Intuitively, if we abstract away

from the structural realization of the forms as pre- or post-verbal, then Figure 2.2 maps onto

Figure 2.1. The curious fluctuation in form that Jespersen noted simply becomes a closed

orbit through the space of formal complexity.
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NEG V

NEG V NEG

V NEG

Formal
complexity

Time

Figure 2.2: The realization of the formal cycle in English and French

We see the first stage of the formal cycle in the history of English with the pre-verbal

ne in Old English, which expresses sentential negation alone.

(1) Ic
I

ne
NEG

secge
say

(Old English)

This is followed by a stage of embracing or bipartite negation where a post-verbal

negative element is added. This is seen in Middle English, where ne is supplemented by

not.

(2) I
I

ne
NEG

seye
say

not
NEG

(Middle English)

There are several sources that these additional elements are drawn from, most notably from

negative polarity items, overwhelmingly the set of minimizers (e.g. “not a drop”, “not a

hair”) and generalizers (e.g. “not ever”, “not at all”, Horn 1989). For example, in the case

of English, not comes from Old English nawiht (literally “no thing, creature, being”). Other

sources include, indefinite pronouns (e.g. “no one”), negative adverbs (e.g. “never”, cf.

Horn 1989, Van Gelderen 2008), negative verbs (e.g. “refuse”, “deny”, “reject”, “avoid”,
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“fail”, and “lack”, Givón 1978), and the concatenation of negative and existential verbs

(Croft 1991).

In light of this broad range of sources, it is important to note that the first transition

need not consist of the addition of a post-verbal element. For example, in modern African

American Vernacular English, negation can be supplemented by a pre-verbal element eem,

which can express negation in its own right (Jones 2015).

(3) You don’t eem know.

(4) You eem know.

As Jones (2015) notes, this form comes from but is arguably distinct from even.

(5) #eem numbers

Importantly, it is the formal status rather than the structural position that is relevant. Given

the range of sources for additional negative elements, this is not surprising. But, it bears

emphasis that the transition from pre- to post-verbal negation is not the only path through

the formal cycle. The transition could just as well have been from post- to pre-verbal

negation or from and back to pre-verbal negation. It is a contingent historical fact, arising

from the syntax of English and the source of the additional material, rather than some

necessary property of the formal cycle.

The final stage in the formal cycle is a return to a single negative element. This is

seen in Early Modern English, where the preverbal element in ne...not is lost, leaving the

post-verbal not as the sole negative element.

(6) I
I

say
say

not
NEG

(Early Modern English)

11



The emergence of do-support in Early Modern English yields a state parallel to Old English

with a sole pre-verbal negator:

(7) I
I

do
do

not
NEG

say
say

(Present-day English)

The contraction of negation offers an even closer parallel to Old English where ne con-

tracted with several verbs (e.g. ne be→ nis).

(8) I
I

don’t
do-NEG

say
say

(Present-day English)

But, however suggestive these further developments are, they are not necessary components

of the formal cycle. Jespersen (1917:10) himself noted the uniqueness of these develop-

ments, which he attributed to a tendency to place negation at the beginning of the sentence

to avoid confusion. As he put it, the effect of post-verbal negation in German results in a

kind of semantic garden path.2

[T]he hearer or reader is sometimes bewildered at first and thinks that the sen-

tence is to be understood in a positive sense, till suddenly he comes upon the

nicht, which changes everything; see, for instance “Das leben ist der güter

höchstes nicht.”

Yet, despite this purported tendency, the majority of languages that Jespersen noted, in-

cluding his native Danish, persist in a perplexing state of post-verbal negation. This can

only be taken as further evidence that we ought to interpret the implications of Jespersen’s

observation in formal rather than structural terms. It matters how much stuff is used to

express negation, not where that stuff is.
2Living is not the highest good (lit. The living is the good highest not)
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400 800 1200 1600 2000

Beowulf Chaucer Shakespeare

Old English Middle English
E. Modern

English Modern English

Ic ne secge I ne seye not I say not I do not say

NEG V NEG V NEG V NEG NEG V

Figure 2.3: Timeline of negation in the history of English

Given the stages of the formal cycle in the history of English, it is useful to give

them some historical context. The stages are summarized in Figure 2.3. The horizon-

tal axis represents years in the common era. Immediately above the horizontal axis are

commonly-used terms for historical periods: Old English (ca. 400-1175 CE), Middle En-

glish (ca.1175-1450 CE), Early Modern English (ca. 1450-1650 CE), and Modern English

(ca. 1650-Present CE). Above these general time periods are the spans of the different

forms of negation. From Old to Early Modern English we make a full formal cycle from

and back to a single negative element. We also see the transition at the end of the formal

cycle from post- back to pre-verbal negation in Modern English.

Below the axis are rough historical anchors that offer a general sense of the historical

periods: Beouwulf, the Old English epic poem written some time between 700-1050 CE;

Chaucer, the Late Middle English author who is widely-credited as the first to write in the

vernacular language of his day, from around 1350-1400 CE; and Shakespeare, the noted

dramatist and playwright, from around 1550-1650 CE.

The history of negation in French offers a parallel to the formal cycle in English, al-

though the exact details of the timeline are not without dispute (cf. Martineau and Mougeon

2003). The Old French pre-verbal ne becomes Middle French ne...pas, and subsequently
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Modern Colloquial French post-verbal pas.

(9) Jeo
I

ne
NEG

dis
say

(Old French)

(10) Je
I

ne
NEG

dis
say

pas
NEG

(Middle French)

(11) Je
I

dis
say

pas
NEG

(Modern Colloquial French)

Again, it is useful to provide some historical context. The stages of the formal cycle in

the history of French are summarized in Figure 2.4. Immediately above the horizontal axis

are commonly-used terms for historical periods: Old French (ca. 900-1350 CE), Middle

French (ca.1350-1600 CE), Classical French (ca. 1600-1700 CE) , and Modern French (ca.

1700-Present CE). Above these general time periods are the spans of the different forms

of negation. From Old to Modern French we make a full formal cycle from and back to a

single negative element.

Below the axis are rough historical anchors that offer a general sense of the historical

periods: Charlemagne, the first Holy Roman Emperor from 750-800 CE; the Hundred

Years’ War from roughly 1350-1450 CE; Voltaire, the Enlightenment author and satirist

from roughly 1700-1800 CE.

Hansen and Visconti (2009, 2012) note that negation in Louisiana Creole French nega-

tion is purely pre-verbal. Of course, this observation comes with the caveat that no conclu-

sions about the future of French can be drawn from this change.

(12) Mo
I

pa
NEG

di
say

(Louisiana Creole French)

14



400 800 1200 1600 2000

Old Franconian Old French
Middle
French

Classical
French

Modern
French

Jeo ne dis

NEG V

Je ne dis pas

NEG V NEG

Je dis pas

V NEG

Charlemagne Hundred
Years’ War

Voltaire

Figure 2.4: Timeline of negation in the history of French

But again, even if such developments were readily apparent, they would not constitute a

necessary component of the formal cycle.

Thus, the crucial components of the formal cycle are a transition from one negative

element to two, and eventually back to one. For the specific case of English, as well as

French, the formal cycle is realized as a transition from pre-verbal to embracing to post-

verbal negation. We can represent these transitions schematically as follows.

1. NEG V

2. NEG V NEG

3. V NEG

Note that these stages are not mutually exclusive. That is, there are transitions between

these stages (van der Auwera 2009). This captures the theoretical intuition that diachronic

change is rarely a dramatic shift. Where parentheses are taken to indicate optionality, the

stages can be represented as the following.

1. NEG V

2. NEG V (NEG)

3. NEG V NEG

15



4. (NEG) V NEG

5. V NEG

This more articulated model also comes closer to the diachronic facts. For example, in Late

Middle English, all the forms of negation are used contemporaneously: purely pre-verbal,

embracing, and post-verbal negation co-occur for a brief period in time. For the moment

then, we can take this as the abstract trajectory of the formal cycle over time.

Importantly, an explanation of the formal cycle in English must consist of two com-

ponents: it must provide the conditions for the transition from pre-verbal to embracing

negation as well as the conditions for the transition from embracing to post-verbal nega-

tion. It should be noted that criterion for such explanations can be both qualitative and

quantitative. That is, an explanation of the formal cycle can predict both that a transition

will occur as well as how it will occur. In what follows, we will use both kinds of criteria

in evaluating models as explanations of change. With this definition of the formal cycle in

place, along with what would constitute an explanation for its instantiation in the history of

English, we turn to the functional cycle.

2.2 The functional cycle

If the formal cycle is defined by the forms of negation, then the functional cycle is defined

by the function that those forms are put to. It is about how and how many forms are

used to mean different things. At the first stage of the functional cycle a single form is

generally used to express negation, often characterized as plain negation. The functional

cycle begins with the introduction of another form that is used to express negation in a

semantically stronger way, often characterized as being more emphatic. The functional

cycle progresses as this new stronger form increases in frequency, weakens, and replaces

the original negative form. In the most general sense, the functional cycle occurs when the
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2

1

Functional
distinctions

Figure 2.5: The functional Jespersen cycle

form of plain negation is replaced by another form. It is cyclic in the sense that the number

of functionally distinct forms of negation increases then decreases.

This can be shown schematically as in Figure 2.5 where the vertical axis represents the

number of functionally distinct forms of negation. The addition of a new form increases

the number of distinctions from 1 to 2 , and the loss of the original form decreases the

number of distinctions from 2 back to 1 . However, we should note that Figure 2.5 does

not convey all of the necessary information about the functional cycle.

Namely, the functional cycle does not hold for just any pair of semantic distinctions.

Rather, the incoming form is semantically stronger than the incumbent form. We can more

accurately represent the details of the functional cycle as in Figure 2.6, where the vertical

axis represents semantic strength and the horizontal axis represents time. The original

form is supplemented with an additional form that is semantically stronger and this new

form weakens over time as it replaces the original from.

The stronger negative form is often a result of elements being added to the original

plain form. For example, in the history of English and French a pre-verbal element is

supplemented by a post-verbal element, which strengthens negation. The meaning of the
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2

2

1

Semantic
strength

Time

Figure 2.6: The functional Jespersen cycle in more detail

combined pre- and post-verbal elements weakens over time, and the two elements come

to have the same force as the original pre-verbal element in isolation. This can be shown

schematically as in Figure 2.7 where the different forms are arranged according to semantic

strength along the vertical axis and time along the horizontal axis. If we abstract away from

the realization of the particular forms then Figure 2.7 maps onto Figure 2.6, which in turn

maps onto Figure 2.5. The curious fluctuation in function that Jespersen noted becomes

a particular kind of closed orbit through the space of functional distinctions, which stems

from the weakening of negative forms along a semantic dimension.

We see the first stage of the functional cycle in the history of English and French, with

pre-verbal ne expressing plain negation.

(13) Ic
I

ne
NEG

secge
say

(14) Jeo
I

ne
NEG

dis
say

The optional addition of a post-verbal element in the embracing forms ne...not and ne...pas

is used to express a stronger negation.
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NEG V

NEG V NEG

NEG V NEG

NEG V

Semantic
strength

Time

Figure 2.7: The realization of the functional cycle in English and French

(15) I
I

ne
NEG

seye
say

not
NEG

(16) Je
I

ne
NEG

dis
say

pas
NEG

The initial effect of the embracing form, in Jespersen’s words (1917:15):

...[I]n most cases the addition serves to make the negative more impressive

as being more vivid or picturesque, generally through an exaggeration, as when

substantives meaning something very small are used as subjuncts.

Despite the evocative phrasing, Jespersen was certainly not the first to notice the trajectory

of the functional cycle. It was noted in great detail by both Meillet (1912:393) and Gardiner

(1905:134) in French and several other languages.

[French pas and point], from the Latin passum and punctum, were orig-

inally adverbial accusatives placed at the end of negative sentences for the

purpose of emphasis; just like the English “not a jot”, “not a straw”....Pas and

point, and like them the Demotic B, Coptic AN, next lose their emphasizing
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force, and become mere adjuncts of the negative words (French ne, Coptic ’N).

Last of all, they come themselves to be looked upon as negative words.

Indeed, van der Auwera (2009) suggests that Meillet’s spiral (1912:394) may be the more

appropriate term for the functional cycle.3

Thus, languages follow a sort of spiral development: they add extra words

to intensify expression; these words fade; decay and fall to the level of simple

grammatical tools; one adds new or different words on account of expressive-

ness; the fading begins again, and so on endlessly.

If the functional cycle in English and French begins with the introduction of the op-

tional post-verbal element to create an embracing form that intensifies expression, then it

ends when the post-verbal element ceases to be optional. That is, when the post-vebal el-

ement becomes obligatory only the embracing form is used, and its intensity fades. This

is because the embracing form ceases to be able to signal anything about the distinction

between plain and emphatic negation. As Kiparsky and Condoravdi (2006) rightly put it,

to emphasize everything is to emphasize nothing. This inverse relation between frequency

and informativeness has been argued to underly multiple linguistic phenomena. As forms

increase in frequency, they undergo a kind of rhetorical devaluation (Dahl 2001). Simply

put, for any form, if it is the only one in use, then it cannot carry any special meaning.

There is nothing else to be special in comparison to.

Now that we have defined the formal and functional cycles, there are several important

points to be made regarding the relationship between them. First, the effect of one cycle

often has implications for the other. For example, the addition of formal material almost

always comes with a more restricted and hence stronger meaning.4 This is a natural con-
3Translation McMahon (1994:165)
4The rare exception being truly empty obligatory pleonastic or expletive elements: “It’s raining.” Even

periphrastic do, which is redundant outside of emphatic affirmatives: “I DO want pizza”, originally carried
some information on its way to becoming obligatory (Ecay 2015)
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sequence of how semantic composition proceeds in a generally intersective fashion, to put

it set-theoretically. For example, “a black bear” is certainly more specific, and hence se-

mantically stronger than “a bear”. In the same way, we would expect ne...not to be more

specific in comparison to ne. This means that the first transition in the formal cycle is vir-

tually guaranteed to coincide with the entirety of a functional cycle, which is indeed what

we see in both English and French.

Second, the first transition of the formal cycle has a functional cycle tucked inside of

it. But, the second transition of the formal cycle does not correspond to another functional

cycle. That is, in the case of English and French the transition from embracing to post-

verbal negation does not correspond to the same functional trajectory as the preceding

transition from pre-verbal to embracing negation. This follows intuitively, again, from

the compositional nature of meaning. The lexical content of the post-verbal form not is a

proper subset of the embracing form ne...not, and thus we would not expect the post-verbal

form to have a stronger or more restricted meaning than the embracing form.

Third, while the functional cycle often takes place within the first transition of the for-

mal cycle, it can occur entirely independently of the formal cycle. For instance, one form

can be replaced by another of equal formal complexity. In Meillet’s estimation, the func-

tional cycle is achieved when “one adds new or different words”. Kiparsky and Condoravdi

(2006) show that this is exactly what takes place in the history of Greek. Historical forms of

negation in Greek are listed in Table 2.1, where emphatic negation is taken to be the seman-

tically stronger form in comparison to plain negation at any point in time.5 The sources of

the different forms are ordered chronologically. Importantly, there is a consistent transition

5We omit some of the forms for a concise presentation, but see (Kiparsky and Condoravdi 2006:1) for a
full list. Also, we should note that it is a bit of a misnomer to call any particular form the emphatic form.
There are always means for augmenting plain negation to make it emphatic (e.g. ‘at all’, ‘ever’, cf. Horn
(1989:452) and Israel (2011:258)). We might think of the forms in Table 2.1 as plain and frequently-used-
but-stronger-than-plain negation. We return to a particular interpretation of what is meant by emphasis in
Chapter 4.
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of forms between the two functions: the emphatic negation of the last millennium becomes

the plain negation of this millennium.

PLAIN EMPHATIC SOURCE

ου...τι ου-δε...εν Ancient Greek
(ου)δεν...τι δεν...τιποτε Early Medieval Greek
δεν...τιποτε δεν... πραμα Greek Dialects
δεν...πραμα δεν...απαντοξη Modern Cretan

Table 2.1: Historical forms of plain and emphatic negation in Greek

Crucially, at least some of these functional cycles occur without any concomitant formal

cycle. For example, if we were to compare the formal complexity of forms after Early

Medieval Greek, they would all be equivalent. All of them consist of a shared pre-verbal

element δεν along with a single post-verbal element. Thus, we see several embracing forms

come to express plain negation over time.

Taken together, these points indicate a particular logical relationship between the two

cycles. Namely, the formal cycle entails the functional cycle, but not vice versa. This

relationship is important because it sets a clear limit on how much an explanation for one

kind of cycle can extend to the other. That is, the conditions for the formal cycle can be,

at most, sufficient for the functional cycle. In the other direction, the conditions for the

functional cycle can be, at most, necessary conditions for the formal cycle. This means that

a full understanding of both cycles crucially rests on understanding the functional cycle.

For now we will largely be concerned with the realization of the functional cycle in

English. The crucial component of the functional cycle is the transition from and back to

a single plain form of negation. For the case of English and French, the functional cycle is

realized schematically as the transition from pre-verbal to embracing negation.

1. NEG V

2. NEG V (NEG)

22



3. NEG V NEG

As we noted above, this leaves out the important detail of semantic strength, but also shows

the frequent relation between the functional and formal cycles. An explanation of the

functional cycle in English must consist of one component: it must provide the conditions

for the transition from pre-verbal to embracing negation. Note that an explanation of the

formal cycle requires an explanation of the functional cycle, but not vice versa. With the

definition of both cycles, along with the relationship between them and their explanations,

we now turn to two ways of conceptualizing their causes.

2.3 Causes of the cycles

We have distinguished between the two kinds of cycles that Jespersen noted. The formal

cycle is constituted by a transition from and back to equally complex forms of negation.

The functional cycle is constituted by a particular transition from and back to a single form

being used to express plain negation. We now consider the two major kinds of scenarios

that have been used to conceptualize the causes of the cycles. Drawing on the terminology

of sound change, the two approaches can be though of as pull-chains and push-chains

involving the different forms of negation.

The pull-chain scenario finds its most natural application in the case of the formal cycle,

where a new form is pulled into expressing negation due to formal weakening. The old

form pulls in the new form. The push-chain scenario finds its most natural application in

the case of the functional cycle, where the old form is pushed out of expressing negation due

to functional weakening. The new form pushes out the old form. We assess the plausibility

of both scenarios before turning to how different process such as syntactic acquisition and

pragmatic use might cause the dynamics of each transition.
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2.3.1 A pull-chain scenario

While Jespersen did not distinguish between the cycles as we have, he did conceive of

change as the product of both formal and functional weakening and strengthening. In

particular, he took the role of formal phonetic weakening of the pre-verbal element as a

potential cause of change. The clearest interpretation of this cause is in terms of the first

transition of the formal cycle. But, it also has potential explanatory power with regards to

the second transition.

Regarding the first transition of the formal cycle, Jespersen noted that the pre-verbal

elements in English and French were prone to not receiving stress. This creates a prob-

lem, insofar as this lack of stress arguably also made negation hard to perceive (Jespersen

1917:5):

The incongruity between the notional importance and the formal insignif-

icance of the negative (often, perhaps, even the fear of the hearer failing to

perceive it) may then cause the speaker to add something to make the sense

perfectly clear to the hearer.

That is, given the importance of the distinction between affirmation and negation, he rea-

soned that some additional word is used “to increase the phonetic bulk” of the negative

signal to bolster its perception (Jespersen 1917:14). That is, the new embracing form is

pulled into expressing negation because of the weakness of the purely pre-verbal form.

There are several reasons to be skeptical of this kind of pull-chain scenario. First, pho-

netic weakening is quite common (Bybee 2003). This prevalence suggests that we should

be cautious in attributing to it a role in any particular morphosyntactic change. On balance,

phonetic weakening is neither necessary nor sufficient for morphosyntactic change. Sec-

ond, Labov (1994:547-599) offers a thorough critical evaluation of the functional preser-

vation of meaning in the face of sound change. By and large, sound change proceeds in a
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mechanical fashion without the conscious adjustment to avoid communicative pitfalls. This

is true even when such change leads to the loss of the distinction between negation and af-

firmation. Labov (2010:320) notes that in his own native north New Jersey dialect, the

pronunciation of the affirmative can and the negative can’t are at times indistinguishable:

A very common utterance among residents of this Northern New Jersey

area was “Did you say C–A–N or C–A–N–T?,” since the vowel is tense in

both words and the /t/ is often neutralized before a following apical obstruent

(as in “I can’t tell you”).

Despite the importance of the functional distinction, no additional material has been added

to differentiate the two senses. Third, (Posner 1985:177) argues from Italian dialect data

that the strength of the pre-verbal form is not correlated with whether the first stage of the

formal cycle takes place or not. Taken together, this suggests that a pull-chain scenario is

unlikely. Or, at the very least, formal weakening cannot be considered as a necessary or

sufficient cause of the first transition of the formal cycle.

Regarding the second transition of the formal cycle, it is useful to note that no such

transition takes place in the history of Greek. That is, in Table 2.1 we see that from Early

Medieval Greek onwards there is no formal weakening of either the pre- or post-verbal

elements. The crucial difference between the pre-verbal form in those cases and English

and French is that the first constitutes a full closed syllable, whereas the second two do not.

Thus, while a pull-chain scenario may not offer a causal explanation of the first transition,

the role of formal weakness may be important at different stages of the formal cycle. That

is, the loss of the pre-verbal element in the transition from the embracing form to the post-

verbal form may indeed be related to its formal weight.
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2.3.2 A push-chain scenario

Unsurprisingly, Jespersen prefigured the other major conception of the cycle insofar as he

took weakening and strengthening to be both formal and functional. Following Meillet,

more recent approaches have focused on the role of functional strengthening and weaken-

ing (Detges and Waltereit 2002, Hopper and Traugott 2003, Eckardt 2006, Kiparsky and

Condoravdi 2006, inter alia). The clearest interpretation of this cause is in terms of the

functional cycle as a kind of push-chain.

Crucially, these accounts assume that a stronger form is introduced, increases in fre-

quency due to overuse, and is thus weakened (Dahl 2001). That is, once the new more

emphatic form is introduced, its frequency increases due to pragmatic pressures. The sub-

sequent weakening of the new form follows from the information-theoretic properties of

signals: to emphasize everything is to emphasize nothing. As the incoming form becomes

obligatory, it takes over the expression of plain negation in its own right, pushing the orig-

inal form out. In the case of English and French, the obligatorification of the post-verbal

element pushes the purely pre-verbal form out of the picture. It should be noted that this

push-chain is all that is required to account for the functional cycle. That is, so long as one

form of plain negation is replaced by a formerly emphatic form, the functional cycle has

occurred. The push-chain ends with the end of the functional cycle.

This point is important insofar as some analyses have emphasized the completion of the

functional cycle as setting the stage for the second transition of the formal cycle. However,

these analyses treat the push chain as one between negative elements rather than negative

forms. For example, Detges and Waltereit (2002:187) argue that the loss of the pre-verbal

element follows from a kind of constructional iconicity where the simple meaning of plain

negation is expressed by a simple form. That is, the sentence just is not big enough for two

negative elements. Similarly, Frisch (1997) argues that the loss of the pre-verbal element

results from the unstable functional doublet created by the use of both ne and not in ne...not.

26



From this viewpoint, Burridge (1993:201) flips the reasoning of the pull-chain, noting that

the loss of the pre-verbal element can be seen as the effect, rather than the cause of the ad-

dition of the post-verbal element. In a certain sense, this is a kind of functionally-mediated

push-chain for the formal cycle. That is, the introduction of the post-verbal element pushes

the pre-verbal element out, due to a functional constraint on the number of negative ele-

ments in a sentence.

While the notion of simplicity in form to match simplicity in function is a compelling

one, it is not a necessary component in understanding the functional cycle as a push-chain.

However, this notion may again be helpful in understanding the second transition of the

formal cycle. That is, in addition to the formal weight of the pre-verbal element, some

preference for a correspondence between form and function may lead to its loss.

2.4 Explaining the cycles

With the mechanics and plausibility of the two kinds of scenarios in mind, it is useful to

pause and reconsider what there is to be explained. Given our focus on the history of

negation in English, the empirical facts to explain are the transitions from ne to ne...not and

from ne...not to not. Taken together, these constitute both a functional and formal cycle.

Importantly, we want to understand the role syntactic acquisition and pragmatic use might

play in such explanations.

Before addressing each transition in turn, we note two things. First, both use and acqui-

sition necessarily play a role in any change. This follows from the simple fact that learners

have to acquire a language to use it, and other speakers have to use a language for learners

to acquire it. So, in a certain trivial sense, both must play some role in language change.

In what follows, we will be interested more specifically in the way that use modifies the

evidence available to acquisition, and the way that acquisition acts on the evidence from
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ne (...not)

ne...not

ne...not

Use

Figure 2.8: Pragmatic use as the cause of the first transition

use. Second, our goal is not to explain why forms come about in the first place, but rather

how their introduction leads to change. That is, we are not aiming to explain why ne...not

is introduced into English. We take variation in the forms of negation as a consequence of

the broader fact of language variation.

Regarding the first transition, we noted that we can think of it as a kind of push-chain

where the pre-verbal form is being pushed out by the embracing form as it increases in fre-

quency. We are interested in what is causing the increase in the frequency of the embracing

form and thus the pushing. There are at least two possibilities. First, it could be the case

that pragmatic use leads to an increase in the embracing form. This compounds over time

to the point where the embracing form is used exclusively. This means that it is the only

form present in the linguistic evidence for learners. Thus, learners will only acquire the

embracing form. We can represent this schematically as in Figure 2.8, where the top row

indicates the grammatical knowledge of speakers and the lower row indicates their use of

the forms provide by their grammatical knowledge.

So, the upper left ne (...not) indicates grammatical knowledge that includes both the

pre-verbal and embracing form. We indicate the increase in the embracing form due to use

as the downwards arrow in Figure 2.8. The result of use is that embracing form is used

categorically in the evidence available to subsequent learners. While we only show a single

step, this process could just as well be the cumulative effect of use over several iterations.

The important things is that use is the force acting to steadily increase the frequency of the

28



ne (...not)

ne (...not)

ne...not
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Figure 2.9: Syntactic acquisition as the cause of the first transition

embracing form over time, as opposed to acquisition.

While pragmatic pressures are often taken to be the cause of the pushing in the push-

chain, there are certainly other options. A second possibility is that syntactic acquisition

leads to an increase in the embracing form. This compounds over time to the point where

the embracing form is the only one learned. Thus, it is the only one available to speakers to

use. We can represent this schematically as in Figure 2.9, where the top row again indicates

grammatical knowledge and the lower indicates the use of forms.

So, the upper left ne (...not) indicates grammatical knowledge that includes both the

pre-verbal and embracing form. But, there is no increase in the embracing form due to use.

We indicate the increase in the embracing form due to acquisition as the upwards arrow in

Figure 2.9. The result of acquisition is that only the embracing form is acquired. Again,

while we only show a single step, this could just as well be the result of several iterations.

Crucially, it is acquisition rather than use that is driving the increase in the embracing form.

While we can present these two causes in isolation, another possibility is that both use

and acquisition interact over time, giving rise to the embracing form. However, the impor-

tant thing in any case is the form that an explanation must take. That is, for pragmatic use

or syntactic acquisition to serve as explanations of the first transition we must demonstrate

how they cause the increase in the frequency of the embracing form. We need a model of

use or acquisition that makes both qualitative and quantitative predictions. That is, we need

a model that predicts that the first transition will happen, as well as how it will happen.

29



(ne...) not

not

not

Use

Figure 2.10: Pragmatic use as the cause of the second transition

(ne...) not

(ne...) not

not

Acq
uis

itio
n

Figure 2.11: Syntactic acquisition as the cause of the second transition

The same requirements holds for the second transition. We can represent what a prag-

matic or syntactic explanation would like in Figures 2.10 and 2.11. For either to serve as an

explanation, we would have to demonstrate how they cause the increase in not over time.

Note that these requirements are independent of whether it makes sense to conceive of the

second transition as a push-chain or whether we think that use or acquisition play any role

whatsoever. In fact, it serves as an important check on any models we posit for the first

transition. For example, if we have no reason to think that pragmatic use is what drives the

second transition, then a model of the first transition based on use should not predict the

second transition.

Summary

In this chapter we made the important terminological distinction between the formal and

functional Jespersen cycles and noted the logical relationship between the two phenomena.

An explanation of the formal cycle requires an explanation of the functional cycle, but
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not vice versa. importantly, given that the functional cycle can occur independently of the

formal cycle, an explanation of the first may be fundamentally different from an explanation

of the second. This guides our approach to explaining the two processes in the history of

English, observed as the transitions from ne to ne...not to not.

In Part I we pursue an explanation of the functional cycle based on pragmatics. We

present a mathematical framework for modeling how meaning is signaled in a population

over time and apply it to modeling how pragmatic use leads to the transition from ne to

ne...not, but not the transition from ne...not to not. In Part II we turn to the formal cycle

as a whole and evaluate whether a model of syntactic acquisition can explain either of the

transitions, from ne to ne...not and from ne...not to not.
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Part I

The Functional Cycle
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Chapter 3

Evolutionary Game Theory

We repeat most emphatically that our theory is thoroughly static. A dynamic theory

would unquestionably be more complete and preferable.

–Von Neumann and Morgenstern (1944:44-45)

We shall now take up the “mass-action” interpretation of equilibrium points...It is

unnecessary to assume that the participants have full knowledge of the total structure of

the game, or the ability and inclination to go through any complex reasoning process.

–Nash (1950b:21)

Game theory is a branch of applied mathematics originally developed by Von Neumann

and Morgenstern (1944) that models human decision-making when the actions, outcomes,

and preferences of multiple agents are intertwined. This differs from decision theory, where

a single agent is faced with a choice to bring about his or her most preferred outcome.

Rather, a game arises when the choices made by each player crucially depend on those

made by others. It is this interdependence that distinguishes game theory and makes it such

a useful tool in understanding social interactions, from the routes we choose to drive to
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work to the way we use words to mean things.

The rest of this chapter provides an outline of the crucial concepts for our application

of evolutionary game theory to language change. First, we offer a general overview of the

dimensions along which games vary. We focus on two simple games, and develop intu-

itions about expected behavior. Second, we define a set of solution concepts that can be

applied to predict behavior in the two simple games. We discuss the limitations of solutions

concepts for predicting behavior. Third, we supply game dynamics and examine the trajec-

tory of the population under those game dynamics for the two simple games. We then we

define signaling games as a natural model of communication and present the simplest case.

Finally, we present a generalized means of describing the dynamics of arbitrarily complex

signaling games.

3.1 The role of rationality

Taking up one aspect of this first example, we will assume that the vast majority of people

would prefer to avoid car accidents. When driving a car, this is straightforwardly achievable

by always being on the opposite side of the road of the next oncoming vehicle. We can think

about this from the perspective of two drivers approaching each other. Each driver has the

choice of driving on the left or the right. Both parties would prefer to coordinate on driving

on whichever side. The side of the road that best achieves the outcome of not crashing is

irrelevant, but it depends on how both parties drive. If both parties choose to drive on the

right, from their own perspective, then they will avoid each other. Likewise if they choose

to drive on the left.

The solutions to this interaction are readily apparent, everyone should choose one side

of the road or the other. Provided that both drivers choose the same side, then neither has

an incentive to switch. This fundamental insight into behavior in games is what defines a
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Nash equilibrium: the action of all agents is optimal given the choices of all other agents.

Yet, grounding this solution in rationalistic terms requires a little more effort. First, it

requires that all agents are rational, acting to maximize their own benefit. This is implicit

in our example above, most humans prefer to avoid being injured. Second, it requires that

players have common knowledge of the game structure, including the actions available to all

players, the outcomes of different combinations, and know that they all know these things,

and so forth. At least for this game it follows naturally from the number of sides of the road

there are, and the ability to reason about collisions, but it is not always so straightforward.

Finally, it requires that agents have equilibrium knowledge, that they are able to accurately

anticipate the actions of other players. This last requirement may seem readily apparent, at

least for the example of driving, but it deserves further comment.

Depending on the country, we know that everyone will drive on one side of the road.

In fact, there are laws and legal repercussion for not doing so. Yet, if we abstract away

from our everyday experience in this particular case, the problem becomes clearer. For

example, imagine that you are asked to choose between two options, that another person

has been asked to choose between the same two options, that both of you have received the

same instructions, and that you will both succeed if you choose the same option. These

starker terms may seem to border on the absurd, but they bring the problem into relief.

Their absurdity lies in the fact that it does not do to reason about this option or that option,

because there is nothing to distinguish the two. There is no thisness or thatness to motivate

one choice or the other. That is, there is no rule of the road that simply states ”Drive on the

right”. Instead, we are faced with the problem of deciding the undecidable, as Aristotle, a

bit sarcastically put it in his On the Heavens:

[A] man, being just as hungry as thirsty, and placed in between food and

drink, must necessarily remain where he is and starve to death.
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We are particularly good at looking for reasons why one option is preferable, or more

likely to be chosen than another. For example, if we were to enrich our description above

to a choice between an option A or an option B, an intuitive rationale would be to choose A.

The reason for doing so being that A comes first in the alphabet, and that both people might

expect each other to know this. There is some intuitive thisness about option A that we

can leverage on the assumption that it will be readily apparent to others as well. Schelling

(1960:57) called these partial escapes from the dilemma of equilibrium knowledge focal

points “for each person’s expectation of what the other expects him to expect to be ex-

pected to do.” In the pre-cellular age, Schelling posed the following scenario: “Tomorrow

you have to meet a stranger in NYC. Where and when do you meet them?” The intuitive

meeting place of Schelling’s day was Grand Central station at noon. The rationale for both

choices is that they are prominent in their respective geographical and temporal landscapes.

Experimental results demonstrate that people are generally quite good at grounding their

coordination via reasoning about these kinds of focal points (Mehta et al. 1994a,b, Bardsley

et al. 2010).

But, even with our ability to reason about what we might expect others to expect us

to expect them to expect us to do, we still cannot perfectly anticipate what others will do.

That is, focal points are useful heuristics, but they are never foolproof: not everyone would

choose option A or grand central station at noon. In fact, it would not be foolish for example

to suggest meeting at Times Square at noon. The problem of justifying equilibrium in

general still remains. Nash himself was well aware of this problem, which was in part what

prompted his consideration of a “mass-action” interpretation of equilibria.1 In short, this

change in perspective moves from focusing on a single agent to a population of agents that

1The main motivation was understanding mixed Nash equilibria, which involve some probability distri-
bution over actions. Nash (1950b,a, 1951) proved that such an equilibrium is guaranteed to exist. What it
means for an individual to adopt the corresponding mixed strategy is not unproblematic. For a discussion of
these problems see Aumann (1985), and for the population approach see Rosenthal (1979).
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need not have either common knowledge or equilibrium knowledge. This perspective was

naturally taken up in applications of game theory to biology, where loosening some of the

equilibrium requirements was both reasonable and necessary (Maynard Smith 1982). This

move also came with the reinterpretation of the game-theoretic machinery: actions were not

choices to be made by the individual, but genetically pre-determined responses; the utility

derived from a particular outcome was not a numerical representation of preferences, but a

measure of Darwinian reproductive fitness.

This turn towards the biological allowed for further developments towards the explicitly

dynamic theories that Von Neumann and Morgenstern (1944) envisioned. Drawing on the

mechanics of population genetics, Taylor and Jonker (1978) offered the first evolutionary

game dynamics, christened the replicator dynamics by Eigen and Schuster (1979), which

explicitly defined how a population changes over time due to biological reproduction. This

new approach allowed for insights into not just whether a population would remain at some

equilibrium state if it started there, but also if the population would reach that equilibrium

state in the first place. While successively detailed refinements of Nash equilibria were

proposed with more and more unrealistic assumptions, evolutionary game theory offered a

means of understanding equilibrium behavior under much simpler assumptions.

Despite its biological roots, however, work in evolutionary game theory has discovered

profound connections with the rationalistic approach to equilibrium behavior. That is, the

equilibrium predictions of the rationalistic approach often correspond to the effect of natu-

ral selection captured by evolutionary game dynamics. Perhaps more surprisingly, some of

these game dynamics can be derived not just from the mechanics of biological reproduc-

tion, but from particular kinds of decision making or behavior. For example, the replicator

dynamics defined by Taylor and Jonker (1978) can also be derived from particular forms

of imitation (Schlag 1998, Björnerstedt and Weibull 1996) and learning (Börgers and Sarin

1997). The fact that such diverse foundations yield the same dynamics is both surprising
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and compelling. More importantly, these commonalities show that if we interpret evolu-

tion in this broader sense that includes both biological and social change, then evolutionary

game theory can serve as a powerful tool.

The rest of this chapter provides an outline of the crucial concepts for our application

of evolutionary game theory to language change. First, we offer a general overview of the

dimensions along which games vary. We focus on two simple games, and develop intu-

itions about expected behavior. Second, we define a set of solution concepts that can be

applied to predict behavior in the two simple games. We discuss the limitations of solutions

concepts for predicting behavior. Third, we supply game dynamics and examine the trajec-

tory of the population under those game dynamics for the two simple games. We then we

define signaling games as a natural model of communication and present the simplest case.

Finally, we present a generalized means of describing the dynamics of arbitrarily complex

signaling games.

3.2 A typology of games

There are several major dimensions along which games can vary.2 Here we focus on several

dimensions that are relevant for the case of communication and thus language change.

The first dimension we will consider is the order which players make their decisions. If

all players make a decision at the same time, then the game is a simultaneous game. If

players make their decisions in a particular order, then the game is a sequential game.

Communication is sequential insofar as we separate out the transmission and interpretation

of a signal. Thus, we will be concerned with sequential games.

The second dimension along which games vary is whether or not players have pri-

2See Dixit et al. (2004) for a gentle introduction to game theory, Tadelis (2013) for a thorough but bal-
anced introduction, and Osborne and Rubinstein (1994) and Fudenberg and Tirole (1991) for more advanced
mathematical treatments.
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vate information that affects others’ payoffs. If players do have private information then

the game is one incomplete information, otherwise it is one of complete information. Intu-

itively, this is the crucial aspect of communication. Speakers have some private information

that hearers do not. We cannot read minds, thus we have to communicate. This asymmetry

of information is crucially tied to the third dimension along which games vary. Namely,

if the set of actions available to the different players differs or if the payoff from the same

action differs, then the game is considered asymmetric. If the actions are identical for all

players and if the outcome of actions are independent of who takes them then the game is

symmetric. There are clearly two distinct roles in the act of communication, thus we will

be concerned with asymmetric sequential games of incomplete information.

In this section we introduce to simple simultaneous games of complete information.

We develop the intuitions required for the application of equilibrium concepts and dynamic

analysis before moving on to the more complicated asymmetric sequential games of in-

complete information known as signaling games that will be used in subsequent analysis.

The first simple example we consider is parallel to the case of choosing which side of

the road to drive on, and is often referred to as a coordination game. There are two players

who we will refer to as Row and Column, for reasons that will become clear later on. Each

player has a choice between two options, A and B. We we will refer to these options as pure

strategies.3 That is, the set of pure strategies available to Row is SR = {A,B}, and the set

of actions available to Column is SC = {A,B}. The set of all combinations of Row and

Column strategies constitute the strategy profiles of the game. That is, for each si ∈ SR

and sj ∈ SC , the tuple 〈si, sj〉 constitutes a strategy profile.

Now, we can capture the intuition that both players prefer to avoid crashing by defining

utility functions over outcomes for both players. Row’s utility function is a function from

3This is in contrast to mixed strategies, which specifiy a probability distribution over pure sender strate-
gies, σ = p1s1 + ...+ pksk, where

∑
i pi = 1.
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A B

A 1, 1 0, 0
B 0, 0 1, 1

Table 3.1: Coordination Game

strategy profiles to real numbers UR : 〈si, sj〉 → R. Likewise Column’s utility function is

a function from strategy profiles to real numbers UC : 〈sj, si〉 → R. In fact, we can drop

the subscripts entirely, if we define the two utility functions in the following way.

U(si, sj) = UR(si, sj) = UC(sj, si) =

 1 if si = sj

0 else
(3.1)

Note that utilities are only important insofar as they represent an ordinal ranking over out-

comes. In other words, there is nothing particularly special about 0 and 1 as opposed to say

3.277 and 110 other than the fact that in both cases the first is less than the second. How-

ever, there is something important about the fact that U(A,A) = U(B,B). This simply

reflects the fact that either rule of the road is equally useful for avoiding collisions.

With these utility functions defined, we can present the game in a slightly more com-

pact normal form as in Table 3.1. The strategies for Row and Column are listed to the left

and above respectively, hence the names. By convention, for each cell of Table 3.1, the

payoff for Row is listed first, followed by the payoff for Column. The reason why coordi-

nation games are symmetric is that both UR and UC define symmetric matrices. Intuitively,

we could rotate Table 3.1 around its diagonal and nothing would change; the payoffs for

one player are the transpose of the other. In fact, we could represent the payoffs in this

symmetric game as a matrix that captures this symmetry.

U(si, sj) =

1 0

0 1

 (3.2)
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H T

H 0, 1 1, 0
T 1, 0 0, 1

Table 3.2: Matching Pennies

With these definitions in place, we return to the reasoning above. Namely, both players

want to coordinate on playing either A or B. If one player chooses A, then the other should

as well. If one player chooses B, then the other should as well. But, there is no guarantee

that the other player will choose A or B. Again, simply knowing that both would be good

outcomes does not guarantee that both players will choose one or the other.

We can modify the game in a simple but substantial way by altering the payoff structure.

That is, imagine the case where the utility functions of the sender and receiver are defined

as the following.

UR(si, sj) =

 1 if si 6= sj

0 else
(3.3)

UC(sj, si) =

 1 if si = sj

0 else
(3.4)

That is, the payoffs of Row are diametrically opposed to that of Column. This game, called

matching pennies has the following simple rules. Both players choose between heads H or

tails T . One player wins if the coins match, and the other player wins if the coins do not

match. The resulting game is summarized in Table 3.2. Matching pennies is a constant-

sum asymmetric game, the components of every cell in Table 3.2 sum to a constant. Except

in the trivial case where all outcomes yield the same utility for both players, constant-sum

games are asymmetric. That is, we cannot represent the payoffs as a single value without

losing crucial information.
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Unlike the coordination game, players want to anti-coordinate with each other. That

is, if Row plays H , then Column would prefer to play H , but if Column plays H then

Row would prefer to play T . This poses another interesting problem. If both players have

opposing interests, how should they act? It is clearly not feasible to pick one strategy or

the other, as this would leave either player open to exploitation by the other. It would seem

then that the best both players can do is to flip a coin and play whichever side comes up.

Before turning to defining equilibria, we need to note one last aspect of utility. As a

case in point, let us assume that when playing matching pennies as Row, we know that our

opponent has a certain probability of playing H , and thus a certain probability of playing

T . Let p be the probability that our opponent plays H . Given that we are never certain of

which strategy our opponent will play, we want to know the expected utility of choosing

one strategy or another. With slight abuse of notation, this is just the following.4

E[UR(H)] = pUR(H,H) + (1− p)UR(H,T ) = (1− p) (3.5)

Expected utility is crucial in determining behavior in cases where there is uncertainty due

to probabilistic behavior.

3.3 Equilibria as solution concepts

A game by itself does not constitute a model in the technical sense. It is a mathemati-

cal structure that describes the players preferences and strategies, but it does not predict

their behavior. To do so it must be supplemented with a solution concept that predicts the

conditions under which particular outcomes will obtain. Here we define two related solu-

tion concepts, note how they apply to the simple games we defined above, and note their

4This is just the expected value of a random variable. To take a simple example, imagine if we flipped a
fair coin, counting heads as a 1 and tails as a 0, then the expected value of the coin flip would be 1

2
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limitations for predicting behavior.

3.3.1 Nash Equilbria

Perhaps the most widely used solution concept is that of a Nash equilibrium, which speci-

fies when players have an incentive to unilaterally deviate from a given strategy profile. We

provide a definition and apply the concept to our simple games.

For a given strategy profile where si is the strategy of a particular player, let s−i be the

set of strategies for all other players. We have the following definition.

Definition 1. A strategy profile 〈s∗i , s∗−i〉 is a Nash equilibrium if and only if:

• ∀i, ∀si ∈ Si, such that si 6= s∗i , E[U(s∗i , s
∗
−i)] ≥ E[U(si, s

∗
−i)]

This simply states that no players can do better by individually changing his or her

strategy from the equilibrium profile. No one has an incentive to change, so everyone keeps

doing what they are doing, hence the term equilibrium. That is, every player’s current strat-

egy is a best response to everyone else’s. Note that this best response need not be unique to

constitute an equilibrium. This follows from the fact that the inequalities in the definition

are not strict. We can, however, impose uniqueness in these best responses by requiring

that the inequalities in the definition be strict. A strict Nash equilibrium results, meaning

that players can only ever do worse if they unilaterally deviate from the equilibrium.

We can now apply this solution concept to the games we described above. First, we

look at the coordination game. We already noted that coordinating on one strategy or the

other seems to be an intuitive solution. The conditions for 〈A,A〉 and 〈B,B〉 to be Nash

equilibrium are the following.

E[U(A,A)] ≥ E[U(B,A)] (3.6)
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E[U(B,B)] ≥ E[U(A,B)] (3.7)

In fact, looking at the payoffs in Table 3.1, both of these outcomes meet the definition of a

strict Nash equilibrium. Both players can only do worse by deviating from the equilibrium.

There is one last kind of equilibrium to consider. Imagine that both players choose

A with probability p and B with probability (1 − p). The expected utility for both pure

strategies are the following.

E[U(A)] = pU(A,A) + (1− p)U(A,B) = p (3.8)

E[U(B)] = pU(B,A) + (1− p)U(B,B) = (1− p) (3.9)

Note that these are equal to each other when p = 1
2
. Now suppose that an agent plays a

mixed strategy σ that strikes this balance by playing each strategy half of the time. We

can show that this mixed strategy is a Nash equilibrium by comparing how another mixed

strategy would fare against it. First, note that the expected utility of σ against itself is 1
2
.

E[U(σ, σ)] =
1

2
· 1

2
U(A,A) +

1

2
· 1

2
U(A,B) +

1

2
· 1

2
U(B,A) +

1

2
· 1

2
U(B,B)

=
1

2

(3.10)

Second, consider the expected utility of any alternate strategy σ′ that playsAwith probabil-

ity p and B with probability (1−p). Note that this includes the pure strategies as extremes,

A where p = 1 and B where p = 0.
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E[U(σ′, σ)] =
1

2
· pU(A,A) +

1

2
· pU(A,B) +

1

2
· (1− p)U(B,A)

+
1

2
· (1− p)U(B,B)

=
1

2

(3.11)

That is, if the other player plays according to strategy σ, then no matter what the other

does, they will receive a fixed expected utility. This means that if the other player plays

each option evenly, there is nothing to be gained from switching from the same strategy.

That is, any mixed strategy will do just as well.

E[UR(σ, σ)] ≥ E[UR(σ′, σ)] (3.12)

Thus, there are two pure Nash equilbria and one mixed Nash equilibria in this coordina-

tion game. This mixed Nash equilibrium is the unsatisfying solution mocked by Aristotle

above. That is, by committing to neither, both players are worse off; each player receives

an expected utility of 1
2

compared to the expected utility of 1 at the pure strategy equilibria.

But intuitively, this indecision is precarious, any slight reason to choose one or the other

would suffice to break the symmetry and motivate one solution or the other. We find that

this intuition is indeed the case when we turn to dynamics below.

In contrast to the coordination game, there are no pure strategy equilibrium for matching

pennies. For any pure strategy profile, one of the players will have an incentive to change

her strategy: for 〈A,A〉 and 〈B,B〉, Row will have an incentive to deviate; 〈A,B〉 and

〈B,A〉, Column will have an incentive to deviate. In fact the mixed strategy where both

players split the difference between heads and tails is the unique Nash equilibrium. To see

this note that the mixed strategy yields an expected utility of 1
2

and that any alternate mixed

strategy also yields an expected utility of 1
2
. Note that since any mixed strategy yields the
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same payoff against the mixed strategy, then it is not strict.

3.3.2 Evolutionarily Stable Strategies

While the concept of a Nash equilibrium is particularly useful, we we are interested not

just in the behavior of two individuals, but rather the aggregate behavior of a population.

Thus, we might want a broader notion of equilibrium. In particular, we might ask whether

an entire population is susceptible to change, rather than the behavior of two individuals.

We define a criterion that captures this level of description, note its limitations, and apply

it to our simple games.

At the population level, the most relevant concept is that of an evolutionarily stable

strategy (Maynard Smith and Price 1973, Maynard Smith 1982). In a symmetric game

where U(s∗, s) is the payoff to an agent using strategy s∗ against an agent using strategy s,

we have the following definition.

Definition 2. A strategy s∗ is an evolutionarily stable strategy (ESS) if and only if, for all

alternate strategies s:

• U(s∗, s∗) ≥ U(s, s∗)

• If U(s∗, s∗) = U(s, s∗) then U(s∗, s) > U(s, s)

Note that the first condition is the same as that of a Nash equilibrium. The second

condition limits evolutionarily stable strategies to a proper subset of Nash equilibria. A

straightforward interpretation of this definition can be had by imagining a population com-

posed entirely of individuals playing s∗. Suppose some small proportion, 1 � ε > 0,

of individuals playing the alternative s is introduced into the population. The following

inequality holds if and only if s∗ is an ESS.

(1− ε)U(s∗, s∗) + εU(s∗, s) > (1− ε)U(s, s∗) + εU(s, s) (3.13)
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For any sufficiently small influx of the alternate strategy, the expected payoff of the incum-

bent strategy in the resulting population is strictly greater than that of the alternate. Intu-

itively, s∗ is stable because selection will carry the population back to playing s∗. Loosely

speaking, a strategy is evolutionarily stable if it is resistant to invasion by alternate strate-

gies. That is, when an entire population plays the incumbent strategy the incumbents do

at least as well as an alternate. If the alternate does as well, then the incumbent strategy

should do better than an alternate in an all-alternate population.

While evolutionarily stable strategies are a useful refinement of Nash equilibria, they

only offer particular kinds of insight. That is, under the standard equilibrium methodology

(Huttegger and Zollman 2013), the state of a population is often justified by some special

status. For example, the persistence of particular states of the population is due to it being

an evolutionarily stable strategy. However, this kind of explanation looses some of its

explanatory bite if there either multiple evolutionarily stable strategies, or none. If we apply

the solution concept to the games we described above, these problems becomes clear. First,

we look at the coordination game. We can use the reformulation of the criterion above to

give the conditions for 〈A,A〉 and 〈B,B〉 to be evolutionarily stable strategies.

(1− ε)U(A,A) + εU(A,B) > (1− ε)U(B,A) + εU(B,B) (3.14)

(1− ε)U(B,B) + εU(B,A) > (1− ε)U(A,B) + εU(A,A) (3.15)

That is both of the pure strategy Nash equilibria for the coordination game are evolution-

arily stable strategies if 1
2
> ε. Assuming that 1 � ε > 0, this is guaranteed, but this

condition also has another interpretation. That is, 1
2
> ε defines the invasion barrier, the

influx required to move the population from one equilibrium to the other. This makes in-

tuitive sense, if the population of the United States moved to the United Kingdom, and
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insisted on maintaining the same traffic patterns, then everyone would best be served by

adopting the majority pattern.

We can also consider the condition for the mixed Nash equilibrium to be an evolution-

arily stable strategy.

(1− ε)U(σ, σ) + εU(σ,A) > (1− ε)U(A, σ) + εU(A,A) (3.16)

Remembering from above that the expected utility of the mixed strategy against itself and

any strategy against the mixed strategy are both 1
2
, we know that the mixed strategy state is

not evolutionarily stable. Note that the conditions for B to invade the mixed state are the

same as for A. The invariability of the mixed strategy state validates our intuitions about

its instability.

Turning to asymmetric games, such as matching pennies, where players have different

roles, we are actually concerned with two populations. To determine the stability of the

two populations we can consider a symmetrized version of the game, where individuals

have strategies for both roles. A strategy in the symmetrized game is thus a strategy profile

of the asymmetric game. In the case of symmetrized asymmetric games, the criterion for

stability is actually simpler. A strategy profile is evolutionarily stable if and only if it

constitutes a strict Nash equilibrium in the original asymmetric game (Selten 1980). This

means that the mixed strategy in matching pennies is not an evolutionarily stable strategy,

the game simply does not have one. Thus, the justification of a particular state of the

population as an evolutionarily stable strategy is off the table.

Maynard Smith (1982:8) noted both of these problematic conditions, but considered

them to be ultimately unproblematic insofar as they are obvious exceptions. However, the

obviousness of exceptions becomes less clear as games become more complex. Huttegger

and Zollman (2013) provide a compelling example of where intuitions fail and focusing on
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equilibria is particularly misleading. The solution to these limitations is to use both static

equilibrium concepts along with an explicitly dynamic perspective.

3.4 Evolutionary game dynamics

While the term suggests a dynamic interpretation, equilibria, including evolutionarily sta-

ble strategies, are static solution concepts. They tell us whether a strategy is resistant to

invasion or innovation, but tell us nothing about how the population got there in the first

place, or where it might go next. To understand how a population changes over time, a

particular set of game dynamics must be supplied.5 These provide a description for how a

population, or populations, changes from one point in time to the next.

In what follows we will focus on the replicator dynamics. The reasons for doing so

are twofold. First, they are the most extensively studied dynamics and share a number of

mathematical properties with a larger set of game dynamics (Hofbauer and Sigmund 1998).

This makes establishing results and connecting them to a broader class of dynamics more

straightforward. They have also found broad application in modeling economic (Samuelson

1997, Cressman 2003) and social behavior (Skyrms 1996, 2004, 2010). Second, they have

a natural interoperation as particular form of learning (Börgers and Sarin 1997, Fudenberg

and Levine 1998), which we will return to later on. We begin by defining the form of

the replicator dynamics for symmetric and asymmetric games. We then outline general

methods for assessing the stability of particular states. With these definitions and methods

in place, we return to our simple games from above.

The intuition behind the replicator dynamics is that more successful strategies increase

5See McElreath and Boyd (2008) for a general introduction to the mathematical modeling of social evo-
lution, Gintis (2000) for a comprehensive introduction to evolutionary game theory, and Weibull (1997) and
Hofbauer and Sigmund (1998) for more advanced mathematical treatments. For a general introduction to
non-linear dynamical systems see Strogatz (2014) and Hirsch and Smale (1974) for a more mathematical
treatment. See Sandholm (2010) for a thorough and insightful grounding of evolutionary game dynamics in
individual behavior.

49



in frequency. In particular, strategies that are more successful than the population average

increase in share of the population. For the case of a symmetric game, let x be a vector that

represents the composition of the population, where xi represents the proportion of si, and

the utility function is represented by the matrix A. The change of xi in the population can

be given as the following.

ẋi = xi((Ax)i − xTAx) (3.17)

We begin by interpreting the second part of the equation. The first portion simply provides

the expected utility of si given the current composition of the population. The second

portion simply provides the average expected utility given the current composition of the

population. The difference between these two is how much better a strategy si does than

the average. If si does better than the average, then its share of the population will increase;

if si does worse than the average, then its share will decrease. This increase or decreases is

weighted by the current proportion of strategy in the population.

As a simple case in point, let us return to the coordination game from above. To start,

let p be the proportion of the population playing A. Then the population vector is given by

the following.

x =

xA
xB

 (3.18)

The payoff matrix, is given by the following.

A =

1 0

0 1

 (3.19)

Since there are only two strategies in the symmetric game, we only need to keep track
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of the proportion playing one, xA = 1 − xB. For simplicity, we will keep track of the

proportion playing A, so we can drop the subscript, and note that it evolves according to

the following replicator dynamic.

ẋ = x(1− x)(2x− 1) (3.20)

The rest points of the replicator dynamic for the coordination game are the points where

this equation is equal to zero. That is, they are the points where the motion of the system

is at rest. The rest points of the dynamic are exactly the states that correspond to Nash

equilibria. Namely, when x = 0, 1, 1
2
.

We can define the parallel case for asymmetric games, where there are two populations

denoted by x and y, along with two payoff matrices A and B

ẋi = xi((Ay)i − xTAy) (3.21)

ẏi = yi((Bx)i − yTBx) (3.22)

For matching pennies, we define the following components.

x =

xH
xT

 y =

yH
yT

 (3.23)

The payoff matrix, is given by the following.

A =

0 1

1 0

 B =

1 0

0 1

 (3.24)

Again, simplifying our notation by omitting subscripts, these yield the following coupled
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replicator dynamics.

ẋ = x(1− x)(1− 2y)

ẏ = y(1− y)(2x− 1)

(3.25)

Note that the rest points of the replicator dynamics for matching pennies include more

than the single Nash equilibrium we noted. That is, the point (x, y) = (1, 1) where both

populations only play heads is a rest point of the dynamics. However, this is certainly not

an outcome we would expect. Thus, we need more information than just the rest points. We

are, however, interested in the relation between the entire state space and these rest points.

In particular, we are interested in whether the populations will move towards or away from

particular states. That is, we want to know about the stability of the rest points.

A bit more formally, for a state space x = {x1, x2, ..., xn}, a solution trajectory through

the state space over time x(t) is governed by the differential equations defined by the

game dynamics ẋ = {ẋ1, ẋ2, ..., ẋn}. The rest points of the system are states where the

differential equations vanish; any trajectory starting at a rest point will remain there at rest.

For a rest point x∗, if x(0) = x∗ then x(t) = x∗ for all times t > 0, since ẋ = 0. The

criteria we listed above, then, require the following definition.

Definition 3. A rest point x∗ is asymptotically stable if and only if:

1. For every neighborhood V of x∗, there is a neighborhood V ′ of x∗ such that if x(0) ∈

V ′ then x(t) ∈ V for all t > 0.

2. For some ε > 0, for all x(0) such that ε > ‖x(0)− x∗‖, then x(t)→ x∗ as t→∞.

The first condition requires that all trajectories that start near a rest point stay near it.

Small perturbations from the rest point do not lead the system away from the rest point,

but rather to some nearby state. If only this first condition is met, then the rest point is
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weakly or Liapunov stable. The second condition requires that all points near to the rest

point converge to it in the limit. The set of all states that converge to a rest point constitute

its basin of attraction. If both these conditions are met, then the rest point is strongly or

asymptotically stable. If neither of these conditions is met, then the rest point is unstable.

Now that we have specified the relevant rest points, we want to know whether they are

stable. That is, we want to know if the game dynamic will carry the population towards

the rest points or away from them. In a single dimension, we evaluate the derivative of the

dynamic at the rest points. If it is positive, then the rest point is unstable. If it is negative,

then the rest point is asymptotically stable. The intuitive notion here is that rest points

with a positive derivative correspond to “hills” and rest points with a negative derivative

correspond to “valleys”. An object may be at rest at the top of a hill. But, if we give it a

small push, it will roll down one of the sides of the hill. An object in a valley between two

hills will also be at rest. And, if we give it a small push, it will return to this position. All

we are doing when we evaluate the derivative is finding out whether the population will be

carried away from the rest point or back to it. We are finding out whether it is a “hill” or a

“valley” under the game dynamic.

The derivative of the replicator dynamic of the coordination game is given by the fol-

lowing. Note that if we evaluate this at each of the rest points, we get the expected results.

λ = −6x2 + 6x− 1 (3.26)

Both of the evolutionarily stable strategies are asymptotically stable, whereas the mixed

strategy equilibrium is unstable.

In more than one dimension, we can gain insight into the behavior of the system near a

rest point by considering its linearization. That is, just like taking the derivative of function

in one dimension gives us a line, we can do the same thing for more dimensions (Hirsch
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and Smale 1974). To do so we examine the eigenvalues of the Jacobian, which is matrix

of all first-order partial derivatives of a set of vector-valued function. f = {f1, .., fm},

x = {x1, .., xn}

J =
df

dx
=


∂f1
x1
· · · ∂f1

xn

... . . . ...

∂fm
x1
· · · ∂fm

xn

 (3.27)

For the case of matching pennies, we have two dimensions, and thus the following

Jacobian and eigenvalues.

J =

(2x− 1)(2y − 1) −2x(1− x)

2y(1− y) −(2x− 1)(2y − 1)

 (3.28)

λ1 =
√

12x2y2 − 12x2y + 4x2 − 12xy2 + 12xy − 4x+ 4y2 − 4y + 1

λ2 = −
√

12x2y2 − 12x2y + 4x2 − 12xy2 + 12xy − 4x+ 4y2 − 4y + 1

(3.29)

For any of the rest points along the edge of the state space that are not equilibria we have

at least one positive eigenvalue, thus they are all unstable. Turning to the mixed strategy

equilibrium, we have purely imaginary eigenvalues, λ1 = − i
2
, λ2 = i

2
. These suggest that

the mixed strategy is a center, around which the system orbits. However, we have to be

cautious in interpreting these results.

The trouble lies with the fact that the center is not hyperbolic, because the real parts

of its eigenvalues are all equal to zero. The Hartman-Grobman theorem states that if a

rest point is hyperbolic, then the linearization at that point gives an accurate picture of the

dynamics. However, when the rest point is not hyperbolic, then there is no guarantee that

the linearization yields an accurate picture. The simplest means of testing the linearization
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Figure 3.1: Phase diagram of replicator dynamics for matching pennies

is to compare the result to numerical simulations. For example, in Figure 3.4 we have

numerically constructed a phase diagram of the replicator dynamics. And indeed, we find

that the linearization accurately predicts the behavior of the system near the rest point. The

populations circle along closed orbits around the center in a counter-clockwise manner.

In what follows we will largely use numerical simulations to explore the behavior of

more complicated systems, but with reference to the concepts we have introduced in this

section. This will allow us to explore more and more complicated systems.

3.5 Signaling games

Now that we have outlined both the static and dynamic tools used to understand behavior in

games, we turn to the asymmetric sequential games of incomplete information, signaling
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games, that we will use subsequently to understand both communication and language

change. First, signaling games are introduced. The relevant structures and definitions are

presented along with a canonical example. Second, we consider the solution concepts

from the previous sections. This allows us to determine the existence and characteristics of

equilibria. Finally, we consider how signaling evolves according to the replicator dynamics.

It should be noted that there are multiple traditions that have contributed to the develop-

ment of signaling games. In the Economic tradition the work of Harsanyi (1967, 1968a,b)

on games of incomplete information and Spence’s (1973) model of job signaling have been

central. In the Philosophical tradition, the work of Lewis (1969) has been the most influ-

ential. His response to the Quinean skepticism that meaning could arise by convention has

had the most direct impact on Linguistics. This account, however, rests on the assumption

that speakers and hearers have perfectly-aligned interests. This assumption will figure in

the exposition of this section, mostly for the simplicity it affords us in the examples. In the

next section we turn towards the consequences of loosening it.

Signaling games offer an intuitive model of communication between agents. A signal-

ing game consists of two players, a sender and a receiver. The sender has some private

piece of information, t ∈ T , drawn according to some commonly known probability dis-

tribution, δ. The piece of information can be thought of as some fact about the state of the

world. For example, we might think of it as information that the sender wants to convey to

the receiver. The sender chooses a message, m ∈ M , to send to the receiver. The receiver

does not know what state of the world actually holds and must choose an action, a ∈ A,

as an interpretation of the message sent. That is, the receiver is faced with the problem of

inferring the state of the sender given the message.

The outcome of the game is determined by the state of the sender, the message sent,

and the action taken by the receiver. The sender and the receiver have preferences over

these outcomes, which are given by utility functions, US and UR respectively, which map
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outcomes to real numbers: US, UR : T ×M × A → R. Note that the message sent can

figure into the utility functions. For example, if one message is costlier than another, then

the utility can be adjusted to reflect this. In what follows we will only consider costless

or cheap talk signaling where all message incur the same cost, and thus do not affect the

structure of the utility functions.

As a simple example of a signaling game, consider the case where there are two states,

two messages, and two actions: T = {t0, t1}, M = {m0,m1}, and A = {a0, a1}. We can

represent the structure of the game in extensive form as in Figure 3.2. The uppermost node,

labeled δ, determines the likelihood of either of the two states occurring. The lines from

the uppermost node represent one state or the other obtaining. The nodes labeled S indicate

the points in the game where the sender makes a decision regarding which message to send.

The nodes labeled R indicate the points where the receiver must make a decision regarding

how to interpret the message. The dashed lines between receiver nodes indicates that the

receiver is uncertain as to which state holds after hearing a given message. The nodes at

the bottom represent the outcome and the players’ preferences, as determined by the utility

functions.

δ

S

R

1, 1

a0

0, 0

a1

m0

R

1, 1

a0

0, 0

a1

m1

t0

S

R

0, 0

a0

1, 1

a1

m0

R

0, 0

a0

1, 1

a1

m1

t1

Figure 3.2: Lewis signagling game with two states, two messages, and twos actions.

As alluded to above, with the exception of the topmost node and the leaves, all other

nodes are decision nodes. That is, they represent those points in the game where a particular
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player must make a decision. An information set consists of a set of decision nodes for

a given player, which that player cannot distinguish. For example, the receiver is in an

information set after hearing m0. She is not sure whether she is in the node beneath state

t0 or t1 and she must choose between a0 and a1. She is likewise uncertain after receiving

message m1. Again, her inability to distinguish the two states is indicated by a dashed line.

An information set can also consist of a single decision node. For example, the sender is

never uncertain about the state he is in. Thus the information sets for the sender only ever

consist of a single node.

For each player, a strategy specifies which action to take at all information sets for a

player.6 We will refer to the set of all such sender strategies as S : [T →M ], and the set of

all such receiver asR : [M → A]. All pure sender and receiver strategies are summarized in

Figure 3.3. The sender and receiver strategies that combine to yield a one-to-one mapping

from states to actions are called signaling systems. Thus, the strategy profiles 〈s1, r1〉 and

〈s4, r4〉 constitute signaling systems.

The set of possible combinations of sender and receiver strategies constitute strategy

profiles. That is, a sender strategy in the set of possible sender strategies, s ∈ S, and a

receiver strategy in the set of all possible receiver strategies, r ∈ R, yield a strategy profile

〈s, r〉. Each strategy profile determines the outcome of the game. Crucially, each player’s

utility function depends on the state of the sender and the action taken by the receiver. That

is, their respective utilities are a function of state and action. As an example, consider

the case where both sender and receiver prefer successful communication. Then they both

receive their preferred payoffs if there is some correspondence between the sender’s state

and the receiver’s action. For example, in Figure 3.2 both sender and receiver prefer the

6For simplicity, we only consider pure sender (receiver) strategies, functions from states to messages
(messages to actions). Mixed strategies are a straightforward generalization. A mixed sender strategy speci-
fies a probability distribution over pure sender strategies, σ = p1s1+...+pksk, where

∑
i pi = 1. Similarly, a

mixed receiver strategy specifies a probability distribution over pure receiver strategies, ρ = q1r1+ ...+qkrk.
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Figure 3.3: Sender and Receiver strategies for signaling game
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r1 r2 r3 r4

s1 1 1
2

1
2

0
s2

1
2

1
2

1
2

1
2

s3
1
2

1
2

1
2

1
2

s4 0 1
2

1
2

1

Table 3.3: Payoff matrix for signaling game

state and action to be the same in the following sense.

US(ti, ak) = UR(ti, ak) =

 1 if i = k

0 else
(3.30)

Note that this reflects the assumption that both sender and receiver have the same preference

over outcomes.

Given that the different states occur with certain probabilities, and we are interested in

how particular strategies do on average, we consider the expected utility for a given strategy

profile. This is simply the expected value of the utility functions given the two strategies,

which can be given in the case of a discrete state space as in our example above.

E[US(s, r)] =
∑
t

δ(t) · US(t, r(s(t)))

E[UR(s, r)] =
∑
t

δ(t) · UR(t, r(s(t)))

(3.31)

For each possible state the sender and receiver strategies determine an outcome. s(t) is the

message the sender will employ and r(s(t)) is the action the receiver will take given that

message. The expected utility is the sum of these outcomes weighted by the probability of

the state that yields them. Assuming that the two states are equiprobable, we can construct

the payoff matrix for the signaling game as in Table 3.3. Since payoffs are symmetric, only

one number is presented.
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There are several Nash equilibria in the game, but only the signaling systems 〈s1, r1〉

and 〈s4, r4〉 are evolutionarily stable strategies, because they are the only strict Nash equi-

libria. In fact, given the structure of the payoffs it is possible to show that these signaling

systems are the unique asymptotically stable rest points of the system, which attract the

entire interior of the state space (Hofbauer and Sigmund 1998:82). This means that one of

the two signaling systems is almost guaranteed to evolve.

3.6 The behavioral dynamics of signaling

While the simplest signaling game can be analyzed in a fairly straightforward manner, we

might be interested in larger, more complicated games. For example, we might wonder

about the dynamics of signaling if the state space were continuous rather than discrete.

If we were to approach this by first enumerating all sender and receiver strategies, the

dimensions of the system would explode exponentially. One means of controlling for this

increase suggested by Hofbauer and Huttegger (2015) is to consider behavioral strategies

insofar as no information is lost in doing so (cf. Kuhn 1953).7 The basic idea is that

instead of there being a single sender population and a single receiver population, there

are multiple sender and receiver populations. Each sender population corresponds to a

particular state, and messages compete to be used in that state. Each receiver population

corresponds to a message, and actions compete to be used in response to that message.

We start off by defining the components necessary for our analysis. Once we have defined

these components we can simulate the game dynamics.

7Erol Akçay (p.c.) has suggested a similar approach to the problem.
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x0 y0
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Figure 3.4: Signaling game in behavioral space

3.6.1 The simplest signaling game

To begin, we apply this new framework to the simplest non-trivial signaling game where

we have two equiprobable states, two messages, and two actions. The structure of the be-

havioral replicator dynamics is determined by the structure in Figure 3.4. x0 represents

the probability that m0 will be used in the t0 sender population. Likewise x1 represents

the probability that m1 will be used in the t1 sender population. The dotted lines indi-

cates probabilities that can be derived from others. All told, then, the behavioral replicator

dynamic for this signaling game gives rise to a four-dimensional system.

We will generalize the parameters a bit to match the simpler games we used above.

Namely, let the sender and receiver payoffs be the following matrices, with parameters α

and β.

A =

1− α α

β 1− β

 (3.32)

B =

1 0

0 1

 (3.33)

These yield the general behavioral sender and receiver replicator dynamics.
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ẋ0 = x0(1− x0)(y0 + y1 − 1)(1− 2α)

ẋ1 = x1(1− x1)(y0 + y1 − 1)(1− 2β)

(3.34)

ẏ0 = y0(1− y0)
(
x0 + x1 − 1

x0 − x1 + 1

)
ẏ1 = y1(1− y1)

(
x0 + x1 − 1

x1 − x0 + 1

) (3.35)

The case where α = β = 0 corresponds to the lewis signaling game we introduced in

the previous section, which is also related to the coordination game we started with. This

is a signaling games with common interests. The case where α = β = 1 corresponds to

signaling with matching pennies. This is a signaling game with conflicting interests. The

cases where α = 0, β = 1 and α = 1, β = 0 also offer an interesting comparison. These

are games of at least partial common interest. We address each of these below.

3.6.2 Signaling under common interests

Since the receiver dynamics do not vary as we change the parameters, we omit them. Under

common interests the sender dynamics are the following.

ẋ0 = x0(1− x0)(y0 + y1 − 1)

ẋ1 = x1(1− x1)(y0 + y1 − 1)

(3.36)

Typical results for a numerical solution are shown in Figure 3.6.2, where we plot x0

against y0 and x1 against y1, with circles represent the starting state of both of trajectories.

That is, we represent the four-dimensional system as two two-dimensional systems overlaid
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Figure 3.5: Solution trajectories for behavioral replicator dynamics for common interest
signaling

on each other. The established result is exactly what we see. Namely, the system either

converges to the origin or to the upper right-hand corner. Referring back to Figure 3.4 it

is clear that these constitute the signaling systems of the signaling game as we described

them. That is, these are the points that guarantee a one-to-one mapping between states and

actions.
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Figure 3.6: Solution trajectories for behavioral replicator dynamics for conflicting interest
signaling

3.6.3 Signaling under conflicting interests

If we alter the payoff structure to reflect that of matching pennies, then the following be-

havioral sender dynamics result.

ẋ0 = x0(1− x0)(1− y0 − y1)

ẋ1 = x1(1− x1)(1− y0 − y1)
(3.37)

Typical results for numerical solution are shown in Figure 3.6.3. Interestingly, much

like in the case of matching pennies, the system exhibits closed orbits.

An interesting consequence of this behavior is that despite the fact that the sender does

not want to signal what action he is going to take, there is some amount of information
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carried by the signal. This can quantified by calculating the Kullback-Leibler divergence or

information gain due to the signal.

KL(m) =
∑
t

P (t | m)log

(
P (t | m)

P (t)

)
(3.38)

The basic intuition behind this formula is that it allows us a way to compare the receiver’s

expectations prior to receiving the message, which is determined by the probability dis-

tribution over states, to the posterior distribution after having heard the message. The

difference between these two distributions is the information gained by having received

the message. The average information gain for the two signals is shown in Figure 3.6.3.

As a point of reference, if the messages perfectly corresponded to states, as they do in a

signaling system, then the average information gain would be equal to one. In other terms,

the information gained from the signal would be one bit, because it would allow us to

distinguish between two equiprobable states. The fact that signals still carry information,

even under diametrically opposed interests is both interesting and surprising (cf. Sato et al.

2002, Wagner 2012).

Summary

In this chapter we outlined the basic framework that will be used subsequently. We noted

the complementary role of static and dynamic methods for understanding the evolution of

populations. We also presented a general method for describing the dynamics of signaling

games and noted interesting properties of the simplest kind of signaling game. We now

turn to our application of this framework to the functional cycle.
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Figure 3.7: Average Kullback-Leibler Divergence for signals under conflicting interests
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Chapter 4

Cycles

[T]o say what a word means in a language is to say what it is in general optimal for

speakers of that language to do with that word, or what use they are to make of it.

–H.P. Grice (1989:299)

I can’t say ‘It’s cold here’ and mean ‘It’s warm here’ – at least, not without a little help

from my friends.

–David Lewis

Distinguishing between the formal and functional Jespersen cycles clarifies what needs

to be explained. The functional cycle can occur independently of the formal cycle, so

we need an explanation for it regardless. This motivates our focus in this chapter on the

functional cycle. That is, we want to know why one form displaces another, taking over

the meaning of plain negation. We also want to know why this new form can be displaced

in further functional cycles. In particular, we want to explain why in the history of English

we observe emphatic ne...not increase in frequency and displace pre-verbal ne. To do so,

we build a mathematical model of the pragmatic pressures that lead to this transition.

First, we provide an interpretation of the notion that the incoming form is emphatic with
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respect to the incumbent form, that it conveys some special meaning. Namely, we note that

the incoming form is initially restricted to contexts where the proposition being negated has

just been introduced into the discourse, but expands to contexts where it is merely inferable

from the discourse, and eventually to contexts where the proposition is brand new to the

discourse. Second, we discuss experimental evidence that suggests why the incoming form

spreads across contexts in the way it does. Speakers have difficulty in separating out their

own private knowledge from what is common knowledge between themselves and their

interlocutors. Given this difficulty, speakers adopt a heuristic that biases them towards

their own perspective when assessing how closely connected a negated proposition is to

the discourse. This leads speakers to treat propositions as more connected to the discourse

than is warranted. Third, we incorporate these facts into a signaling game, determine the

equilibria and dynamics, and show how the number of signals used interacts with speaker

bias. Finally, we fit the resulting model to data from the functional cycle in Middle English

and discuss the implications of the fitted parameters in light of the experimental evidence.

The main contributions of this chapter are twofold. The first contribution is that we

offer the first explicitly dynamic model of the functional cycle that explains why the dis-

course constraints change in the manner that they do. While previous accounts have noted

the constraints on the different forms of negation in the functional cycle, they have not

explained the increase in the incoming form beyond the somewhat circular claim that the

incoming form is overused. Here we argue that the functional cycle is a byproduct of our

cognitive limitations in tracking common knowledge. Importantly, while the the driving

force of the cycle is rooted in the cognition of individuals, it leads to change because of

the social interactions between individuals in a population. In Grice’s terms, the optimal

use of and response to different forms of negation are both moving targets. Their coupled

movement is what underlies the functional cycle.

The second contribution of this chapter is that the model we present offers an information-
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theoretic foundation for grammaticalization. For example, the intuitive notion of bleaching

is simply the loss of information carried by a signal as it becomes obligatory. Ground-

ing qualitative terms in this quantitative framework offers a new perspective on diachronic

changes in how meaning is signaled. Moreover, it allows for a broader conception of mean-

ing as the information carried by linguistic signals. This broader conception of meaning

has the potential to unify our analyses of semantic, pragmatic, and sociolinguistic meaning.

4.1 Emphasis as activation

We begin with the intuitive notion of emphasis. We know it when we hear it, but what it

amounts to is often left implicit in accounts of the functional cycle. There are two general

functions that have been suggested as candidate interpretations. The first is that emphatic

negation widens and strengthens negation to preclude exceptions (Kadmon and Landman

1993). That is, emphatic negation signals a stricter standard of precision for interpreting a

proposition (cf. Austin 1962, Lewis 1970, Landman 1991, Krifka 1995). The second inter-

pretation is that emphatic negation serves to deny an expectation, or mark the contradiction

of a potentially implicit assertions (Detges and Waltereit 2002, Kiparsky and Condoravdi

2006). That is, emphatic negation signals the relationship between the proposition being

negated and the preceding discourse. In what follows we focus exclusively on this second

interpretation, but return to the first later on as an important point of comparison.

Broadly speaking, this second interpretation of emphasis depends on the joint attention

of speakers and hearers (cf. Chafe 1974, Prince 1981). More precisely, emphatic nega-

tion has been found to signal that the proposition being negated is activated (Dryer 1996,

Schwenter 2005, 2006). A proposition is directly activated if its contents have just been

explicitly introduced into the discourse, so it is present to the joint attention of speakers

and hearers. A proposition is indirectly activated if its contents can be inferred from the
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discourse either via an entailment or implicature. A proposition is non-activated if its con-

tents have not been explicitly introduced into the discourse or it cannot be inferred from

the preceding discourse.

There are two important things to note about activation. First, activation does not entail

belief, nor vice versa. Participants in a discourse believe propositions that are not activated,

and not all of the activated propositions are believed. This distinguishes activation from the

notion of common ground (Stalnaker 1978), which consists of the set of propositions that

both interlocutors believe to be true, or at least accept as true for some purpose (Stalnaker

2002:715-720). Second, and related to this first point, emphatic negation can be used both

to negate an activated proposition or restate it. For example, if the activated proposition is p

then negation can be used to negate that p. If the activated proposition is ¬p then negation

can also be used to restate that ¬p.

Crucial for our purposes is the fact that activation can reasonably be identified in histor-

ical corpora with the use of modern translations. Moreover, activation has been shown to

have the same effect diachronically in the histories of French (Hansen 2009, Grieve-Smith

2009), Italian (Hansen and Visconti 2009, 2012), and English (Wallage 2013): the incom-

ing emphatic form in all of these languages is initially restricted to use with either activated

or directly activated propositions. For example, Wallage (2013) shows that in Early Middle

English ne...not is overwhelmingly restricted to negating activated propositions. But, over

time it spreads to negating non-activated propositions as well.

The following examples from the Penn Parsed Corpus of Middle English (Kroch and

Taylor 2000) cited by Wallage (2013) demonstrate the transition. First, the emphatic form

is restricted to contexts where it is used to negate directly activated propositions. Where

p =“They are deceived”, emphatic negation can be used to deny the explicitly stated propo-

sition that p. In all of the examples that follow, p and ¬p, or both are bolded in the transla-

tion of the passage.
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(1) Alle
All

Do
the

men
men

De
that

swinkeD
labour

on
in

Dessere
this

swinkfulle
toilsome

world,
world,

alle
all

he
they

swinkeD
labour

for
for

sumere
some

hope
hope

De
that

hie
they

habbeD,
have,

De
that

hem
them

oft
often

eaten
at

ande
end

beswinkD
deceives

...

...
Ac
But

Do
those

De
that

swinkeD
labour

for
for

Dessere
this

eadi
blessed

hope,
hope,

hie
they

ne
NEG

bieD
are

naht
not

becaht
deceived.

”All the men who labor in this toilsome whorld, they all labor for some hope they

have which often deceives them in the end...But those who labor for this blessed

hope, they are not deceived.”

(CMVICES,33.385, 1200 CE)

The incoming form can also be used to restate a proposition that has already been explicitly

negated. For example, where ¬p =“You don’t know yourself”, it can be restated.

(2) If
If

u
you

ne
not

cnawest
know

e
the

seolf
self

...

...
If
If

u
you

ne
NEG

cnawest
know

naut
not

e
the

seolf
self

”If you do not know yourself...If you do not know yourself”

(CMANCRIW, II.80.941-948, 1230 CE)

Subsequently, the use of the incoming form is extended to being used to negate propositions

that are only indirectly activated. For example, we might suppose that a virtuous religious

rite with all the sin-cleansing properties of baptism would have some post-mortem benefits.

If we take the proposition resulting from this inference to be p =“[That rite] opened to them

the bliss of heaven”, then the incoming form can be used to negate the proposition resulting

from the inference.

(3) and
and

te
the

lage
law

hadde
had

to
then

alle
all

te
the

mihtes
virtues

te
that

haueD
has

nu
now

fulluht
baptism

for
for

Dat
that

clensede
cleansed

te
the

man
man

of
of

sinne:
sin:

swa
as

doD
does

nu
now

fulluht
baptism

ac
but

it
it

ne
neg

openede
opened

hem
them

noht
not

te
the

blisse
bliss

72



of
of

heuene
heaven

alse
as

fulcneng
baptism

doD
does

us.
us.

”And that rite had then all the virtues which baptism now has, for that cleansed

man of sin even as baptism now does, but it opened not to them the bliss of heaven

as baptism does to us.”

(CMTRINIT, 87.1165, 1225 CE)

Similarly, the incoming form can also be used to state a negative inference. If we suppose

that renouncing one’s sins requires being done committing them, ¬p =“I cannot renounce

my sins”, then the incoming form can be used to state the proposition resulting from this

negative inference.

(4) Ich
I

nam
not-am

noht
not

giet
yet

sad
sated

of
of

mine
my

sines
sins

and
and

forti
therefore

ne
neg

mai
can

ich
I

hie
them

noht
not

forlete.
renounce
“I am not yet sated of my sins and therefore I cannot renounce them.”

(CMTRINIT, 75.1028, 1225 CE)

Finally, the incoming form can be used to negate propositions that are entirely new to the

discourse. That is, ne...not is used to negate a proposition that is not readily identifiable

either directly or indirectly from what has come before. It is useful to note that all of these

examples come from roughly contemporaneous documents.

4.2 Experimental evidence regarding activation

While we observe this trend in historical corpora of English and other languages, this does

not explain why the incoming form spreads across the contexts in the way it does. To

understand why, it is useful to consider experimental evidence demonstrating particular
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communicative biases on the part of speakers. Namely, speakers’ private knowledge per-

sistently influences how they signal meaning.

For example, Wu and Keysar (2007) had pairs of participants play a communication

game in fixed roles of speaker and hearer. Speakers and hearers jointly learned names for a

set of abstract shapes. Speakers then learned several names for additional shapes privately.

The experimenters varied the number of shape names that the speaker and hearer learned

together, what the experimenters called the informational overlap between participants.

The participants then played a game where the speaker directed the hearer to select a target

shape from a set. Across trials the target shapes were evenly distributed between shapes

whose names were learned together, shapes whose names were learned privately by the

speaker, and shapes that were new to both participants. Presumably, using a name to refer to

a shape is only felicitous if the name of the shape was learned together by both speaker and

hearer. But, surprisingly, in trials where the target shape’s name was private knowledge, the

name was the first thing speakers said in 5% of trials where there was a low informational

overlap and in 28% of trials where there was a high informational overlap. That is, speakers

relied on their private knowledge more where there was a greater degree of informational

overlap.

Note that this use of the privately known names was not a result of speakers forgetting

the context in which the names were learned. Heller et al. (2012) replicated these findings

and showed that speakers were incredibly accurate at distinguishing between names learned

together versus names learned privately. Rather, Wu and Keysar (2007:4) suggest that these

results point to speakers using a kind of overlap heuristic: when the informational overlap

between yourself and your interlocutor is sufficiently extensive act as if they have all the

same information as you. In fact, this is kind of combined co-presence and community

membership heuristics proposed by Clark and Marshall (1981) to resolve the problem of

common knowledge: that everyone knows that p, that everyone knows that everyone knows

74



that p, ad infinitum.1 This heuristic and the speaker bias that it creates are a means for

solving the difficult task of keeping track of what is private versus common knowledge.

Assuming that an interlocutor knows roughly the same things about the world reduces the

cognitive burden and simplifies things a great deal.

However, given that speakers’ use of private knowledge varied across conditions, we

might wonder whether this bias is specific to certain contexts. For example, speakers might

be able to pay closer attention to the discourse and keep better track of things. That is, there

might be two modes of thinking regarding the discourse (Keysar et al. 2003, Kahneman

2011). However, this bias is not subject to conscious manipulation. Wardlow Lane et al.

(2006) had pairs of participants play a communication game in fixed roles of speaker and

hearer. Four shapes of varying size and color were presented to the participants. One

shape was visible to only the speaker, blocked from the view of the hearer by an occluder.

Speakers were instructed to communicate information about a target shape visible to both

participants so the hearer could identify it. In the test conditions, the item that was visible

only to the speaker was the same shape as the target item, but varied along some relevant

dimension (e.g. size, color). For example if the target shape was a blue triangle then the

shape that was only visible to the speaker was a green triangle, and none of the other shapes

visible to both participants were triangles.

Wardlow Lane et al. (2006) found that speakers modified their description more in the

target condition. That is, speakers were more likely to say “The blue triangle” to refer to the

target shape if there was a green triangle visible only to them. Speakers’ private informa-

tion leaked into what they said and how they said it. This happened even though speakers

had direct evidence that only they could see the shape that contrasted with the target shape.

1This technical term was introduced into the Philosophical literature by Lewis (1969), but has a long
history under various names. Whereas Clark and Marshall (1981) use the term “mutual knowledge” to refer
to common knowledge, as it is commonly used mutual knowledge only requires that everyone know that p.
Thus anything that is common knowledge is also mutual knowledge, but not vice versa.
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In fact, this over-modification happened to an even greater extent when speakers were ex-

plicitly instructed to conceal information about their privileged information. Speakers have

a difficult time inhibiting their perspective even when they want to, suggesting that speaker

bias is persistent fact about communication.

These experimental results show how speakers’ private knowledge persistently influ-

ences how they signal meaning. In particular, they show that speakers tend to assume that

their interlocutors are overwhelmingly similar to them. While this experimental evidence

deals with the referential domain, the results can be extrapolated to the propositional do-

main and activation in particular. That is, activation is defined by the joint attention of

speakers and hearers. But, neither speakers nor hearers know whether or not a proposition

is actually being attended to by an interlocutor. This problem is a perfect candidate for so-

lution by the kind of heuristic described above. Namely, speakers can simplify the problem

by assuming that what their hearers attend to is sufficiently similar to what they attend to.

One potential concern about this kind of heuristic is that mistakes seem unlikely. If a

proposition is directly activated, then it is directly activated because it has just been men-

tioned. Similarly, if a proposition is indirectly activated, then it is indirectly activated

because there is an entailment or implicature that does so. A response to these objections,

particularly the first, lies in the nature of activation. While we have described discrete cat-

egories, Dryer (1996:481-482) rightly conceives of both direct and indirect activation as

continuous measures. For example, while the utterance of a proposition directly activates

it, this activation decays over time. As he puts it, the proposition is deactivated as time goes

on and it passes from the joint attention of speakers and hearers. Similarly, while the utter-

ance of one proposition may indirectly activate another via an inference, some propositions

may be more accessible than others via inference. Some inferences are natural, whereas

others are non-sequiturs. In fact, we might take activation as a whole to be constituted by

degrees of inferability. Recently uttered propositions are high on the scale, whereas brand

76



new propositions are at the bottom end.

So, speakers might treat a proposition as more activated than is warranted for several

reasons. For example, suppose that a speaker keeps thinking about a proposition p, but

her interlocutor does not. This means that p is being deactivated as it has passed from the

joint attention of both participants. However, the speaker still dwelling on p is not aware

of this, and only has her own perspective to consider. Thus, she may still treat p as highly

activated even though it is not. Similarly, a speaker may easily infer a proposition p from

the preceding discourse due to her attention to particular aspects of the discourse. But, her

interlocutor may only make the same inference with great effort. Thus, a speaker may treat

p as highly activated even though it is not.

If speakers have a tendency to overestimate activation and use ne...not more than is

warranted by the actual degree of activation, then how will hearers respond? Given hear-

ers’ response, how will speakers respond in turn? What does this mean for the functional

cycle? To answer these questions we translate these experimental findings into a mathe-

matical model that can be used to investigate meaning over time. This model consists of

two components. First, we define the stage game that describes the interactions between

speakers and hearers and captures speakers’ bias towards overestimating activation. Sec-

ond, we define the game dynamics that describe how a population of speakers and hearers

change over time while playing the stage game.

4.3 A signaling game model of emphasis

We start by defining the components of the stage game that we will use to analyze the func-

tional cycle. We define the states, messages, and actions along with their interpretations.

We then turn to the utility function of senders and receivers as they relate to the preferences

of speakers and hearers. Once we define the game we can determine its equilibria and the
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dynamics of how speakers use different forms of negation to signal the activation of the

proposition being negated.

First, let the set of states T : [0, 1] be the degree of activation of the proposition being

negated, where t = 0 indicates a brand new proposition and t = 1 indicates a proposition

that was the last thing uttered. Second, let the set of messages that the speaker sends be a

finite set M = {m1,m2}. We can think of these as the incumbent and incoming form in

the functional cycle respectively. So, for English, m1 is ne and m2 is ne...not. Finally, let

the set of actions A : [0, 1] be the action taken by the hearer to interpret the message. For

example, an action ai can be thought of as an initial guess by the hearer about the level of

activation ti of the negated proposition.

With these components defined, it is important to make a conceptual clarification about

the role of states as degrees of activation. In signaling games, the state is taken to be

some piece of private information that the sender has about the state of the world. This

is not quite accurate given that we assume that speakers never know the actual degree of

activation. That is, they can never peer inside hearers’ heads to verify what propositions

are being attended to at any given moment. At best, speakers have a subjective estimate of

the degree of activation. However, this subjective estimate is systematically related to the

actual degree of activation.

To see this, suppose that both speakers and hearers have some subjective estimate of

the activation of a proposition, call them tS and tR. For example, both might take their

estimate to be the approximate amount of attention they are paying to a given proposition.

Now, given that activation is defined in terms of the joint attention of speakers and hearers,

then the actual state of activation t must be some function of the two subjective estimates.

If a speaker’s estimate of a proposition is that it is not activated tS = 0 because she is

not attending to it, then by definition it is not activated t = 0. In contrast, if a speaker’s

estimate of a proposition is that it is highly activated tS = 1, this does not mean that it is
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indeed activated since the hearer’s estimate could be lower tR < 1 because the hearer is not

attending to it to the same degree.

A simple way of capturing the relation between the subjective estimates and the actual

degree of activation is that t = min(tS, tR). The actual level of activation is the highest

degree that both participants would agree to based on their own subjective estimates. This

is arguably what underpins our intuition that a form is infelicitous because a hearer did not

or could not have had a sufficiently high subjective estimate of activation. If this is the

relation between the subjective estimates and the actual state, the speaker’s estimate stands

in a particular relation to the actual state. Namely, the speaker overestimates the degree

of activation. To see why, note that if tS ≤ tR then tS = t, and if tS > tR then tS > t.

Together these imply that tS ≥ t. In other words, on average the speaker overestimates the

actual degree of activation.

Now, if speakers only have access to their own subjective estimates of the state of

activation, then it makes sense that their preference are determined by that estimate. As far

as the speaker is concerned, tS is the actual degree of activation of the proposition being

negated. It makes sense then that the speaker would want the hearer to infer that degree of

activation. In particular, we suppose that speakers prefer for hearers to infer the degree of

activation that is closest to their subjective estimate. The following utility function satisfies

this constraint, it is maximized exactly where a = tS .

US(t, a) = 1− (a− tS)2 (4.1)

While this function captures the speaker’s preferences, it also introduces a new and unde-

fined parameter, the speaker’s subjective estimate. A simple way to address this is to posit

a general functional shape f(t) = tS that is defined in terms of the actual state and other

parameters but captures speakers’ tendency to overestimate the actual state by guarantee-
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ing that f(t) > t. There are infinitely many functions that satisfy this constraint, but a

particular simple functional form has a natural interpretation in our case.

In their seminal work on signaling games of information transmission, Crawford and

Sobel (1982) introduce a bias parameter b ≥ 0 into the utility function of senders that

indicates how aligned the goals of senders and receivers are. For example, where b = 0 their

preferences are perfectly aligned, but for b > 0 they diverge. We can apply this directly

to our case if we think about the bias parameter b as speakers’ tendency to overestimate

activation. Then the following simple linear function allows us to incorporate the tendency

to overestimate into the speaker’s utility function.

tS = f(t) = t+ (1− t)b (4.2)

This yields the following utility function which satisfies the constraint that tS ≥ t.2 It is

maximized for an action a = t+ (1− t)b. This means that speakers prefer that hearers take

an action slightly higher the actual state of activation.

US(t, a) = 1− (a− t− (1− t)b)2 (4.3)

By changing the variables we obtain a functional form that depends only on states, actions,

and the new bias parameter. In fact, this bias parameter has a natural interpretation in terms

of speaker bias as a measure of how good or bad speakers are at keeping track of common

versus private knowledge. The case where b = 0 corresponds to speakers developing the

ability to read minds and accurately assess the actual state of activation. For b > 0 speakers

have a tendency to overestimate the degree of activation and prefer a higher action on the

part of hearers.

2This differs from the formulation in Crawford and Sobel (1982) where US(t, a) = −(a− t− b)2. Their
form allows senders to prefer actions a > 1, which has no interpretation in our model. That is, the degree of
activation and interpretation of the degree of activation are both constrained to the unit interval. We also add
a constant so that all payoffs are positive for the dynamic analysis in the next section.
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Now, we might wonder whether speakers have access to the action taken by hearers.

That is, if speakers cannot peer into the heads of hearers to determine the state of activation,

does it makes sense to assume that they can somehow infer the reasoning process indicated

by the action hearers take to interpret the message? However, speakers have incredibly rich

sources of feedback from hearers. For example, this feedback includes the amount of time

hearers take to respond, facial expressions, and backchannel cues (e.g. “Mhmm” versus

“Huh?”), as well as verbal responses such as as requests for clarification or continuations

of the discourse. All together then, it seems reasonable that speakers can recover the action

taken by hearers.

With speaker preferences defined, we can think about hearers. Suppose that hearers

want to accurately infer how the proposition being negated relates to the prior discourse.

For example, a hearer does not want to overestimate the degree of activation of a proposi-

tion and expend too much effort on trying to discern how it is connected to the discourse.

Similarly, a hearer does not want to underestimate the degree of activation and miss out

on information regarding how a proposition fits into the discourse. The following utility

function satisfies this constraint, it is maximized exactly when a = t.

UR(t, a) = 1− (a− t)2 (4.4)

That is, hearers do best when they accurately infer the actual degree of activation. Now,

we might wonder again whether it is reasonable to assume that hearers have access to the

actual degree of activation. They cannot read minds any more than speakers. However,

hearers gain information as they reason about different potential degrees of activation.

To see why this is the case, first assume that speakers and hearers have the same rea-

soning capacities. That is, they would agree on what potential degrees of activation make

some kind of sense given the discourse. So, we assume that speakers and hearers can both
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identify a particular set of degrees of activation as making sense. Note that this does not

require that speakers and hearers expend the same amount of effort in identifying the de-

gree of activation, but rather that speakers and hearers have the same reasoning capacities.

Here we will suppose that there is some function of states given the discourse that defines

whether both speakers and hearers can identify a particular degree of activation. Namely,

let g(t) be a convex function such g(t) = 1 if and only if t can be identified by both speaker

and hearer. Further, suppose that the lowest identifiable degree of activation corresponds to

the actual state of activation, for all ti < t, g(ti) = 0. This simply means that the subjective

estimates of speakers and hearers serves as a lower bound on what degrees of activation

both speakers and hearers can reasonably identify.

Now, suppose that hearers reason in the following manner when they take an action to

interpret the speaker’s message. The hearer takes an action ai, corresponding to an initial

guess that the degree of activation of the proposition is ti. By the same reasoning for

speakers above, hearers overestimate the actual degree of activation tR ≥ t, so it makes

sense that they would compensate for this by choosing an action such that ti < tR. Given

this action, there are two possibilities. The degree of activation for the proposition could be

identifiable or not. If the initial guess of the degree of activation is identifiable g(ti) = 1,

suppose that the hearer reasons about lower and lower degrees of activation; likewise, if

the initial guess of the degree of activation is not identifiable g(ti) = 0, suppose that the

hearer reasons about higher and higher degrees of activation. In both cases the hearer will

consider a degree of activation tj such that g(tj) = 1 and for all tk < tj , g(tk) = 0. That

is, she will eventually recover the actual degree of activation. Note also that the amount

of effort put into finding the actual degree of activation grows with the distance between

the initial guess and the actual degree. So, if speakers and hearers reason in a sufficiently

similar manner, then hearers will be able to recover the actual state of activation.

The preferences we have defined for speakers and hearers are a way to represent the
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experimental evidence we described in the previous section. That is, they allow us to state,

in mathematical terms, the stage game which is the shape of the interaction. But, this

shape by itself does not make any predictions about the behavior of individual speakers

and hearers playing the game or the trajectory of a population of speakers and hearers over

time. To understand these we need to determine the equilibria of the stage game and how a

population changes while playing the stage game under a particular game dynamics.

4.4 Equilibria of the signaling game

Now that we have defined the components of the game, we turn to analyzing its proper-

ties. Determining the equilibria of the game we described will allow us to address several

questions about how signals are used in the functional cycle. Broadly speaking, we want

to know two things. First, we want to understand the relationship between senders’ bias

towards overestimating activation and the use of signals at equilibrium. In particular, we

want to know how large this bias can be while still allowing for multiple forms to be used at

equilibrium. Second, we want to know whether particular equilibria constitute evolution-

arily stable strategies. If so, we want to know the strategies that are evolutionarily stable.

If not, we want to know what strategies could invade the population and disturb an equi-

librium. Broadly speaking, this amounts to determining the conditions for the functional

cycle to occur. We begin by defining speaker and hearer strategies, the expected utility of

different strategies, and then determine the evolutionarily stable strategies of the game.

The set of speaker strategies is all potential mappings from the unit interval to a discrete

set S : [0, 1] → M . This is problematic given that the domain is uncountable. To simplify

things we consider the following condensed representation. Let Pn(T ) be a partition of the

state space into n equal length subintervals t0 = 0 < t1 < ... < tn−1 < tn = 1. For each

properly defined subinterval, (ti−1, ti) the sender uses the messagemi. A speaker’s strategy
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is then a function from this partition to messages S : [Pn(T ) → M ]. Intuitively, this is

simply a way of carving up the state space into discrete contiguous regions and using those

regions to determine which signal to send. For example, consider the case of two messages

P2(T ), where m1 and m2 correspond to ne and ne...not respectively. For t ∈ (0, t1) a

sender will use ne and for t ∈ (t1, 1) a sender will use ne...not.

In fact, this kind of threshold strategy is extremely close to what we observe in histor-

ical data. That is, as the functional cycle proceeds, the incumbent form ne is not evenly

distributed across activation contexts, but largely negates non-activated propositions. The

probability of using the two negative forms is overwhelmingly conditioned by the activa-

tion of the proposition being negated. For example, for Midddle English from 1150-1250

CE the conditional probabilities are the following (Wallage 2013:12)

p(ne | NON-ACTIVATED) = .85 (4.5)

p(ne...not | ACTIVATED) = .84 (4.6)

This means that specifying speaker strategies in this manner is both a useful and empirically

accurate abstraction. Interestingly, this also gives some empirical credence to the push-

chain scenario conception of the functional cycle; ne actually appears to be pushed down

the scale of activation by ne...not.

The set of hearer strategies is all potential mappings from the set of messages to the

unit interval R : M → [0, 1]. Since the domain is finite, this is more straightforward than

the set of speaker strategies. For each message mi the hearer takes an action ai. So, for

example, a1 would be the hearer’s response to message m1, in this case ne, and a2 would

be the hearer’s response to message m2, in this case ne...not.

Now that we have defined the set of speaker and hearer strategies, we can ask what
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strategies constitute evolutionarily stable strategies. Given that signaling games are asym-

metric, this amounts to identifying the strict Nash equilibria of the game. This can be

done by determining what strategies jointly maximize the expected utilities of speakers

and hearers.

E[US(s, r)] =

∫
T

(
1− (r(s(t))− t− (1− t)b)2

)
p(t)dt (4.7)

E[UR(s, r)] =

∫
T

(
1− (r(s(t))− t)2

)
p(t)dt (4.8)

These are exactly analogous to expected utility in the discrete case, where we summed over

all the possible states. Again, r(s(t)) is the receiver’s respond to the sender’s message and

yields an action, which determines the utility for both sender and receiver given a state.

We estimate the prior probability over states as a beta distribution over the set of states,

parameterized by two shape parameters α and β, and often written as B(α, β). Figure 4.1

shows the distribution for several values of α and β, including the uniform distribution

B(1, 1). These two shape parameters gives us quite a bit of flexibility in modeling differ-

ent potential prior probability distributions. We use them extensively in the analysis that

follows, so we note two things that should offer an intuitive conceptual foothold. First, the

expected value of a beta distribution is given by α
α+β

. So, for example, the expected value

of the uniform distribution is 1
2

given that α = β = 1, which is what we see in Figure 4.1.

Second, if we fix β = 1 and let α vary, then the distribution will be more and more skewed

to the right as α grows larger. This also follows from the fact that the expected value α
α+1

gets closer and closer to one as α grows. Note that the mirror image case would hold if we

fixed α = 1 and let β vary.

We use the historical data in Table 4.1 from Wallage (2013:12) that shows the number

of propositions by activation to estimate the estimate the prior distribution over states. The
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Figure 4.1: Beta distribution for various parameter values of α and β, including the uniform
distribution B(1, 1), and the empirical distribution B(1, 2).

degree of activation in these examples is estimated using translations of the texts. How-

ever, there are reasons to be confident that activation can reliably be identified in historical

corpora. These figures agree with similar estimates from contemporary corpora. For ex-

ample, in a sample from a corpus of British English, Tottie (1991) finds that negation is

only used 14% of the time with directly activated propositions. Likewise, in a corpus of

American English, Thompson (1998) finds that negation is only used 5% of the time with

directly activated propositions. These results suggest that the prior distribution is stable,

with the preponderance of negation being used with brand new non-activated propositions.

Intuitively, this distribution makes perfect sense: the majority of conversation is about intro-

ducing new information rather than treading the same old ground of what has already been

said. If the prior distribution is indeed stable, then we can estimate it from the data pooled

across time periods. A good fit to the data is the prior probability distribution B(1, 2), also

shown in Figure 4.1.3

3We treat each of the discrete categories as equal portions of the unit interval and find values of α and
β such that

∫ 1
3

0
B(α, β)(t)dt ≈ p(NON-ACTIVATED),

∫ 2
3
1
3

B(α, β)(t)dt ≈ p(INDIRECTLY ACTIVATED), and
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PERIOD NON-ACTIVATED INDIRECTLY ACTIVATED DIRECTLY ACTIVATED

1150-1250 393 203 52
1250-1350 346 296 42
1350-1420 294 179 60

TOTAL 1033 678 154

Table 4.1: Distribution of sentence activation in PPCME (Kroch and Taylor 2000) from
Wallage (2013)

To calculate the maxima of the expected utility functions, let 〈s∗, r∗〉 be an equilib-

rium strategy profile. In this case, the speaker strategy is defined by s∗((0, t∗1)) = m1

and s∗((t∗1, 1)) = m2. Likewise, the hearer strategy is defined by r∗(m1) = a∗1 and

r∗(m2) = a∗2. We can determine the evolutionarily stable strategies by jointly maximiz-

ing speaker and hearer expected utility. That is, we solve a system of partial differential

equations for t∗1, a∗1 and a∗2. For any amount of bias, the maximizing values are shown in

Figure 4.2.4 Along the horizontal axis is the amount of speaker bias, the vertical axis rep-

resents the point at which speakers partition the state space and the actions of hearers in

response to the forms. For any value of the speaker bias b, the solid black line represents

the point at which speakers partition the state space t∗1 and the dashed lines represent hearer

responses to the different messages, a∗1 and a∗2.

We are now in a position to answer our first question regarding the relationship between

speaker bias and the use of different forms at equilibrium. Namely, if speakers are too

biased when it comes to keeping track of common versus private knowledge then only a

single message can be used in equilibrium. For example, we can read off of Figure 4.2

that if b > 1
6

then only m2 will be used in equilibrium.5 When speaker bias is sufficiently∫ 1
2
3
B(α, β)(t)dt ≈ p(DIRECTLY ACTIVATED), where the probabilities are estimated from the totals in Table

4.1. Obtaining a better empirical estimate of the prior from contemporary data and intuitions is something
we leave for future research.

4See Appendix A for the full calculations of the solution.
5In fact, for any number of messages n there exists a maximum amount of bias bn such that all messages

are used in equilibrium. For any number of messages Crawford and Sobel (1982) show that bn > bn+1.
That is, for a given number of messages, there is a maximum amount of bias that allows for all messages
to be used in equilibrium. As speakers’ bias decreases, b → 0, the number of messages that can be used in
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Figure 4.2: Equilibrium solution for two messages for values of bias

large this form carries no information about the activation of the proposition being negated.

The information gain, or Kullback-Leibler divergence, from receiving the message is zero

exactly when the message fails to shift the hearer’s beliefs from the prior probability.

KL(m2) =

∫ 1

0

log

(
p(t | m2)

p(t)

)
p(t | m2)dt (4.9)

If the posterior p(t | m2) is the same as the prior p(t), as is necessarily the case when a

single message is used, then the information gained is zero. This follows directly from the

definition of information gain, the logarithm of one is zero. This offers a precise definition

of bleaching as the loss of information as a signal spreads across states.

There are two important implications for the functional cycle. First, if speakers are

sufficiently biased towards their own perspective when estimating the degree of activation

for a proposition, then only a single form is stable. In particular, ne and ne...not cannot

coexist, in fact, only ne...not can be used in equilibrium. This leads to our second question.

equilibrium goes to infinity. The closer the incentives of senders and receivers, the finer and more detailed
the information senders want to signal. The number of messages available is the only limit on the amount of
information conveyed when the interests of both parties are perfectly aligned.
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Where speaker bias is sufficiently large, are equilibria where only a single form is used

evolutionarily stable? In fact, we can show that a signaling equilibria is evolutionarily

stable only if all available signals are used.

To see why this is the case, suppose that the amount of bias only allows for a single

form to be used in equilibrium, call it m1. Now, suppose further that there is an additional

form that is not used in equilibrium, m2. The action that hearers would take in response to

this unused message can vary without affecting the expected utility of speakers or hearers.

This means that the equilibrium is not strict, and therefore is not evolutionarily stable. In

particular, a single-form equilibrium can be disturbed by the introduction of a new message,

it is not neologism-proof (Farrell 1993). For example, suppose that a new form is only

used for high degrees of activation, and that hearers respond by inferring a high degree of

activation. Given speakers’ bias, there will be additional states that speakers think warrant

using the new form. In response to this increase, hearers will infer a lower degree of

activation, meaning additional states will be used by speakers, and so on. This holds for

any pair of messages mi and mi+1.

Importantly, this is just the functional cycle as we have been describing it. So, even

though two forms may not be stable for a sufficiently large degree of speaker bias, a single

form is never evolutionarily stable. The functional cycle can always be set in motion by

the introduction of the appropriately conditioned form. This means that just as ne can be

pushed out by ne...not, so too could ne...not be pushed out with the introduction of the right

new form, one that is initially restricted to high degrees of activation.

4.5 The dynamics of the signaling game

While we can reason about how speakers and hearers might react to the introduction of a

new form, this kind of equilibrium reasoning is essentially static. That is, it allows us to
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reason about what would happen if we started at a particular state, but not whether we will

ever reach that state in the first place. More importantly, it does not allow us to examine

how a population evolves from any starting state in general. To understand how speakers

and hearers change over time, we must posit a process that underlies how speakers and

hearers interact and respond to each other. Doing so will allow us to examine how different

degrees of speaker bias impact the trajectory of meaning. First, we discuss the replicator

dynamics as an appropriate evolutionary game dynamics for studying changes in meaning.

Then, we simulate trajectories of a population interacting over time.

The replicator dynamics were originally introduced as an explicitly dynamic model of

biological replication, but have since been shown to have deep connections with some of the

most widely-studied models of learning. In particular, Börgers and Sarin (1997) prove that

the expected behavior of agents playing an asymmetric game while learning according to a

linear reward-inaction scheme (Bush and Mosteller 1955) is equivalent to the asymmetric

replicator dynamics if the agents interact frequently and change their behavior slowly. That

is, if individuals tend to do things that are more successful, then their expected behavior

can be modeled by the replicator dynamics.

If we assume that speakers and hearers learn in this manner, there are a few concep-

tual clarifications to be made to justify the use of the replicator dynamics in modeling the

functional cycle. First, we need to be sure that speakers and hearers interact frequently

and change their behavior slowly. Both of these would seem to follow from the overall

frequency of negation. Given that negation is one of the most frequently used forms in

any language, it is safe to assume that speakers and hearers interact frequently and do not

dramatically alter their use or interpretation of negation from one sentence to the next. Sec-

ond, we assume that each individual acts as a speaker and hearer, but cannot introspectively

reason about the impact of one on the other. That is, individuals cannot use their behavior

as speakers to change their own behavior as hearers, nor vice versa. Third, while the repli-
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cator dynamics can be used as a model of individual learning, we are interested in how the

population as a whole changes. However, given that the expected behavior of individuals is

equivalent to the replicator dynamics under this kind of learning, then the expected behav-

ior of a population of individuals should be as well. That is, if averaging at the individual

level yields the replicator dynamics, then so should averaging over averages. This is akin

to treating the populations of speakers and hearers as if they were individuals.

We simulate the change in the proportion of the different forms over time for a pop-

ulation evolving according to the replicator dynamics from the same starting conditions.6

In this case, the population starts off from a state where speakers only use m2 for high

degrees of activation and hearers respond by inferring a high degree of activation. Varying

the bias parameter b yields the trajectories shown in Figure 4.3. Along the horizontal axis

we have time, and along the vertical axis we have the proportion of m2 used at any point

in time. For sufficiently large amounts of speaker bias, the incoming form is guaranteed to

replace the incumbent form, the amount of bias controls the rate at which this happens. For

sufficiently small amounts of speaker bias, both forms are guaranteed to persist.

So, our numerical simulations agree with the predictions from the static equilibrium

analysis. If speaker bias is too large, then only a single form is used. More specifically, the

form that is used at equilibrium is the form that started off restricted to higher degrees of

activation. Now, while these simulations yield qualitative information about the dynamics

of the functional cycle, we are interested in how this model can be used to understand the

details of the functional cycle in the history of English. We now turn to fitting the model to

historical trajectory of negation in English.

6Here we use the discrete-time replicator dynamics for computational tractability, whereas the results
presented by Börgers and Sarin (1997) hold for the continuous-time replicator dynamics. While the two
dynamics are substantially similar for our purposes, we leave a comparison for future work. Note that we
also discretize the set of states and actions for speakers and hearers, respectively. That is, for some n, we
treat the set of states T : {t0, ..., tn} and actions A : {ao, ..., an}, where ti = ai =

i
n . See Appendix B for

full details of the numerical simulations.
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Figure 4.3: Proportion of m2 under the discrete-time replicator dynamics for varying
amounts of speaker bias

4.6 Modeling the functional cycle

Defining the stage game and the evolutionary dynamics allowed us to investigate the effect

of speaker bias on the functional cycle in the abstract, but we are really interested in how

the resulting model can be used to explain the actual historical trajectory of negation in a

concrete case. In particular, we are interested in what happens when we fit the model to data

from the history of negation in English. First, we describe the data that we fit the model to.

Second, we define the parameters of the dynamics that we fit. Finally, we evaluate these

parameters in light of the experimental data presented above.

The data we use are drawn from the PPCME2 (Kroch and Taylor 2000). All tokens

used are negative declaratives, excluding cases of contracted negation as well as cases that

appear to be constituent negation.7 Each circle represents tokens in a given year. The

size of the circle represents the number of tokens. The height of the circle represents the

7We model the data used here after Wallage (2008), which makes a compelling argument for treating
contracted negation, among other cases, separately. Many thanks go to Aaron Ecay for sharing the code for
generating the queries.
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Figure 4.4: Proportion of ne, ne...not, and not in Negative Declaratives

proportion of those instances that are a particular form. Locally-weighted regression lines

are fit to these proportions. We see the transition from ne to ne...not starting around the

12th century, followed closely by the transition from ne...not to not in the 14th century.

Now, given that we are interested in the functional cycle, we care about the transition

from ne to ne...not. That is, we care about an incoming emphatic form displacing an in-

cumbent form. So, the subsequent rise of not is the second transition in the formal cycle,

but not a part of the functional cycle. How should we deal with not in our analysis? There

are two possibilities. First, we could ignore not and simply fit the model to the proportions

of ne and ne...not. The problem with doing so is that this attributes too much to small fluc-

tuations in the proportions of ne and ne...not even if those fluctuations are not meaningful

in any sense relevant to the model. It is unlikely that small changes in the 15th century are

something that we want to model.

Second, we could ignore the distinction between ne...not and not, and treat them as if

they were the same form. This alleviates the potential problem of attributing too much
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Figure 4.5: Proportion of ne...not and not versus ne over time

meaning to small fluctuations past a certain date. More importantly, it captures the con-

tingency of the second transition of the formal cycle to purely post-verbal negation. That

is, the rise of not is not a part of the functional cycle, nor is it a necessary and immediate

consequence of the functional cycle. We only need to compare the history of negation in

French where the embracing form goes to completion before being eventually replaced by

the post-verbal form. Taking this route allows us apply the same model across languages

without regard to subsequent contingent developments. The results of doing so are shown

in Figure 4.5.

Taking the trajectory of forms in Figure 4.5 as the data we want to fit our model to, we

need to specify the parameters of the model to be fit. In particular, we need to define the

initial state of how speakers use the different forms and how hearers respond to them. In

fact, we have quite a bit of information regarding what the initial state of the functional

cycle actually is. That is, we know that ne...not is fairly infrequent and largely restricted

to high degrees of activation. Likewise, we know that hearers’ response to ne...not is also
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largely restricted to actions corresponding to high degrees of activation. We can translate

this information into conditions on the initial states of the speaker and hearer populations.

Regarding speakers we assume that both forms have a particular meaning, which is

captured by conditional probability of states given a form. Namely, ne is the default form

and does not carry any information above and beyond the prior, it roughly satisfies the fol-

lowing conditional distribution p(t | ne) ∼ B(1, 2). In contrast, ne...not is overwhelmingly

used in states with high degrees of activation, that it satisfies the following conditional dis-

tribution p(t | ne...not) ∼ B(α, 1). The larger α is, the more skewed towards high degrees

of activation is ne...not. Note that these two distributions along with the prior determine

the initial proportion of ne...not. So, we only have a single parameter α to fit for the initial

state of speakers.

Regarding hearers, we assume that the expected value of the responses to both forms

correspond to the expected value of the conditional probability of states given the form.

Intuitively, this corresponds to hearers starting off with a fairly accurate responses to the

two forms. For ne this is satisfied by any distribution B(α, β) such that α = 1
2
β, which

has an expected value
1
2
β

1
2
β+β

= 1
3
. Note that is the same as the expected value of the

conditional probability of the state given the message p(t | ne) ∼ B(1, 2). So we take the

conditional probability of actions given ne to be p(a | ne) ∼ B(1
2
β1, β1). All that β1 does is

to determine how concentrated the action is around the expected value. For ne...not let γ =

E[t | ne...not], then this is satisfied by any distribution B(α, β) such that α =
(

γ
1−γ

)
β, so

we take the conditional probability of an action to be p(a | ne...not) ∼ B(
(

γ
1−γ

)
β2, β2).

Again β2 determines how concentrated the action is around the expected value. So, we

have two parameters β1 and β2 to fit for the initial state of hearers.

The last thing to note before fitting the model is the notion of time. That is, the replicator

dynamics specify how populations change from one point in time to the next, but how these

abstract units correspond to days or years is unspecified. In what follows we treat each of
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Figure 4.6: Predicted probability of ne...not over time for fitted model of functional cycle.

these abstract time units as a year, but leave open the possibility that another proportion may

be more appropriate. One option would be to treat the ratio between years and abstract time

units as another parameter to be fit in the model, but for now we leave this as an avenue for

future research.

We fit the initial state parameters and bias parameter to the data.8 We begin by visual-

izing the overall trajectory of the incoming form, then turn to the change in the meaning

of the two forms over time. Figure 4.6 shows the predicted proportion of ne...not over his-

torical time for the fitted model with the bias parameter b̂ = 0.49132877. Perhaps more

importantly, we can actually inspect the inner workings of the model as they relate to the

functional cycle.

In particular, we can examine how the information carried by the two forms changes

over time. We gain insight into the functional cycle by considering how the meaning of

ne...not changes over time as in Figure 4.7. The horizontal axis represents states and ver-

tical axis represents the conditional probability of states given that ne...not was used. We

8See Appendix B for the full details of the starting states and the resulting fit.
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Figure 4.7: The emphatic form over time as given by the conditional probability of states
given ne...not, where dashed line indicates prior probability distribution.

show this conditional probability at various points as the functional cycle proceeds. The

dashed line indicates the prior probability distribution over states. The initial meaning of

the incoming emphatic form is represented by the curve with the most rightwards skew.

This indicates the point at which the incoming emphatic form carries the most information

and is thus the most emphatic. But, as time goes on, ne...not spreads to more and more de-

grees of activation as it the form increases in frequency. We represent this with subsequent

distributions that move more and more towards the prior distribution. As they do so, the

form loses its emphasis, as indicated by the thickness of the line. When ne...not is the only

form, it carries no information about activation beyond the prior. Visually speaking, at this

point its emphasis has faded entirely.

We also gain insight in to the functional cycle by comparing the relative meaning of both

forms. Comparing the meaning of ne at the outset of the cycle and ne...not at the end of the

cycle is particularly informative. Figure 4.8 emphatically demonstrates the dynamics of the

push-chain scenario. At the beginning of the cycle in 1125 CE, ne carries no information

about the degree of activation, it coincides with the prior as indicated by the dashed line. In
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Figure 4.8: The push-chain of the functional cycle given by the conditional probability of
states given form at various points in time, where dashed line indicates prior probability.

contrast, ne...not is overwhelmingly restricted to cases where the proposition being negated

has a high degree of activation. Both of these facts are shown in the top panel of Figure

4.8. But, one hundred years later, ne...not has expanded to more states as it increases in

frequency and ne is pushed to lower and lower degrees of activation. This is shown in the

second panel of Figure 4.8. As the functional cycle proceeds, the old form is pushed lower

and lower down the scale. Eventually, the incoming form has displaced the incumbent form

and ceases to carry any information about the degree of activation.

So, the dynamics of the fitted model match our theoretical conceptions of the functional

cycle as a kind of push chain. The incoming form pushes the incumbent form out, eventu-

ally taking its place and losing its emphasis. Given that the driving force behind this change

was posited to be speakers’ bias to overestimate activation, it is important to take a moment

to evaluate the value of the fitted bias parameter, b̂. Given that the incoming form replaces
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the incumbent form, we would expect from our equilibrium analysis that at the very least

b̂ > 1
6
, but this still leaves a fair amount of room for the parameter to vary. In fact the fitted

value b̂ = .4913287 is well above this minimum.

Now, given this value, we might ask whether it is reasonable in light of the experimental

results discussed above. To evaluate the parameter, we return to the results reported in

Wu and Keysar (2007). Namely, when playing a communication game, speakers relied

on private knowledge of the names of shapes in a proportion of trials. We can use this

information to estimate the expected value of the bias parameter exhibited by speakers in

the experiment.

To see this, first suppose that there are only two states corresponding to whether or not

the name for a particular shape was learned privately or jointly. That is, knowing whether

a name was learned privately or jointly is categorical. As Heller et al. (2012) found, this

is a reasonable assumption given that participants were incredibly accurate at recalling the

context of learning for shapes. Second, suppose that the utility functions for both speakers

and hearers are the same form as above. Third, suppose that hearers take one action in

response to names and another for descriptions that correspond to initial guesses about the

status of the target shape. Then a speaker would only prefer the action taken in response to

a name for a privately learned shape if b > 1
2
.

But, this preferences is not categorical. In fact, from the experimental results we only

know the probability that b > 1
2
. However, we can estimate the expected value of the

bias parameter. Let p(b) ∼ B(α, β) be a distribution over the unit interval. We find the

parameters such that
∫ 1

1
2
p(b)db = p(b > 1

2
), which in turn give the expected value of b. For

example, where speakers use a privately known name in 5% of trials E[b] = .1398, and

where speakers use a privately known name in 28% of trials E[b] = .3549.

So, there are a range of potential values of speaker bias that we can estimate from

the experimental evidence. In both cases these are smaller than the fitted value of the
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bias parameter for the functional cycle. However, there are good reasons to treat these

experimental estimates as lower bounds. First, the fitted parameters deal with different

domains. Where the experiments deal with the referential domain, the functional cycle

deals with the propositional domain. It is certainly possible that speaker bias varies across

these domains. In fact, we might even expect this. For example, referents often come along

with some externally observable entity in the real world, whereas propositions often do not.

The fact that propositions are in this sense more abstract may lead speakers to rely on their

own perspective more. Second, the experiments found speaker bias even between strangers.

These kinds of communicative biases are even more pronounced between people who know

each other well (Savitsky et al. 2011).9 Thus the degree of speaker bias in everyday life

may be significantly larger than these experimental estimates suggest.

Careful experimentation will be needed to nail down how private and common knowl-

edge are tracked in the propositional domain, and how this plays out in everyday life.

However, the results are largely compatible with both the mechanics of the dynamic model

of the functional cycle we have defined here.

Summary

Separating out the formal and functional cycles lightens the explanatory burden. By isolat-

ing the functional cycle we were able to identify what conditions the incoming form and

reason about why those conditioning factors change over time. In particular, we argued

that speakers have difficulty in keeping track of private versus common knowledge, which

biases them towards overestimating the activation of propositions being negated. The tools

9For example, one day when I got home the first thing my wife said to me was, “I DID make an appoint-
ment.” This struck me as out of the blue, but she said that she told me that she was feeling a little under
the weather and debating whether her cold symptoms warranted a trip to the doctor. This conversation had
happened several days prior and I had completely forgotten about it, but it was on her mind. In other words,
her own subjective estimate of p =“I made a doctor’s appointment.” was greater than the actual degree of
activation. In this case, I would say that the bias was fairly high b ≈ 1.
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used to model the functional cycle allow us to offer the first explanatory model of the dy-

namics of how meaning changes over time. Importantly, they also highlight the fact that

while the driving force of the functional cycle is a byproduct of our cognitive limitations in

tracking common knowledge, change comes about through the social interactions between

individuals in a population. Thus explaining the functional cycle requires a model of how

pragmatic competence shapes signaling over time.

Before moving on, we pause to consider two potential lines of research related to the

model we have discussed here. The first deals with the alternative definition of empha-

sis offered at the outset. That is, emphatic negation widens and strengthens negation to

preclude exceptions. This interpretation is appealing insofar as negative polarity items are

often recruited to create emphatic forms and have exactly this effect (Kadmon and Land-

man 1993, Eckardt 2006). However, this approach to the functional cycle would have to do

two things. First, it would have to specify what serves the role of speaker bias in driving

the increase of an incoming emphatic form. Second, it would have to address the problem

of over-prediction. That is, if new signals can be formed with the addition of any negative

polarity item, then there will always be new forms available, and thus the functional cycle

should always be occurring. The fact that we do not observe Jespersen’s treadmill means

there must be some kind of restriction on what can serve as a new emphatic form. One

potential restriction is that the new form must be free from sortal restrictions. For example,

both “I didn’t move a crumb” and “I didn’t eat a crumb” must be equally acceptable.

The other line of research has to do with the implications of this model of the functional

cycle for referring expressions that are also sensitive to degrees of activation. Gundel et al.

(1993) refer to the scale of sensitivity as the giveness hierarchy, which is roughly ordered

by pronouns, demonstratives, definites, and indefinites. Pronouns are restricted to refer-

ring to entities that are directly activated, whereas indefinites can be used with any entity.

Interestingly, similar diachronic patterns are observed as forms spread to lower degrees

101



of activation. For example, the Modern English definite the comes from the Old English

demonstrative se.10 However, there are at least two interesting implications of the model of

the functional cycle for the stability within the givenness hierarchy. First, we would predict

greater stability in these referential terms given the prior distribution over degrees of acti-

vation. If propositions are largely skewed towards being non-activated, then referents are

largely skewed towards being activated. This change in the distribution largely counteracts

any amount of speaker bias. Second, the generation of new pronouns, demonstratives, or

definites is arguably a rare event. At least, it would seem rarer than a form of negation

becoming associated with activation. We leave exploring both these lines of research for

the future.

10I cannot help but note discussions along this line with Jon Stevens (p.c. March 26, 2010): “One long
term goal of this sort of research could be to connect it up with facts about language learning and pragmatics
(perhaps using game theoretic tools) to paint a larger picture of why grammaticalization phenomena are so
pervasive across languages. As I alluded to in my vignette yesterday, a good model of semantic learning
will likely interact with pragmatics in an interesting way; if such modeling techniques become sophisticated
enough so as to model the acquisition of grammatical forms as well as content forms, then predictions will be
made about the actuation and spread of bleaching, which could serve as a nice test of a model’s plausibility.”
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Part II

The Formal Cycle
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Chapter 5

Stability

It may be urged that change in language is due ultimately to the deviations of individuals

from the rigid system. But it appears that even here individual variations are ineffective;

whole groups of speakers must, for some reason unknown to us, coincide in a deviation,

if it is to result in a linguistic change.

– Leonard Bloomfield (1927:445)

Distinguishing between the formal and functional Jespersen cycles simplifies the task

of explanation. It allows us to disentangle two phenomena that overwhelmingly co-occur,

and address them separately. For example, in the previous chapter we showed that the

functional cycle in English can be explained in terms of the difficulty speakers have in

keeping track of private versus common knowledge. Crucially, this explanation of the tran-

sition from pre-verbal ne to embracing ne...not rests on the way our pragmatic competence

shapes the use and interpretation of linguistic signals over time.

However, it is important to distinguish between the logical relationship between the

two cycles and the explanation of a particular historical change. That is, the functional

cycle can occur independently of the formal cycle, so we need an explanation for cases
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where it does occur independently. But, in the case of English, and many other languages,

the functional cycle coincides with the first transition of the formal cycle. There is no

guarantee that the model we described to address the functional cycle is the only or even

the best explanation of the observed transitions of the formal cycle. That is, in any given

case, pragmatic pressures might not explain the first transition of the formal cycle.

Here we consider other potential explanations for both of the transitions of the formal

cycle. In particular, we examine the possible role of acquisition. The facts to be explained

are the transition from pre-verbal ne to embracing ne...not and the transition from embrac-

ing ne...not to post-verbal not. Our goal is to understand whether the process of acquisition

offers any insights into why the formal cycle takes place. More broadly, we want to test

whether grammatical competence and the process by which it is formed are sufficient to

explain the observed changes.

First, we present a model of syntactic acquisition that has several desirable theoretical

properties. Second, we determine the dynamics of the model in a population over time. In

particular, we show the conditions under which the acquisition dynamics lead to change or

stable variation. Third, we outline the syntactic structures at various stages of the formal

cycle. These structures allow us to explicitly state the conditions for the acquisition dy-

namics to lead to either of the transitions of the formal cycle. Finally, we fit the model of

the acquisition dynamics to data from the formal cycle in Middle English and discuss the

implications of the fitted parameters.

Acquisition can be taken as a cause of the formal cycle if only if the following qualita-

tive and quantitative criteria are met. First, given the acquisition dynamics and grammatical

structures underlying the formal cycle, we should predict the qualitative occurrence of both

transitions. Second, if the acquisition dynamics predict the transitions, then the quantita-

tive parameters of the dynamics fit to corpus data should be consistent with our theoretical

assumptions. That is, the parameters of the model have some falsifiable empirical content
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that can be tested using corpus data. If neither of these criteria are met, then acquisition

cannot explain the transitions of the formal cycle.

In fact, we show that neither of the transitions of the formal cycle observed in the

history of English can be explained by acquisition. First, for the grammatical structures

posited to underly the formal cycle the acquisition dynamics predict stability rather than

change. So, the first criterion cannot be met. Second, this also means that the second

criterion cannot be met either; given that both transitions do occur, the parameters of the

fitted model necessarily differ. In fact, it would seem that the only way acquisition could

lead to either of the transitions would be, in Bloomfield’s terms, a mass coincidence of

deviation from the current system.

The main contributions of this chapter are twofold. First, we offer a general analysis of

the acquisition dynamics, which clearly delineates the conditions for stability and change

under certain kinds of parametric variation. Second, we make explicit the conditions for

acquisition to play a role in either of the transitions of the formal cycle. In particular, one

must show not only that acquisition predicts both transitions qualitatively, but that it also

matches the quantitative trajectory of the change. It is important to note that these hold for

any set of syntactic structures posited to underly the formal cycle. Demonstrating the role

of acquisition requires demonstrating how the acquisition dynamics leads from one state to

another.

5.1 A model of acquisition

In the most general sense, the process of language acquisition is some mapping from the

initial state of the learner and the linguistic evidence provided to the learner to some ter-

minal state, which is taken to be the grammatical competence of the speaker. We begin by

introducing a model that can be used to describe this process. We then note some of the
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properties that make it an appealing model of acquisition.

The variational learning model of acquisition (Yang 2000, 2002) consists of three basic

components. First, there is a finite set of grammars that vary in a parametric fashion, in the

sense of the Principles and Parameters framework (Chomsky 1981, 1995, Chomsky and

Lasnik 1993). Second, a learner keeps track of a probability distribution over grammars,

which we can think of as the weights of evidence the learner has for the various grammars.

Third, a learner updates her distribution over grammars according to a learning scheme as

she receives input from the linguistic environment.

To see this in detail, suppose that a learner is presented with sentences from the linguis-

tic environment. The learner selects a grammar Gi ∈ G = {G1, ..., Gn} with probability

pi to analyze a sentence. There are two possible outcomes: either the grammar can analyze

the sentence or it cannot. That is, the sentence is grammatical with respect to the selected

grammar or it is not. The learner updates her distribution over grammars in the following

manner, where 0 < γ � 1 is a small learning parameter.

If Gi → s then

 p′i = (1− γ)pi + γ

p′j = (1− γ)pj forj 6= i
(5.1)

If Gi 9 s then

 p′i = (1− γ)pi

p′j = (1− γ)pj + γ
n−1 forj 6= i

(5.2)

This is a linear reward-punishment scheme (Bush and Mosteller 1955):1 grammars that are

1This learning scheme is similar to the linear reward-inaction scheme that yields the replicator dynamics
(Börgers and Sarin 1997). It differs in that failures are not ignored, but rather punished. One compelling
reason for treating learning differently across the domains of meaning and structure is the hypothesis space
of each: the grammatical hypothesis space is heavily constrained, whereas the semantic hypothesis space,
even under the Fodorian (1975) conception, is constrained but arguably unbounded. That is, even a finite set
of innate concepts can be combined in the appropriate manner without end. Given this quantitative, if not
qualitative difference between the domains, it is not clear how a learner would decide what aspects of a given
hypothesized meaning to punish (cf. Quine 1960). But, see Smith and Yu (2008), Medina et al. (2011), Smith
et al. (2011), Trueswell et al. (2013) for experimental evidence, and Yu and Smith (2007), Frank et al. (2009),
Stevens et al. (2013) for computational approaches to the problem of learning meaning.
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compatible with a sentence drawn from the linguistic environment are rewarded, whereas

grammars that are not compatible with the sentence are punished. Both of these actions

are reflected in the first line of the two possible outcomes. If the grammar can analyze

the sentence, then its probability is bumped up by some small amount determined by the

learning parameter. If the grammar cannot analyze the sentence, then its probability is

knocked down by some small amount determined by the learning parameter. The second

conditions allow for the weights over grammars to be redistributed while guaranteeing that

all probabilities always sum to one.

Now, the probability that a learner attributes to a grammar changes according to how

successful that grammar is in dealing with the linguistic environment. In fact, the long term

distribution over grammars can be determined from the probability that a grammar will not

be able to analyze a sentence and will thus be penalized. For two grammars, G1 and G2, let

the penalty probabilities be c1 and c2, respectively. It can be shown that the expected value

of the probabilities of the two grammars converge to the following limit values (Narendra

and Thathachar 2012:111).

lim
t→∞

E[p1(t)] =
c2

c1 + c2

lim
t→∞

E[p2(t)] =
c1

c1 + c2

(5.3)

We should note that this result is about the expected behavior of an individual, rather than

the actual behavior of that individual. So, while the expected value of the probabilities

converges to these values, the actual probability in the mind of a given learner does not.

As we will see below, the actual values in the mind of an individual are close to, but

not necessarily equal to these values. This distinction has important implications for the

dynamics of acquisition, which we return to in the next section. In particular, it requires us

to make certain assumptions about the size of the population.
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G1
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G2

Figure 5.1: Two partially incompatible grammars

So, we know the expected behavior of a learner given the penalty probabilities of the

grammars in question. We can determine the penalty probabilities in the following manner.

First, suppose that the linguistic environment is composed of the output of two partially

incompatible grammars. Let α1 be the proportion of sentences generated at random by the

first grammar G1 that the second grammar G2 cannot analyze; likewise let α2 be the pro-

portion of sentences generated at random by the second grammar G2 that the first grammar

G1 cannot analyze. Note that while the assumptions underlying them are theoretical both

α1 and α2 empirical estimates of both can be calculated from a corpus (e.g. Ingason et al.

2013:94-95). We can represent the relationship between the two grammars visually as in

Figure 5.1 where the overlap of the two grammars indicate the sentences that are jointly

analyzable by both grammars. Second, let the linguistic environment be composed of some

distribution over the two grammars, call it L = p1G1 + p2G2. From this we can calculate

the penalty probabilities as c1 = p2α2 and c2 = p1α1. The likelihood that the first grammar

will not be able to analyze a sentence depends on the prevalence of the second grammar in

the environment and the likelihood a sentence generated by that second grammar will be

incompatible with the first grammar. The same reasoning holds for the second grammar.

We can get a sense for the learning process by simulating individual trajectories. This

can be seen in Figure 5.2 where the horizontal axis represents time as additional sentences

drawn from the environment and presented to the learner. The vertical axis represents the
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Figure 5.2: Probability of G2 over time for various individual trajectories and expected
motion of trajectories, where L = 1

2
G1 + 1

2
G2, α1 = .1, α2 = .5, γ = .1

weight of G2 in the learner’s mind. We can compare the expected motion averaged across

several hundred individual trajectories in bold to several individual trajectories. Where

the expected motion smoothly approaches the value predicted by the model, shown by the

dotted line, individual trajectories continue to move around the value. Again, we return to

this important distinction in the next section when we turn to the dynamics of the model.

However, before doing so, there are several important properties that are evident from

the simulations presented in Figure 5.2. First, this learning model allows for the gradual

adjustment of learners to the linguistic environment rather than abrupt changes (cf. Gib-

son and Wexler 1994, Hyams and Wexler 1993). Second, it allows learners to converge

to distributions over grammars, rather than a single grammar (Kroch 1989). Third, the

expected value of the probability of a grammar is directly proportional to its penalty prob-

ability (Narendra and Thathachar 2012:117), which means that learning is reasonably ro-

bust. These properties, along with the overall simplicity of the model make it an appealing

starting point for investigating how acquisition might lead to change over time.
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5.2 The dynamics of acquisition

We showed the properties of the variational learning model at the level of the individual;

we now turn to the dynamics of learning in a population over time. First, we show how

the expected change from one point in time to the next gives rise to a particular dynamics

under particular assumption. Second, we show that the stable rest points of the dynamics

are single grammars, with an important exception. We also show how these dynamics

are closely related to the logistic model often taken as a proxy for changes in competing

grammars.

Under the variational model, for the case of two grammars, we denote the expected

value of the weight accorded to the grammarG2 by a learner to be the following. That is, the

average behavior of a learner converges to a probability determined by penalty probabilities

and the prevalence of the two grammars in the linguistic environment.

p′2 =
p2α2

p1α1 + p2α2

(5.4)

Now, suppose that this distribution in turn serves as the linguistic environment for the next

generation of learners. We can determine the expected change in the average weight of p2

from one generation of learners to the next as the following.

ṗ2 = p′2 − p2 =
p2α2

p1α1 + p2α2

− p2 = p2(1− p2)
α2 − α1

p1α1 + p2α2

(5.5)

This mean dynamics follows the expected motion of the distribution over grammars in

the population. Note that we are talking about the change in the expected behavior in

the population. This means that we are modeling a fact about the population as a whole,

which ultimately derives from individual learning. However, justifying the mean dynamics

requires two important assumptions about the population.
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Figure 5.3: Distribution over p2 for population of learners and fitted normal distribution

The first assumption that must be made is about the size of the population. As we noted

in the previous section, learners converge to the limit values only in expectation. In fact,

an individual learner is almost always either slightly above or slightly below this expected

value, as can be seen in Figure 5.2. But, the distribution over these values in a population of

learners at a given point in time is roughly normally-distributed around the limit value, as

can be seen in Figure 5.3. In this case, the expected value in the population is close to the

limit value. As the population grows, the expected value in the population gets closer and

closer to the limit value. In the limit of an infinite population, the linguistic environment

for the next generation of learners is the limit value.2

The second assumption that must be made is about the structure of the population.

Namely, the continuous-time form of the dynamics requires that we assume that there are

continuously overlapping generations of learners that contribute to the linguistic environ-

2This is often a necessary assumption for studying the mean dynamics of what is undoubtedly a stochastic
process. See Chapter 10 of Sandholm (2010) for a detailed derivation of the mean dynamics as the limit of a
stochastic process in infinite population. In the next chapter we relax the assumption of an infinite population,
allowing for stochasticity in the change in the population over time.
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ment.3 Together these assumptions guarantee that the dynamics track the expected weights

over the grammars in the minds of learners over time. Thus, the solutions to this mean

dynamics is a model of the expected behavior in the population.

For the case of two grammars, we can simplify the dynamics in the following manner.

Let s = α2−α1

α2
and p2 = p, then we have the following. In population genetics s is referred

to as the selection coefficient of α1. For cases where s > 0, α2 has a selective advantage

and α1 is selected against. For s = 0, α1 and α2 are selectively neutral.

ṗ = p(1− p) s

1− s(1− p)
(5.6)

We can read the rest points off the resulting acquisition dynamics. There are two important

cases that we will consider. First, if there is only a single grammar, then the weight over

grammars is stable. That is, if p = 0 or p = 1, then the dynamics are, so to speak, at rest.

This makes intuitive sense, a grammar cannot be considered if there is no evidence for it.

Second, if there is a perfectly balanced amount of independent evidence for both grammars

s = 0, then any distribution over grammars is a rest point. This also makes intuitive sense,

if the balance of evidence is equally in favor of both grammars, then things should not

change. We determine the stability of these sets of rest points in turn.

For the first set of rest points, we can evaluate the stability of a single grammar as a

function of the selection coefficient, which captures the ratio of independent evidence in

favor of one or the other grammar. To do so we evaluate the derivative of the dynamics at

the two rest points constituted by a single grammar. If the derivative evaluated at the rest

point is negative, then the rest point is asymptotically stable. That is, the dynamics will

carry the population to the rest point. If the derivative evaluated at the rest point is positive,

then the rest point is unstable. That is, the dynamics will carry the population away from

3A discrete-time dynamics might be more appropriate in allowing for a lag between when learners con-
verge on a grammar and contribute to the linguistic environment, but this distinction does not affect the
subsequent results.
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the rest point. We can express these conditions as a function of the selection coefficient, s.

∂ṗ

∂p

∣∣
p=0

=
s

1− s
(5.7)

∂ṗ

∂p

∣∣
p=1

= −s (5.8)

Note that for s 6= 0, only one of these rest points can be asymptotically stable. The rest

point p = 0 is asymptotically stable if and only if s < 0. That is, the population will

eventually use grammar G1 exclusively if only if there is more evidence for it than there

is G2. The rest point p = 1 is stable if and only if s > 0. That is, the population will

eventually use grammar G2 exclusively if and only if there is more evidence in favor of it.

In fact, these conditions for the stability of both rest points are rather general. If we

assume that the selection coefficient is not zero, then there are no other rest points. So,

these conditions amount to conditions for global asymptotic stability. Importantly, this

means that no matter the initial distribution over grammars, if s > 0 then grammar G2

will take over in the population. Thus, the acquisition dynamics are a kind of frequency-

independent selection. We can get a sense for this fact by visualizing trajectories from the

same low starting state of p for various values of s as in Figure 5.4. No matter how small

the initial proportion or slim the margin of evidence, it is guaranteed to eventually go to

completion.

Interestingly, the acquisition dynamics in these cases are closely related to the logistic

models originally posited by Altmann et al. (1983) and Kroch (1989) to underly competing

grammars. While there was no specific learning mechanism underlying the logistic model,

it has both connections with the notion of biological competition as well as a straightfor-

ward application in terms of logistic regression (cf. Kroch 1989:4). However, it is obvious

that the variational model provides some justification for this conception when we com-
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Figure 5.4: Proportion of G2 over time for various ratios of evidence s > 0

pare the dynamics of logistic growth with the acquisition dynamics, where s is taken as the

growth rate in the logistic model.

ṗ = p(1− p)s (5.9)

In fact, the only difference is that the acquisition dynamics exhibits a varying growth rate

as a function of the distribution over grammars in the population. We show the solution for

the acquisition dynamics and the logistic model from the same starting point with the same

growth rate in Figure 5.5. The solution to the acquisition dynamics predicts a faster initial

rate of growth, but slows down to the same rate as the logistic as p ≈ 1.

In many cases the predictions of the two underlying models may not be distinguishable.

But, it is certainly possible that we might detect quantitative evidence for the acquisition

dynamics. For example for selection coefficients s ≈ 1 the acquisition dynamics are asym-

metric, unlike the logistic, which is perfectly symmetric. This can be seen in the first few

solutions in Figure 5.4. In the context of regression this could potentially lead to quanti-
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Figure 5.5: Solution to acquisition dynamics and logistic model (dashed) from same start-
ing point with s = .4

tative patterns such as heteroscedastic residuals. For example, if we take the acquisition

dynamics as a generative model, then fit of the logistic model may systematically under or

overestimate the rate of change at different points. We leave investigating this possibility

for future research.

For the second set of rest points, where both grammars have equal independent evidence

s = 0, all distributions over grammars are rest points. All states are weakly or lyupanov

stable in the sense that though the dynamics do not carry the population to a state, the

also do not carry the population away from it. Now, we might wonder whether these

seemingly knife-edge cases are likely if even possible. However, these cases have a natural

interpretation and one that will be particular relevant to the formal cycle. That is, they

describe cases where the difference between two grammars hinges on the expression of

a single syntactic position. If two grammars correspond to two ways of expressing that

position, then the output of each will be incompatible with the other. That is, they will be

totally mutually incompatible grammars, rather than only partially incompatible grammars.
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Figure 5.6: Two totally incompatible grammars

This can be visualized as in Figure 5.6, which stands in contrast with Figure 5.1. In other

words, where two grammars vary parametrically at the appropriate level, the dynamics

predict a kind of weak stability.

So, we determined the acquisition dynamics resulting from the variational model and

showed how it exhibits a kind of frequency-independent selection. That is, in most cases

only a single grammar is stable. We showed how the resulting dynamics resembles the

logistic model of growth. We also noted a crucial exception to this rather robust behavior

that leads to a weak kind of stability. With this in mind, we now turn to an analysis of the

syntactic structures underlying the formal cycle.

5.3 The syntactic structures of the formal cycle

There are a range of ways of analyzing the syntactic structures underlying the formal cycle.4

Here we focus on the analysis presented in Frisch (1997), which treats the formal cycle as

the result of two independent morphological changes. First, we present the theoretical

details of the analysis. We then note corpus evidence in favor of this treatment.

4For example, different analyses have suggested varying levels of detail in the number and realization of
stages, ranging from three stages (Burridge 1983, Bernini and Ramat 1996, Haspelmath 1997, Frisch 1997,
Zanuttini 1997, Horn 1989, Hoeksma 1997, Horn 2001, Roberts and Roussou 2003, van der Auwera and
Neuckermans 1997, Mazzon 2004, Willis 2005, Lucas 2007, Jäger 2008, Wallage 2008), to four stages (Dahl
1979, Schwegler 1988, 1990, Schwenter 2005, 2006), up to five stages (Honda 2000, Beukema 1999, van der
Auwera and Neuckermans 1997, Zeijlstra 2004).
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Figure 5.7: The structure of the Negative Phrase
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Figure 5.8: Stage one of the formal cycle according to morphological analysis

Frisch (1997) takes Pollock’s (1989) analysis of negation as a starting point, assuming

that negation constitutes its own phrase, with a fully projected structure like that in Figure

5.7: Neg0 is the head of the phrase, Spec is its specifier, and XP is a sister phrase such as

a verb phrase. In particular, Frisch assumes that this underlying structure is always present

(Haegeman 1995). The formal cycle simply consists in changes to how the positions in this

underlying structure are expressed.5

At the first stage of the formal cycle the negative head is expressed as ne whereas the

specifier is a phonologically null operator ∅. The syntactic structure according to this

morphological analysis can be seen in Figure 5.8. Sentential structure at stage one of the

formal cycle in Old English is illustrated in Figure 5.9, where a strikethrough indicates

successively upwards head movement. The result is purely pre-verbal negation.

The transition to the second stage in the formal cycle stems from a change in the real-

ization of the specifier of the negative phrase. Namely, the specifier is no longer expressed

5This is a more localized version of the cartographic approach advocated by Rizzi (1997), which posits
a universal syntactic structure. The locus of variation between languages under this conception is how that
universal structure is expressed.

118



TP

T′

NegP

Neg′

VP

...V

V+Neg

∅

V+Neg+T

ne secge

DP

ic

Figure 5.9: Sentential structure at stage one of the formal cycle according to morphological
analysis

NegP
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VP

...

Neg

ne

XP

not

Figure 5.10: Stage two of the formal cycle according to morphological analysis

by a null operator, but instead by not, as can be seen in Figure 5.10. Sentential structure at

the second stage of the formal cycle in Middle English is illustrated in Figure 5.11, which

results in pre- and post-verbal negative elements.

The transition from the second stage to the third and final stage of the formal cycle is

simply a a matter of whether the negative head is expressed via lexical content or by some

null head ∅. The structure of the negative phrase at the third stage is shown in Figure 5.12,

and sentential structure at this final stage in Late Middle English is shown in Figure 5.13.

Similar morphological approaches to the formal cycle are adopted by Roberts and Rous-

sou (2003) and Zeijlstra (2004). The shared aspect of these morphological analyses is the

assumption that the underlying syntactic structure remains stable, but the realizations of

particular positions within that structure changes. Importantly, since this is the only locus
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Figure 5.11: Sentential structure at stage two of the formal cycle according to morphologi-
cal analysis
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Figure 5.12: Stage three of the formal cycle according to morphological analysis
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Figure 5.13: Sentential structure at stage three of the formal cycle according to morpho-
logical analysis
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of change, the transitions that constitute the cycle are independent of each other. That is, the

fact that both ne and not show up in the embracing ne...not form is simply the coincidental

product of two forms waxing and waning at the same time.

Frisch (1997) tests this theoretical prediction using the trajectory of negation in Middle

English in the Helsinki corpus of Middle English. He notes that if the two transitions are

independent of each other, then the co-occurrence of ne and not in the negative phrase

should be the product of the probabilities of each occurring.

P (ne...not) = P (ne)P (not) (5.10)

That is, the probability of ne...not is the probability of two independent events ne and not.

This is in fact what Frisch finds.6 So the formal cycle can be conceived of as two changes

in the expression of positions within an underlying structure. In what follows, we will

assume that grammatical knowledge is represented as in Figures 5.8, 5.10, and 5.12. That

is, under the assumption of a constant underlying structure, a grammar is characterized by

the mapping from the syntactic positions in the negative phrase to lexical items. With these

definitions in place, we turn to the actual trajectories of the transitions of the formal cycle

in English.

5.4 Modeling the formal cycle

Now that we have stated the grammars underlying the stages of the formal cycle we can

turn to modeling the transitions of the formal cycle. First, we note that given the structure

of the grammars posited to underly the formal cycle, we can treat each of the transitions

separately. Second, we note that given the composition of the grammars we should ex-

6Calculating these probabilities requires some adjustment for things like instances of adverbial not among
others. See Frisch (1997:32-47) for the details.
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pected stability under the acquisition dynamics. Finally, we fit the acquisition model for

the two transitions of the formal cycle and note that the parameters are indeed not what

the acquisitions dynamics predict. However, we note what a successful explanation of the

formal cycle would have to do.

The grammars underlying the formal cycle differ only in the expression of two syntac-

tic positions. This has two important implications. First, if the two changes in how these

positions are expressed are independent of each other, then we can treat them as such. That

is, we can treat the two transitions of the formal cycle as independent events of competi-

tion between two grammars for expressing those positions. In what follows we take this

approach, treating both the first and second transitions as cases of the acquisition dynam-

ics with two grammars. Second, if the grammars involved in each transition differ only in

the expression of one position, then they are totally mutually incompatible s = 0. This

means that the acquisition dynamics predict stability in the case of both transitions, but

this is certainly not what we observe. In fact, this alone suffices as a demonstration that

acquisition as we have modeled it here cannot account for either of the transitions of the

formal cycle. That is, given the description of the grammars underlying the stages of the

formal cycle, acquisition cannot cause the transitions between them. This means that the

qualitative criterion for acquisition serving as a cause of the formal cycle is not met.

However, it is useful to note what would have to be the case for acquisition to explain

the empirical trajectories of the two transitions. That is, if we fit the acquisition dynamics

to data, the fitted parameters tell us what we would need to find in order to take acquisition

as the cause of the formal cycle. We fit the acquisition dynamics to the trajectory of the

first transition modeled as the competition of two grammars for the specifier of the negative

phrase. In this case we take G1 as G∅ and G2 as Gnot to be grammars that determine how

the specifier of the negative phrase is expressed. We take instances of ne to be compatible

with G∅ and instances of ne...not and not to be compatible with Gnot. The parameters to fit
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are the initial state of the second grammar in the population and the selection coefficient s

that captures the ratio of evidence in favor of the second grammar.

The last thing that needs to be specified is the notion of time. The solution to the

acquisition dynamics is in abstract time units, but how these correspond to the actual time

in days, months, or years is unspecified. We could fit this relationship as another parameter

in the model, but this would be problematic if we were to find different values for the second

transition. Instead, we stipulate a ratio between the units of the dynamics and years where

one abstract time unit corresponds to five years. We take this to be a rough approximation of

the time between when a learner is born an starts contributing to the linguistic environment,

but leave it to further research to gain a better estimate the actual value.

The results of fitting the acquisition dynamics can be seen in Figure 5.14.7 It is impor-

tant to note, however, that regardless of how well the fitted model approximates the actual

trajectory of the first transition, the parameters are not possible. That is, the second gram-

mar cannot have an advantage over the first given that they differ only in the expression

of a single syntactic position, yet this is exactly what would be required for acquisition to

explain the first transition. This means that the quantitative criterion for acquisition serving

as a cause of the formal cycle is not met. However, for another description of the grammars

underlying the stages of the formal cycle, this parameter would need to match our theoreti-

cal predictions. That is, if the grammars were specified differently, the selection coefficient

ŝ would still have empirical content. We should be able to look at a corpus and use the

grammatical descriptions to see if it is consistent.

We also fit the acquisition dynamics to the trajectory of the second transition modeled

as the competition of two grammars for the head of the negative phrase. In this case we

treat G1 as Gne and G2 as G∅. We take instances of ne and ne...not to be compatible with

Gne and instances of not to be compatible with G∅. The results of fitting the acquisition

7See Appendix C for details.
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Figure 5.14: Proportion of Gnot over time for the first transition of the formal cycle, ŝ =
0.10291529

dynamics can be seen in Figure 5.15.8 Again, this means that our second criterion for

acquisition serving as a cause of the formal cycle is not met. So, neither of the criteria for

acquisition serving as a cause of the formal cycle have been met. That is, the acquisition

dynamics do not predict either of the transitions, nor do the parameters of the fitted models

agree with the corpus evidence predicted by the grammars.

It bears emphasis that these criteria are not specific to the acquisition dynamics we

specified nor to the grammatical structures posited to underly the stages of the formal cycle.

We could just as well adopt another model of acquisition or the grammatical description of

the formal cycle (cf. Niyogi 2006). But, abandoning the appealing theoretical properties

of the variational model and its acquisition dynamics seems a bit hasty. This is especially

true given that we need some model to provide any explanation at all. There are, however,

a wealth of options when it comes to grammatical descriptions of the formal cycle, as we

noted above.
8We only fit the dynamics to data from the point where there are instances of not in all subsequent years,

from 1300 CE onwards. Again, see Appendix C for details.
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Figure 5.15: Proportion of G∅ over time for the first transition of the formal cycle, ŝ =
0.34128455

For example, Wallage (2008) makes a compelling corpus-driven argument for the treat-

ment of the formal cycle as two interdependent morphosyntactic changes. In particular,

Wallage treats the first transition as the addition of the post-verbal not as well as the change

in the formal features of pre-verbal ne from an interpretable to an uninterpretable feature

(Chomsky 1995). This more articulated approach would likely face the same problem

regarding the first transition, but might offer insight into the second transition. But, it

would also offer an interesting alternative insofar as it takes the locus of variation to be the

properties and features of functional categories, according to the so-called Chomsky-Borer

conjecture, (Baker 2008).

But, regardless, for acquisition to explain the formal cycle, both of the criteria we de-

scribed above have to be met. Not only must both of the transitions be predicted, they must

also be modeled in an empirically and theoretically consistent manner. To perhaps belabor

the point, we can use the parameters of the fitted models of the transitions to predict the

proportion of the different forms of the formal cycle in English over time. The result can
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Figure 5.16: Proportion of ne, ne...not, and not predicted by the fitted parameters of the
acquisition dynamics

be seen in Figure 5.16, and indeed the predicted forms are a close match to the empirical

trajectories that we observe. It is tempting to take this as a reasonably good result. But, the

parameter values that generate this result are on their face not compatible with the gram-

matical structures posited to underly the formal cycle. If we want to explain, rather than

just describe historical changes we need models that get the picture right while simulta-

neously being self-consistent. That is, we not only need to be able to fit parameters, but

also to make sure those parameters make sense given our theoretical assumptions about the

grammatical knowledge that speakers acquire.

Summary

In this chapter we presented a model of syntactic acquisition, determined its predicted

dynamics in a population over time, and fitted it to data from the formal cycle in Middle

English. We found that neither the qualitative nor quantitative criteria for taking acquisition
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as the cause of the formal cycle were met. All together then, it seems that acquisition cannot

be taken as a cause of the formal cycle. If this is indeed the case, then it has important

consequences for our understanding of the two transitions of the formal cycle.

Regarding the first transition from ne to ne...not, if acquisition cannot explain it, then

use can. That is, given that this transition coincides with the functional cycle, then the

explanation of the functional cycle put forward in the previous chapter is the only and

necessarily the best explanation of the observed transition. Alternative analyses of the

grammars underlying the formal cycle may change this, they must be both qualitatively

and quantitatively accurate and consistent.

Regarding the second transition from ne...not to not, neither acquisition nor use can ex-

plain it. The transition does not coincide with another functional cycle, not is not restricted

to specific contexts. This leaves us in the strange position of observing a change without

an obvious cause. Absent some mass coincidence, what are we to make of the second tran-

sition of the formal cycle? One possibility is that this second transition is not the result of

one mass coincidence, but rather the accumulation of many much smaller coincidences.

To see how this might be the case, consider the fact that the acquisition dynamics only

predict a weak form of stability in the expected change of the expected behavior of learners

in a population. For example, if we relaxed the assumption regarding the size of the pop-

ulation, then the linguistic environment provided to learners would differ slightly from the

limit value. For the second transition, suppose that the proportion of G∅ in the actual lin-

guistic environment is slightly higher than expected due to sampling errors. Now, suppose

that it is slightly higher in the next generation as well due to sampling errors. If enough of

these small coincidences compound over time, one grammar may replace another without

ever having more evidence in favor of it.

Indeed, this possibility has been extensively studied in population genetics in terms of

genetic drift. That is, when the selection coefficient is zero s = 0, as is the case in the
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second transition of the formal cycle, change can come about due to random sampling. Or,

in this case, random changes in the probabilities over grammars learned over time. This

means that we the second transition might be the result of a series of small coincidences

rather than a single improbable one. In the next chapter we turn to means of testing this

possibility.
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Chapter 6

Chance

[T]o my imagination it is far more satisfactory to look at such instincts as...consequences

of one general law leading to the advancement of all organic beings – namely, multiply,

vary, let the strongest live and the weakest die.

–Charles Darwin (1859)

In our analyses of historical change we have used mean dynamics that presuppose ef-

fectively infinite populations. This assumption allows us to smooth out chance occurrences

and study the expected motion of what is arguably a stochastic process. However, as we

noted in the previous chapter, this does not rule out the possibility that the changes we

observe are actually due to chance. Here we relax the assumption of effectively infinite

populations and determine its effect on the acquisition dynamics. While the acquisition

dynamics predict stability, it is only a weak kind of stability stemming from the size of

the population. Either of the transitions of the formal cycle could be the result of random

sampling errors in a finite rather than an infinite population. This is particularly relevant

for the second transition from ne...not to not, which we noted cannot be explained by either

use or acquisition. In this chapter we investigate the possibility that the transitions of the
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formal cycle are indeed due to chance.

First, we briefly discuss the conceptual role of drift in the history of population genet-

ics. Whereas early approaches to population genetics from Darwin on have emphasized

selection over drift, more recent work has developed tools for addressing both theoretical

possibilities. Second, we demonstrate the dynamics of drift in finite populations. We show

that change can indeed come about through drift. More importantly, we show that drift can

lead to change that exhibits the qualitative trajectories so frequently observed in historical

linguistics, and selection can lead to change that is decidedly not like what we observe

historically. Third, we introduce a statistical method for testing whether we can reject the

hypothesis of drift in favor of selection for a particular trajectory. We apply this test to both

of the transitions of the formal cycle and show that while we can reject the possibility of

drift in the transition from ne to ne...not, we cannot reject it in the transition from ne...not

to not. Finally, we discuss these results in light of the previous chapters. Given that we can

reject the role of drift in the first transition, this adds support for our model of the functional

cycle. Given that we cannot reject the role of drift in the second transition, we can make

sense of the varying times to completion of the transition across languages.

The main contributions of this chapter are twofold. First, we offer the first applica-

tion of statistical methods for distinguishing between selection and drift in linguistic time

series. This has important implications not just for the formal and functional cycles, but

for linguistic change as a whole. The crucial fact is that the typical trajectories observed

in linguistic change may arise from selection or drift. Simply put, we cannot distinguish

between these two possibilities from simple visual examination. Rather, we need a means

of testing competing hypothesis about the underlying cause of the change. Second, the

application of these methods offers insight into the formal cycle, and the second transition

in particular given that neither use nor acquisition offer an explanation. More broadly, it

also offers constraints on the nature of stable variation.
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6.1 Genetic drift

The nineteenth century saw both the discovery of the mechanics of genetic inheritance by

Gregor Mendel and the formulation of the principle of natural selection by Charles Darwin.

Yet, it was not until the early twentieth century that these two notions were reconciled

and put on a rigorous mathematical foundation by the work of Fisher, Sewall Wright, and

Haldane in what has become known as the modern evolutionary synthesis (Huxley 1942).

As the term suggests, these foundations offer a coherent and compelling view of observed

changes in biological populations.

The role of random drift in explaining these changes, however, was taken to be minimal

in comparison to selection. The balance between selection and drift was revisited most

notably by Kimura (1968) in his neutral theory of evolution, which emphasized the role

of drift rather than selection at the molecular level. While the proper emphasis on of each

has been the subject of intense debate, more recent work in population genetics has taken

the balance between these two forces as an empirical matter, developing theoretical tools

for distinguishing the potential role of each. In what follows, we adopt this approach to

understanding changes in a population over time.

In particular, our goal will be to test the role of drift in both of the transitions of the

formal cycle. Our first step towards this approach is to demonstrate the need for statistical

methods for distinguishing the quantitative signatures of selection versus drift in linguistic

time series. We do so by simulating the dynamics of change in a finite population to

demonstrate some counter-intuitive possibilities regarding drift versus selection.

6.2 The dynamics of drift

Here we outline the dynamics of a simple model of change in a finite population. Using

simulations of the Moran model (Moran 1958), we show that our intuitions about how drift
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and selection look are not as useful as we might think. That is, we cannot simply look at

the trajectory of a change and determine intuitively if it occurred due to selection or drift.

This is true despite the fact that we often observe a similar qualitative S-shaped trajectory

in the course of language change (Bailey 1973).

The Moran model describes the dynamics of selection and drift in a finite population.

At each point in time one individual is chosen to reproduce and one individual is chosen

to die, yielding a continuous-time Markov chain.1 The probability that a variant is chosen

to reproduce is proportional to its relative fitness. For example, consider a population

composed of a particular number of two variants, N = n1 +n2. Let the selective advantage

of the second variant be s, then the probabilities of each being selected to reproduce are

given by the following.

pbirth1 =
n1

n1 + n2(1 + s)
(6.1)

pbirth2 =
n2(1 + s)

n1 + n2(1 + s)
(6.2)

For the case where the two variants are selectively neutral, s = 0, the two variants are

chosen directly proportional to their respective frequencies in the population. Where s > 0,

the second variant is selected for, so the second variant is slightly more likely to be chosen.

This makes sense, if one variant has a selective advantage, then we would expect it to be

more likely to reproduce.

While the probability of being chosen to reproduce is proportion to the relative fitness

of the two variants, the probability of being chosen to die is directly proportional to just the

1While the Moran model assumes continuously overlapping generations as we did in the previous chapter
regarding syntactic acquisition. the Wright-Fisher model can be taken as the discrete-time analogue where
generations do not overlap and are sampled all at once. The same general point holds for the Wright-Fisher
process as well though: we cannot determine the selective advantage of particular variants from the trajectory
they create.
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prevalence of the two variants in the population.

pdeath1 =
n1

n1 + n2

(6.3)

pdeath2 =
n2

n1 + n2

(6.4)

Given that a single individual is chosen for birth and death at each point in time, then the

number of any variant either increases, decreases, or stays the same. For example, we can

keep track of the number of the second variant in the population., n2. This number will go

up by one if an individual of the second variant is chosen to reproduce and an individual of

the first variant is chosen to die. If the selections are the opposite, where an individual of the

first variant is chosen to reproduce and an individual of the second variant is chosen to die,

then the number of the second variant will decrease by one in the population. If the type

of both individuals selected is the same, then there will not be any change in the number

of either variants. The probability of all these outcomes is determined by the probability of

selection for birth and death that we listed above.

In fact, we can specify the probability of each of these changes from one point in time to

the next. In particular, we can show the probability of a particular change in the number of

the second variant in the population. We list the probability that n2 will increase, decrease,

or stay the same.

pn2,n2+1 = pbirth2 pdeath1 =
n2(1 + s)

n1 + n2(1 + s)

n1

n1 + n2

(6.5)

pn2,n2−1 = pbirth1 pdeath2 =
n1

n1 + n2(1 + s)

n2

n1 + n2

(6.6)

133



pn2,n2 = 1− pn2,n2+1 − pn2,n2−1 (6.7)

There are two important points where the population does not change at any subsequent

points in time. Namely, if n2 = 0 or n2 = N , then the population will not change at

any point moving forward. These are referred to as the absorbing states of the process,

whereas all other states are transient. This follows from the fact that at the absorbing states

the sampling probabilities for the two variants are either one or zero.

So, neutral selection in a finite population provides an interesting contrast to the acqui-

sition dynamics we presented in the previous chapter. Indeed, if we loosen the assumption

of an infinite population, then the acquisition dynamics makes a similarly strong prediction

of no stable variation between grammars that are totally mutually incompatible. In other

words, if acquisition is the only force acting on a language, then a single syntactic posi-

tion will only ever be expressed by a single variant. We return to the implications of this

prediction for observed stable variation below.

Now that we have specified the dynamics of the model, we can simulate trajectories of

a population of size N for selection coefficient s. Before doing so though, it is useful to

consider what our expectations would be about a population evolving under neutral versus

positive selection. Intuitively, we would expect selection to exhibit a clear trajectory, where

the variant that is being selected against is quickly driven from the population. In contrast,

we would expect neutral selection to be a more random kind of change, not necessarily

tending in direction or the other. That is, we would not expect any clear trajectory favoring

one variant over the other. It is useful to dwell on these expectations a bit before considering

the simulation results. We want a clear baseline to compare the results to.

When we do compare individual trajectories of the model for cases where s = 0 versus

s > 0, we sometimes have the exact opposite results, as can be seen in Figures 6.1 and 6.2.
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Figure 6.1: Proportion of forms over time in simulation of Moran model for N = 100 and
s = 0

That is, in Figure 6.1 we show the trajectory of a population under neutral selection s = 0

that exhibits the characteristic S-shaped curve observed in language change. Likewise,

in Figure 6.2 we show the trajectory of a population under positive selection s = .1 that

exhibits a rather different kind of growth. The fundamental fact is that the underlying cause

of a particular change cannot be read off its form, any particular S-shaped curve may be

due to drift or selection.

Now, one objection to this point might be that the individual trajectories presented in

Figures 6.1 and 6.2 are atypical. More often than not, selection and drift will match our

expectations. This is certainly true, these trajectories were chosen particularly to emphasize

the potentially counterintuitive result of selection and drift in finite populations. So, we

might be tempted to conclude that the probability that a given change is due to drift given
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Figure 6.2: Proportion of forms over time in simulation of Moran model for N = 100 and
s = .1
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that it is S-shaped is actually fairly small.

However, this objection rests on several assumptions. First, it assumes that we have

some prior expectation over drift versus selection. But, we do not have sufficiently devel-

oped causal models of linguistic change that would warrant any particular prior. In fact, in

particular cases, we have very strong theoretical reasons for expecting drift, as was shown

in the previous chapter regarding the transitions of the formal cycle. Second, the size of

the population is not a parameter we know beforehand. That is, we can never be sure from

the data itself what the probability of a particular curve should be under drift. Third, and

perhaps most importantly, it is not clear what actually counts as being S-shaped or not.

While we may have intuitions about what does or does not count, these would need to be

clarified.

If all of these assumptions cannot be clearly articulated and justified, then it is reason-

able to assume that we simply cannot know the cause of a particular change given its shape.

If this is indeed the case, then we need some means of testing different hypotheses about

the underlying causes of change. For the formal cycle, we want a means of testing for

whether or not each of the transitions is due to drift or selection.

6.3 Modeling the formal cycle

If drift and selection can yield counter-intuitive trajectories in finite populations, then we

need some means of distinguishing the two in linguistic time series. In what follows, we

discuss the fitness increment test described by Feder et al. (2014) as a means for testing the

hypotheses of drift versus selection. First, we begin by noting the motivation for the test,

as well as some of details regarding its application. Second, we apply the test to the two

transitions of the formal cycle.

The fundamental comparison to be made in distinguishing between drift and selection
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is between two models. The first model assumes that there is no selection s = 0 and

determines the population size N that would best explain the data. The second model

assumes that there is selection s > 0 determines the selection coefficient and population

size N that would best explain the data. Given that the first model can be taken as a special

case of the second, the two can be compared using a likelihood ratio test. In this case, drift

is our null hypothesis and selection is our alternative hypothesis.

However, Feder et al. (2014) note that doing so is not without complications. First,

even using standard approximations to the Moran process (Kimura 1955a,b, Ewens 2012),

calculating the likelihoods necessary to compare the two models is computationally inten-

sive. Second, even if these values were simple to obtain, the relevant test statistic is not χ2

distributed as is often assumed (cf. Wilks 1938). In fact, using the χ2 distribution system-

atically underestimates the false positive rate, meaning that if we assume the test-statistic

is χ2 distributed, then we will reject the null hypothesis of drift more often than we would

like to when it is true.

To address these problems Feder et al. (2014) propose an approximation to the Moran

process that consists of the combination of a deterministic logistic process and a Gaussian

noise process.2 Under this approximation, the changes in the number of different forms

over time have certain properties. Suppose we have measurements from several points in

time of the two variants. Let pi be the proportion of the second variant in the population

at time ti. We are interested in how these proportions change over time, so will look at

the differences in proportion between different points of time, pi − pi−1. In particular, we

rescale these fitness increments in the following manner.

Yi =
pi − pi−1√

2pi−1(1− pi−1)(ti − ti−1)
(6.8)

2See Feder et al. (2014:521-522) for the mathematical details. Note that while this approximation techni-
cally only holds for the Moran process, in practice it works well for the Wright-Fisher process as well.
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For the Gaussian approximation, under the null hypothesis of drift these scaled fitness

increments are independent and approximately normally distributed around zero with a

variance inversely proportional to the size of the population. In contrast, under the alter-

native hypothesis the increments are independent and approximately normally distributed,

but with a non-zero mean and a different variance. For our purposes, we want to know

whether the mean of the scaled fitness increments is greater than zero. That is, we want to

know if the incoming variant has some selective advantage. This fitness increment test can

be accomplished using a one-tailed t-test. So, under the Gaussian approximation, all we

have to do to do is rescale the fitness increments and test if their mean is greater than zero.

Returning to the formal cycle, we are interested in determining whether we have suffi-

cient evidence in favor of selection to reject the null hypothesis of drift in either of the two

transitions. That is, we want to know not just whether a model with additional parameters

fits the data better, but if it fits the data sufficiently better for us to reject the null hypothesis

of drift. In the case of the formal cycle, we want to know whether we can reject the role of

drift in the transitions from from ne to ne...not and from ne...not to not.

The overall trajectory of these transitions in Middle English is shown in Figure 6.3.

However, as we noted in the previous chapter, we are really interested in two independent

changes at different locations in the negative phrase. In what follows, we will treat the

two transitions independently. The data relevant to the first transition is shown in Figure

6.4, where the contrast between ne versus ne...not and not indicates potential competition

for what expresses the specifier of the negative phrase. The data relevant to the second

transition are shown in Figure 6.5, where the contrast between not versus ne and ne...not

indicates potential competition for what expresses the head of the negative phrase.

For each of the transitions we need to decide on how to group the data together to cal-

culate the fitness increments and perform the fitness increment test. There are two general

considerations in doing so. The first consideration is that we need to make sure the assump-
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Figure 6.3: Proportion of forms of negation in Negative Declaratives
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Figure 6.4: Proportion of ne...not and not versus ne over time
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Figure 6.5: Proportion of not versus ne and ne...not over time

tions of the underlying Gaussian approximation are met. In particular, the approximation

cannot deal with absorption events before the last bin. If such an absorption event occurred,

then all subsequent bins should be the same. So, we need to make sure there are no bins

before the last one where only one variant is present. This basically serves as a limit on

how finely we can bin the data.

The second consideration is that we want the test to have as much statistical power

as possible, allowing us to reject the null hypothesis when it is indeed false. In practice,

the fitness increment test shows reasonable power when the increments include around a

thousand data points. To guarantee that bins have approximately equal numbers of data

points we bin by quantiles. This allows for the width of bins to vary, and we treat the

midpoint of each bin as the time of the sample measurement. Note that the scaling of the

fitness increments takes these time differences into account as well.

So, for each transition we do three things. First, we bin the data by quantiles and

perform the fitness increment test on the resulting bins. In what follows we use the finest
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partition of the data that give us almost one thousand data points per bin but meets the

assumptions of the Gaussian approximation. Namely, there are no absorption events and

the fitness increments are normally distributed. Second, we perform the fitness increment

test on the rescaled fitness increments to determine if we can reject the null hypothesis of

drift. Third, if we can reject the null hypothesis then we numerically estimate the mostly

likely selection coefficient and population size under the alternative hypothesis of selection;

if we cannot reject the null hypothesis of drift then we numerically estimate the most likely

population size without selection.

For the first transition we bin the data into six bins and confirm that there are no absorp-

tion events prior to the last bin and that the rescaled fitness increments are approximately

normal according to the Shapiro-Wilk test (p = 0.2050). Given that these conditions are

met, we perform the fitness increment test and note that we can reject the null hypothesis

of drift (Ȳ = 0.0278, t(5) = 2.6394, p = 0.0288). The selection coefficient and population

size that best explain the data under the alternative hypothesis of selection can be numeri-

cally inferred as ŝ = 0.01913 and N̂ = 15900.3 While the selection coefficient from fitting

the acquisition dynamics to the first transition are not directly comparable, it is interesting

to note that in a finite population the selection coefficient is about five times smaller. This

is a potentially important point to keep in mind when fitting deterministic mean dynamics

to data.

For the second transition we bin the data into five bins and confirm that there are no

absorption events prior to the last bin and that the rescaled fitness increments are approxi-

mately normal according to the Shapiro-Wilk test (p = 0.1300). Given that these conditions

are met, we perform the fitness increment test and note that we cannot reject the null hy-

3Many thanks to Josh Plotkin and Mitchell Johnson for help installing and understanding the code, which
can be found at https://github.com/mnewberry/tsinfer. Technically speaking, the population
parameter reported here conflates another nuisance parameter regarding the time scale of the change. We
leave interpreting the implications of the population parameter for future research.
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pothesis of drift (Ȳ = 0.0624, t(5) = 1.7021, p = 0.0820). The population size under the

null hypothesis of drift that best explains the data can be inferred numerically as N̂ = 506.

We cannot reject the null hypothesis, so it makes sense that the population would have to

be fairly small to account for the rapid change in the second transition.

So, we can reject the null hypothesis of drift in the first transition, but not in the case

of the second transition. This first result makes sense. given the model of the functional

cycle presented in Chapter 4. That is, the first transition of the formal cycle cannot be

explained by random drift in syntactic acquisition, but it can be explained as an instance of

the functional cycle due to pragmatic pressures. This second result interesting given that

the second transition is the more dramatic of the changes, however, there two important

things to note.

First, we have not shown that the second transition is due to drift. Rather, we have

simply shown that we cannot reject the possibility. This could be due to the fact that

the second transition is actually due to drift, or that we have simply failed to reject the

null hypothesis even though it is not true. In this regard, we should note that the fitness

increment test actually loses the power to detect selection under certain circumstances when

selection is particularly strong (Feder et al. 2014:Figure 2 and 514-515). However, the

power of the test depends on the number of data points per bin and the length of the time

series in relation to the size of the population in complicated way. Determining whether

the failure to reject the null hypothesis for the second transition is due to this is something

we leave for future research.4 For now though, given that we have no other alternative

explanations to put forward, we lose nothing by simply noting that the second transition is

consistent with random drift in syntactic acquisition.

Second, if the failure to reject the null hypothesis is indeed because the second tran-

4Although, these results do not change if we alter the number of bins that we divided the data into. We
can never reject the null hypothesis. See Appendix D for the details.
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sition is actually due to drift, then this offers an interesting explanation for the differing

time courses across languages. For example, while the second transition quickly follows

the first in the history of Middle English Wallage (2008) as well as Middle High Ger-

man Jäger (2008). However, even in Middle Low German, where the second transition

does go to completion we cannot reject drift using the data cited in Breitbarth (2009:109)

(Ȳ = 0.02644, t(3) = 0.8011, p = 0.2408). Moreover, the second transition can take sev-

eral hundred years, as is the case in the history of French (Martineau and Mougeon 2003)

and Dutch (Burridge 1993). Indeed, some Flemish dialects still retain the embracing form

(van der Auwera and Neuckermans 1997, Zeijlstra 2004). The fact that languages differ

so widely in the amount of time spent between the first and the second transition has often

been taken as a puzzling. However, when the second transition is viewed as a stochastic

process, the varying amount of time makes perfect sense.

Now, claiming that the second transition in all of these languages may be due to drift ob-

scures quite a bit of linguistic detail. But, it offers both theoretical and empirical leverage.

For example, if we can rule out drift quantitatively in the second transition in a particular

language, then we have a compelling reason to dive into theoretical analysis of the change

in question. Ultimately, such an analysis should yield explanations of the observed change

similar in form to our model of the functional cycle in Chapter 4 or the acquisition dynam-

ics we presented in Chapter 5. From the other direction, if we have compelling theoretical

reasons to believe that the second transition in a language happened for a particular reason,

and we can build a model that explains its trajectory, but we cannot reject the null hypothe-

sis of drift, then this shows us some of the limitations of the quantitative methods we have

applied here.

At worst then, claiming that the second transition of the formal cycle may be due to

drift is both empirically plausible and scientifically useful. Absent a better explanation, it

makes sense of what has often been taken as a puzzling fact. More importantly, it clarifies
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what would be needed to provide a better explanation.

Summary

In this chapter we applied statistical methods developed in population genetics to test the

hypothesis of selection and drift in both transitions of the formal cycle in Middle English.

We found that we could reject the null hypothesis of drift in the first but not the second

transition. The result for the first transition makes sense. In fact, given the explanation of

the formal cycle we offered in Chapter 4, we would be surprised if we could not reject drift

in the first transition of the formal cycle. The result for the second transition also makes

sense. The model we presented in Chapter 4 does not offer an explanation of the second

transition. Moreover, given the syntactic structures posited to underly the formal cycle, the

acquisition dynamics presented in Chapter 5 do not offer an explanation either. If neither

acquisition nor use can explain the transition, then it might just be due to random drift.

Beyond the formal cycle, these results have important implications for stable linguis-

tic variation in general. The acquisition dynamics allow for stable variation only when

grammars are perfectly mutually incompatible. That is, when s = 0, the two grammars

are perfectly balance and will not change over time. However, if we relax the assumption

of an effectively infinite population that underlies this mean dynamics, we know that one

or the other variant will win it. This follows from the fact that the absorbing states of the

stochastic process occur where only one or the other variant is used. So, if acquisition is

the only force acting on forms over time, then we will not observe linguistic variation at a

particular level. Namely, there can never be variation between how a particular syntactic

location is expressed.

The fact that we do observe stable variation suggests that there are other forces acting

over the distribution of forms in the linguistic environment. Indeed, in some cases stable
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variation has been observed over centuries, as is the case for the apical and velar variants

of (ING) (Labov 1994): hunting versus huntin’. If not for some countervailing force, this

variation should have arguably been extinguished, if these variants differ only in how they

express some progressive aspectual head in the sense of distributed morphology (Embick

and Noyer 2007).

Broadly speaking, it would seem that the most likely candidate for a countervailing

force to the monomorphic effect of syntactic acquisition is meaning, which we take to

include semantic, pragmatic, and sociostylistic information. That is, the stability of (ING)

arguably stems from the fact that it signals style: hunting is formal whereas huntin’ is

not. So, while two variants may compete with each other to express the same syntactic

position, they might stably coexist if they find complementary informational niches. This

is exactly what we see with the specialization of the two (ING) variants to particular styles.

As a slogan then, we might say: no stable variation without information. Note that this

does not mean that stable informational variation is inherently stable. However, it would

seem that it is more likely that two meanings might specialize rather than pool together.

Of course, this is an empirical matter. One potential line of research to investigate such

developments would be to employ word-embeddings to construct measures of similarity

between the meanings of different variants over time.
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Chapter 7

Conclusion

The main contribution of this dissertation is the demonstration that we need articulated

models of both pragmatic and grammatical competence to construct causal models of lan-

guage change. We summarize the contributions of each of the chapters towards this goal.

Chapter 2 offered the first distinction between the formal and functional Jespersen cy-

cles that have so often been conflated. This terminological distinction simplified the ex-

planatory burden and made clear what there is to be explained and how we should go about

the explaining. We began with the functional cycle. Chapter 3 outlined the tools from evo-

lutionary game theory that are so well suited to modeling how information is signaled in a

population of boundedly rational agents over time. Chapter 4 applied these tools to model

the functional cycle, incorporating experimental evidence regarding the limits of our prag-

matic competence. We then turned to the formal cycle. Chapter 5 outlined the dynamics

of a model of syntactic acquisition and demonstrated that it could not account for either of

the transitions of the formal cycle. Chapter 6 applied methods from population genetics to

show that while we can reject the possibility of drift in the the first transition of the formal

cycle, we cannot do so in the second transition.

Simply put, it is our pragmatic competence that plays the central role in explaining
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the dynamics of change in this case. Without taking it into consideration we are left with

descriptions of different states of a language without a clue as to why a transition from one

to another occurred. It should be noted that this does not mean that pragmatic competence

will always occupy such a role. Rather, we should be mindful of the full range of factors

that influence language change.
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Appendix A

Equilibrium analysis

The full details of the analysis can be found at:

https://github.com/christopherahern/dissertation
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Appendix B

Dynamic analysis

The full details of the analysis can be found at:

https://github.com/christopherahern/dissertation
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Appendix C

Acquisition analysis

The full details of the analysis can be found at:

https://github.com/christopherahern/dissertation
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Appendix D

Drift analysis

The full details of the analysis can be found at:

https://github.com/christopherahern/dissertation
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