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The emergence of links between lexical acquisition and
object categorization: a computational study
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Language is about symbols, and those symbols must be grounded in the physical world. Children
learn to associate language with sensorimotor experiences during their development. In light of this,
we first provide a computational account of how words are mapped to their perceptually grounded
meanings. Moreover, the main part of this work proposes and implements a computational model
of how word learning influences the formation of object categories to which those words refer. This
model simulates the bi-directional relationship between word and object category learning: (1) object
categorization provides mental representations of meanings that are mapped to words to form lexical
items; (2) linguistic labels help object categorization by providing additional teaching signals; and
(3) these two learning processes interplay with each other and form a developmental feedback loop.
Compared with the method that performs these two tasks separately, our model shows promising
improvements in both word-to-world mapping and perceptual categorization, suggesting a unified view
of lexical and category learning in an integrative framework. Most importantly, this work provides a
cognitively plausible explanation of the mechanistic nature of early word learning and object learning
from co-occurring multisensory data.
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1. Introduction

Anyone who has watched an infant grow into an adult can attest to the changing nature of
cognitive functions during human development. Infants are born with limited perceptual,
linguistic and cognitive abilities. They rapidly develop skills and acquire knowledge based on
their sensorimotor experiences with the physical world. One of the most fundamental capacities
is to talk about what they see. Starting from scratch, infants gradually acquire a vocabulary
and grammar. Although this process continues throughout childhood, the crucial steps occur
early in development. By the age of 3 years, most children have incorporated the rudiments
of grammar and are rapidly increasing their vocabulary. Exactly how they accomplish this is
uncertain, but it is clear that children make use of information both in the language around
them (Saffran ef al. 1996) and in the extralinguistic world. Although the unprocessed audio
stream is rife with ambiguity, recent tests have shown that babies are sensitive to correlations
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in sounds (Saffran et al. 1996). Children also use prodigious amounts of information about the
world in the language process. This extralinguistic information is needed because language is
about symbols and the meanings of those symbols must be grounded in the physical world.
Children develop based on their sensorimotor experiences with the physical environment.
Different levels of abstraction are necessary to encode efficiently those experiences, and one
vital role of the human brain is to bridge the gap from embodied experience to its expression
as words in a language. This was termed symbol grounding by Harnad (1990). In this paper,
we focus on grounding object names (a specific set of words) in visual perception. Object
names are focused on because early vocabularies are largely made up of names applied to
solid objects (Smith et al. 2002). Object perception is focused because objects are primary
perceptual and cognitive units during infancy (Spelke et al. 1995). For the developing child,
solving the problem of grounding object names requires advances in both word learning (what
an object name refers to) and object categorization (how to group instances of objects into
categories). Importantly, progress in object categorization changes rapidly at the same time
as children’s object name vocabularies also expand rapidly (Smith 2003), suggesting possible
links between these two processes.

1.1 Prelinguistic object categorization

To learn object names, infants must build object categories. This provides the starting point
for learning first words. Recent research suggests that even prelinguistic infants have complex
categorization abilities. Early in development, infants exhibit the ability to form categories
by treating discriminable individuals as members of an equivalence class (Mareschal and
Quinn 2001). This task is most often termed perceptual categorization. Most studies report
evidence of infant categorization by 7—10 months, but Quinn et al. (1993) reported that infants
as young as 3 months can form basic-level object categories. Moreover, Landau ez al. (1998)
suggested that infants respond to categories on the basis of visual features in the exemplar and
shape similarity plays an important role in early object categorization. However, most object
categories contain sets of objects that need not share visual similarity. Therefore, an intriguing
question is how might children learn to form these sorts of conceptual categories and then
map object names to cover such sets at the later stage of development?

1.2 Early word learning

Infants begin to comprehend words at 6-10 months of age. The largest proportion of most
children’s first 50 words consists of names for objects, such as food, clothing and toys. Gillette
et al. (1999) provided strong evidence that learnability of a word is based primarily upon
its imageability or concreteness. For instance, the infant may learn that the sound ‘car’ is
associated with visual features (colour, shape, texture, etc.) of a toy car because her mother
utters the sound ‘car’ when she is looking toward it. Smith (2000) proposed that word learning
is initially a process in which children’s attention is captured by objects or actions that are the
most salient in their environment. Those objects or actions are then associated with acoustic
patterns voiced by an adult. In everyday situations, the infant perceives connected spoken
utterances instead of isolated spoken words. A spoken utterance usually consists of several
words, each of which may have a referent in the physical environment. An example illustrating
natural interactions between a mother and her infant is as follows: the mother holds a cow
toy in her left hand and a sheep toy in her right hand. She produces a spoken utterance ‘here
is a cow and here is a sheep’ while the infant is looking toward her hands. In this example,
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all the spoken words, such as ‘here’, ‘is’, ‘a’, ‘cow’, ‘sheep’ and ‘and’, are co-occurring
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with the visual objects ‘cow’ and ‘sheep’. For the purpose of word learning, the infant needs
to find which items on the language side are likely to associate with which items obtained
from visual perception. Thus, a central issue is the word-to-world mapping—how to discover
correct word—meaning pairs from multiple co-occurrences between words and things in the
environment.

1.3 Links between object naming and categorization

Perceptual similarity plays a critical role in early language learning by grouping objects into
categories that will support early object naming. It has been shown that children generalize
object names to new objects often on the basis of similarity in shape (Clark 1973, Landau
et al. 1997) and in texture (Smith and Heise 2000). Behl-Chadha (1996) (see also Quinn
et al. 2001) demonstrated that even 4-month-old infants can distinguish objects in basic-level
categories based on shape, suggesting that knowledge of some object categories is constructed
before object name learning begins.

Perceptual similarity alone seems to be insufficient to explain object naming despite its
strong role in early object categorization. An object name is used to refer to many perceptually
different entities. For instance, the same linguistic label dog can refer to different kinds of
dogs with different colours, shapes and textures. Moreover, young learners are able to extend
that linguistic label to individual objects of the same kind that they have never seen. Thus, they
go beyond word-to-referent and word-to-object mappings toward building word-to-category
mappings.

Landau et al. (1998) (see also Smith et al. 1996) showed that young children have a tendency
to generalize novel object names on the basis of an object’s shape. This shape bias is found only
in naming contexts, not in the conditions where the objects are not named. Thus, it seems that
salient perceptual similarity of objects can direct children’s generalization of category labels on
novel objects (Gentner 1978, Smith e al. 1996, Landau et al. 1998). In this way, young children
learn to associate linguistic labels with concepts—mental representations of meanings, not
just concrete instantiations of these concepts. A recent study by Yoshida and Smith (2005) also
showed that the presence of correlated linguistic cues enhances children’s learning about the
perceptual cues to object categorization. Furthermore, Sloutsky and Lo (1999) showed that, if
two entities share the same label, young children are more likely to conclude that these entities
look alike. Xu (2002) showed that 9-month-old infants could use two distinct linguistic labels
to facilitate object individuation. In Waxman and Markow (1995), the experimenter offered
four different toys from a given category to infants in the familiarization phase and manipulated
the audio stimuli to include a no-word condition, a noun condition and an adjective condition.
Infants in both the noun and adjective conditions formed object categories, while infants
in the no-word condition failed to detect the categories. This study offered clear evidence
that linguistic labels embedded in continuous speech support the establishment of object
categories.

Thus, there are data showing the independent contribution of similarity-based categorization
to naming and of naming to categorization. However, these two factors are also likely to inter-
act. This leads us to ask the following questions. (1) How does language change the process
of categorizing objects? (2) How does object categorization, in turn, drive the establishment
of word-to-category mapping? As shown above, many researchers agree that language can
shape categories, and there is a variety of empirical studies to support the idea. However, these
experimental studies do not offer an explanation of the interaction between object naming
and object categorization in terms of internal mechanisms. They cannot answer the question
of how these two learning processes interplay with each other. In this paper, a computational
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Figure 1. Object categorization before language acquisition is based purely on perceptual similarity. With the
introduction of linguistic information, word learning and object categorization interact with each other and form a
developmental feedback loop.

mechanism is proposed that attempts to study the influence of object categorization on word
learning as well as the influence of word-to-object mappings on object categorization. In our
proposal, as shown in figure 1, perceptual similarity plays a key role in the early development
of object categorization and serves as an initial basis for early acquisition of object names. Ata
later stage, with more word-to-object pairs accumulated, children start to use linguistic labels
as additional teaching signals to guide object categorization. In terms of learning mechanisms,
children start with unsupervised learning based on perceptual similarity and gradually trans-
form to semi-supervised learning based on correlated linguistic labels as additional teaching
signals. This paper renders the idea as a working model.

In summary, a young child seems effortlessly to perceive, categorize and name objects.
Despite the apparent ease with which he accomplishes this, the mechanisms supporting these
capacities involve perceptual, linguistic and cognitive systems, and are likely to be complex.
Recently, a new trend in cognitive development is to use computational modelling as a com-
plementary methodology in the study of the mind (Plunkett er al. 1992, Elman et al. 1996,
Cangelosi and Parisi 1998, Brent 1999, Regier 2003). Potential models can be implemented
as computer programs. The strengths of such models are in providing explicit mechanisms
of cognition as well as generating detailed empirical predictions. In light of this, a computa-
tional model is developed here to explore the links between word and object category learning.
More specifically, the model provides a formal account of: (1) how object names are grounded
in visual perception; (2) how word-to-world mappings facilitate object categorization; and
(3) how these two advances bootstrap each other and form a developmental feedback loop.
In the model, object categorization is based not only on perceptual similarities (appearance
features), but also on co-occurring linguistic labels used as potential teaching signals to guide
the categorization. To our knowledge, this model is the first that tackles the word-to-world
mapping and perceptual categorization problems within a single framework while processing
sensory data collected from a natural environment. The specific contribution is to show that,
based on an integrative view, these two learning problems can be fundamentally simplified
by exploring the possibility of utilizing the spatio-temporal and cross-modal constraints in
multimodal data.

2. Related work

This section provides a brief review of related work on both modelling language acquisition
and multimodal learning.
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2.1 Models of word learning

Computational investigations of language acquisition have recently received considerable
attention. MacWhinney (1989) applied competition theory in building an associative network
that was configured to learn which word among all possible candidates refers to a particular
object. Siskind (1996) developed a mathematical model based on cross-situational learn-
ing and the principle of contrast, which learns word—meaning associations when presented
with paired sequences of pre-segmented tokens and semantic representations. Regier’s (1996)
work focused on grounding lexical items that describe spatial relations in visual perception.
Tenenbaum and Xu (2000) developed a computational model based on Bayesian inference
that can infer meanings from one or a few examples without encoding the constraint of mutual
exclusion.

The importance of embodiment in word acquisition is featured in a variety of sources
(Plunkett et al. 1992, Steels 1997, Cohen et al. 2001, Roy and Pentland 2002, Yu et al. 2003,
Weng et al. 2003) (also see Lungarella et al. (2004) for a good survey of developmental
models). Among them, Plunkett er al. (1992) built a connectionist model of word learning
in which a process termed auto-association maps preprocessed images with linguistic labels.
The linguistic behaviour of the network exhibited non-linear vocabulary growth (vocabu-
lary spurt) that is similar to the pattern observed in young children. Steels and Vogt (1997)
reported experiments in which autonomous visually grounded agents bootstrap meanings and
language through adaptive language games. They argued that language is an autonomous
evolving adaptive system maintained by a group of distributed agents without central control
and a lexicon may adapt to cope with new meanings that arise. Cangelosi et al. (2000) showed
that, in a simulated artificial environment, a better categorization could be achieved by utilizing
associated language-like symbols compared with the approach based purely on sensorimotor
signals. Roy and Pentland (2002) used the correlation of speech and vision to associate
spoken utterances with a corresponding object’s visual appearance. The learning algorithm is
based on cross-modal mutual information to discover words and their visual associations. In
Yu et al. (2003) and Yu and Ballard (2004), egocentric multisensory data were used first
to spot words from continuous speech and then to associate action verbs and object names
with their perceptually grounded meanings. The central idea is to utilize body movements
as deictic references to associate temporally co-occurring data from different modalities.
These models focus on learning to associate words with meanings. Few of them (but also see
Cangelosi et al. 2000) attempt to simulate the interdependence between object name learning
and object categorization.

2.2  Multimodal learning

Biological studies have shown that sensory information is shared not just in a final integrative
stage, but across all levels of perceptual processing. A convincing demonstration of audio-
visual correlations that radically change an auditory perception is the McGurk effect (McGurk
and MacDonald 1976). McGurk and MacDonald showed that paired auditory and visual stimuli
can interact and produce a unified result different from either the actual auditory input or the
visual sensory input. In light of this, several computational studies have considered using the
relationships between inputs of different modalities to facilitate the learning problem. Among
them, the works in de Sa and Ballard (1998) and Becker (1996) are most instructive because
both works provided a means of using the information in one channel to modulate learning
in another channel, rather than simply merging the outputs of multiple streams. deSa and
Ballard (1998) related this idea mathematically to the optimal goal of minimizing the number
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of misclassifications in each modality and applied it to derive an algorithm for two piecewise
linear classifiers, in which one uses the output of the other as supervisory signals. The method
in Becker (1996) was derived from information theoretic principles and is based on the idea of
maximizing the mutual information between the outputs of different neural network modules.
The approach maximizes some measure of agreement between the outputs of two groups
of units that receive inputs physically separated in space, time or modality. However, both
methods assume that the data from different modalities are perfectly synchronized (e.g. lip
motion and speech). Clearly, this kind of synchrony does not exist in the context of word
learning (Gleitman 1990).

3. The model

In this section, we first introduce the general principle of our probabilistic model using a
simple example. A detailed description is provided in the following subsections.

3.1 General description

Our method is based on spatio-temporal and cross-modal regularities between words and
visual objects, which consists of three steps, as illustrated in figure 2.

e Clustering: visual features extracted from the appearances of objects are quantified to form
prototypes based on their perceptual similarity in a feature space.

e Categorization: visual prototypes are grouped into object categories.

e Association: the association probabilities between words and object categories are
estimated.

Now we have a difficult chicken-and-egg problem. Without the results of categorization, we
cannot estimate association probabilities between words and meanings (object categories).
Likewise, without the results of association, we cannot find and then use corresponding lin-
guistic labels as teaching signals to guide the categorization of visual prototypes into object
categories. Our solution is first to cluster visual objects into prototypes based on perceptual
features, as described in section 3.2. In the next step, each visual prototype is assigned to a dis-
tinct object category. In this way, we can estimate the initial association probabilities between
words and object categories, as presented in section 3.3. Based on the results of initial training,
the third step iteratively merges visual prototypes into a new set of object categories so that one
category includes multiple visual prototypes. More specifically, both perceptual similarity and
associated linguistic labels are used in categorizing visual prototypes; and new categorization
leads to a re-estimate of association probabilities between words and a new set of object cate-
gories. In this way, perceptual categorization and word-to-world mapping processes bootstrap
each other and form a developmental feedback loop. In addition, we perform a similar learning
procedure to group words into semantic categories based on their shared meanings. A detailed
description of the third step can be found in section 3.4.

linguistic cue

v

visual |[clustering[ visual
features "| prototypes

categorization association

words

Y

object kinds

Figure 2. The overview of our approach.
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Figure 3. Object categorization and word—meaning association bootstrap each other to improve the overall perfor-
mance. For example, the instances of the object ‘red car’ and the object ‘green car’ are initially clustered into two
prototypes based on their visual similarities. Since both prototypes are likely to associate with the same linguistic
label—the word ‘car’—they will be grouped into one category that corresponds to the object ‘car’.

Figure 3 illustrates a concrete example. Assume that there are several types (prototypes)
of the object kind ‘car’ varying in colour and shape. For each specific type, there are several
visual entities of that type obtained from different viewpoints, and maybe under different
illuminations. At the first step, visual features are extracted from those entities to form feature
vector representations. Then those feature vectors are clustered into several prototypes based
on their similarities, each of which presumably corresponds to one type of the object kind
‘car’. Note that this clustering step is relatively easy compared with an attempt to categorize
all instances of different types of car into one category. Next, to the extent that we obtain visual
prototypes and use them as visually grounded meanings of words, association probabilities
between words and grounded meanings can be estimated. At the final step, those visual proto-
types are iteratively merged into a set of categories, each of which corresponds to an object
kind. The merging process is based not only on feature similarities in the feature space, but
also on potential teaching signals provided by language. As shown in figure 3, the ‘red car’
prototype and the ‘blue car’ prototype might not be very similar in the feature space, but they
will be merged into the same category because both of them are likely to be associated with
the same linguistic label—the word ‘car’.

3.2 Prelinguistic object categorization

Visual objects are represented by a set of colour, shape and texture features (Yu and Ballard
2004). Based on the work of Mel (1997), we constructed the visual features of objects that
are large in number, invariant to different viewpoints and driven by multiple visual cues.
Specifically, 64-dimensional colour features were extracted by a colour indexing method
(Swain and Ballard 1991), and 48-dimensional shape features were represented by calculating
histograms of local shape properties (Schiele and Crowley 2000). Gabor filters with three scales
and five orientations were applied to the image. It was assumed that the local texture regions
were spatially homogeneous, and the mean and the standard deviation of the magnitude of
the transform coefficients were used to represent an object in a 48-dimensional texture feature
vector. Thus, feature representations consisting of a total of 160 dimensions were formed by
combining colour, shape and texture features, which provided fundamental advantages for
fast, inexpensive recognition. Most classification algorithms, however, do not work efficiently
in high-dimensional spaces because of the inherent sparsity of the data. This problem has
traditionally been referred to as the curse of dimensionality. In our system, the 160-dimensional
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Figure 4. Visual features are extracted from the visual appearances of objects. After PCA, those features are used
to cluster data into visual prototypes. The grouping of those prototypes forms object categories.

feature vectors were reduced into 15 dimensions by using principal component analysis (PCA)
(Aggarwal and Yu 2000), which represents the data in a lower dimensional subspace by pruning
away those dimensions that result in the least loss of information.

Figure 4 shows the basic architecture of object categorization. Each input component
encodes a single feature dimension, with the activation of the component indicating the value
of the stimulus on that dimension. We apply Gaussian mixture models to cluster perceptual
features. Hence, each prototype component corresponds to a Gaussian in a multidimensional
feature space. For a given feature vector v, each prototype component is activated according to
both the prior probability of this Gaussian prototype p(«) and the perceptual similarity of the
feature vector to the arth Gaussian prototype p(v|a), which can be specified by a probability
distribution:

1 —1 T
p(via) p(—i(v—ma)Ea (Vv —myg) )

= 2m) 2 det(z) 2
where m, and X, are parameters of the wth Gaussian. We also assume the independence of
the features and then enforce a block diagonal structure for the covariance matrix to capture
the most important dependencies. In this way, the activation of a prototype component can
be denoted as p(«) p(v|a), which is the probability of classifying the given feature v into the
hidden prototype «; and the overall activation generated by a stimulus v can be expressed as
pv) = 25:1 p(a)p(v|a), where K is the number of prototypes. The standard expectation-
maximization (EM) algorithm for mixture Gaussians is used to estimate the parameters of
Gaussians as well as prior probabilities p(«).

Each prototype component is connected to an output component that correspond to a cate-
gory. The probabilistic connection from a prototype component to a category component
is determined by both perceptual similarity and co-occurring linguistic labels. The learning
algorithm of estimating probabilistic links between prototype and category components is
presented in section 3.4.

3.3 Early word acquisition as statistical associative learning

Next, each visual prototype is initially assigned to a distinct category (as shown in figure 5(a)).
Then we can estimate the initial association probabilities between word and category com-
ponents. Now we have a set of words W = {w;, wy, ..., wy} and a set of object categories
O ={01,02,...,0y}, where N and M are the number of words and the number of object
categories, respectively. These components are bi-directionally connected with each other,
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Figure 5. (a) Initially, we treat visual prototypes as object categories, and the probabilistic links between word
components and category components are estimated. (b) The training algorithm estimates the probabilistic links
between category and prototype components based on both associated linguistic labels and perceptual similarities.
New categories lead to re-estimating the probabilistic links between word components and category components.
In this way, the model iteratively estimates the probabilistic links between words and categories as well as the
probabilistic links between categories and visual prototypes.

indicating that words and object categories are associated. To build lexicons, we want to
estimate the association probabilities of word—object links.

The training data for word acquisition can be represented by a set x = {(S!, S!), 1 <1 <
L}, consisting of L learning situations. The /th situation includes two data streams (va, Sf)).
Each word stream Sfu consists of n; words wy(1y, W), - - - » Wu(n,), and u(i) can be selected
from 1 to N, which corresponds to different words. Similarly, the extralinguistic object stream
S! includes m; possible meanings 0y(1), 0y(2); - - - » Oumy) and the value of v(j) is from 1 to M,
which corresponds to different objects. We can express the likelihood of observing the data
set in terms of association probabilities between words and objects:

L
P(S). 82, SE1 S Sa. . S =[] p(sh. alsh)
I=1 a

= H m 1_[ Z Povii)lwugy),

=1 j=11i=0

where the alignment a indicates which word is aligned with which object. p(0,;)|wy()) is the
association probability of a word—meaning pair and € is a small constant.

The objective now is to choose those association probabilities (hidden variables) so that
the likelihood function can be maximized, which can be accomplished by applying an EM
algorithm. Informally, the EM algorithm starts with randomly assigned values of association
probabilities, and then iteratively alternates two steps: the expectation step (E-step) and the
maximization step (M-step). In the E-step, it computes the expected likelihood of generating
the observation data given the current estimates of association probabilities. More specifically,
the expected number of times that a particular word w, in the word stream S’, generates a
specific meaning o,, in the co-occurring object stream S’ is given by:

P (Om|wn)
p(0m|wu(1)) +--+ p(omlwu(nl))

[ ¢l
C(0m|wnv ng Sw) =

X D 80w, v()) Y 8wy, u(i)),
j=1

i=1
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where § is equal to one when both of its arguments are the same and equal to zero otherwise.
In the M-step, the algorithm re-estimates those probabilities by maximizing the likelihood
function:

L
21:1 c(om|wy, S(l,, S,ZU)
M L .
Zm:l Zl:] C(0m|wn9 So, Sw)
Once we have a new set of association probabilities, we can repeat the E-step and the M-step.

This process continues until the likelihood function converges. The technical details of our
method can be found in Yu and Ballard (2004).

p(om |wn) =

3.4 The emergence of object categorization and word—object association

Now that we have not only words and visual prototypes (obtained from section 3.2) but also
probabilistic links between them (obtained from section 3.3), we use these links to guide the
categorization of visual prototypes, as shown in figure 5. In addition to this, the model is also
able to group words into semantic categories based on their perceptually grounded meanings.
For a given set of co-occurrence data consisting of words and visual features of objects

S ={(S), S, (52,82, ..., (St sk

11 111 1 2 .2 2 .2 .2 2
={(wl,wz,...,wnl,vl,vz,...,vml),(wl,wz,...,wnz,vl,vz,...,vmz),...,
L L L L L L
(wl,wz,...,wnL,vl,vz,...,me)}

we seek to find a way to categorize visual prototypes into object kinds. Based on the catego-
rization, we also want to calculate association probabilities between words and those object
categories. The objective function to maximize the joint likelihood of the co-occurrences of
words and visual features is as follows:

L

arg max Hp(Sf), s 10),
o =

where S’ is a set of visual features and S! is a set of co-occurring words in the /th learning
situation. O is a categorization of visual prototypes. We can rewrite the above as two parts:

m; K

(S, S4,10) = p(S,,ISh, 0)p(S;10) = p(S,|0) [ [ D p(vfle) p(elo)),

i=1 a=1

where the first part is simplified as p(SfU|O) because we assume that words Sfu and visual
features S are independent given the categorization of those visual representations. More-
over, p(SfU|0) can be represented in terms of association probabilities of word—meaning
pairs, which is described in section 3.3. The second part p(S£|0) corresponds to the cate-
gorization module where p(v£|oz) represents the probabilistic links between K prototypes
and visual features, the values of which have already been obtained in previous steps (see
section 3.2). p(a|of) represents the probabilistic links between category components and
prototype components, which need to be estimated in this integrative step.

We initially assign each visual prototype «; as a separate category o;. Thus, the centroid of a
category o; is the same with a prototype «; . The link between the jth object component and the
ith prototype component can then be represented as p(a;lo;) = p(ailo;)/[D_; p(eilor)]. A
greedy algorithm is then applied to merge incrementally category components in the set O to
build a new set of categories O’. The merging decision is based on both perceptual similarities
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and potential linguistic labels provided through word components. More specifically, the net
change of merging two prototypes d(O’, O) includes two parts: (1) the change in visual
space dyimin (O’, 0), and (2) the influence on the word-to-world mapping dpeween(O’, O). In
practice, we add a weight factor to balance the effects from these two sources.

Assume that we want to merge two category components o, and o,,. Thus, the only difference
between O’ and O is that 0, and o, are assigned to a new category o,, in O’. The perceptual
differences between these two object categories are measured by:

, K pla)p(alo,)
dwithin (O, O0) = og Lo L .
33 T

Meanwhile, the influence of merging two object categories on word—meaning association can
be estimated from:

/ p(S,10)
dbetween(o ’ 0) Zl (Sl |0)

To estimate p(S,|0’), we would in principle need to know new association probabilities
between words and new object kinds. To reduce the computational load, we assume that the
merging of categories o, and o, will not affect association probabilities of categories other than
op and o,4. Thus, p(w;|o;) will remain unchanged for j # p and j # q. For the new object
category o,, in O’, its association probability to a specific word w; can be approximated by:

p(wilop)p(op) + p(wilog) p(og)

p(wiloy) ~ p(wiloy) p(oplon) + p(wilog) p(o4lon) = ) + pog)

The net change d(O’, O) is then used to determine whether two categories 0, and o, will be
merged. The merging decision will lead to updating not only the probabilistic labels between
prototype and category components, but also the probabilistic links between words and object
categories. As shown in algorithm 1, our method runs multiple times and allows for merging
visual prototypes progressively.

Algorithm 1. Categorization and Association.
Cluster visual features using Gaussian mixture models, which form the initial set of category
components O.
Compute the association probabilities p(w;|o;) between category components and word
components.
Repeat the following steps until no more merging operations needed:
repeat
(1) Find n closest pairs of object categories from O as candidate pairs based on the
similarities of visual features, and sort them in a list based on similarity scores.
(2) Remove from the sorted list all the candidate pair (0,, 0,) where either 0, or o, is part
of another pair higher in the list.
(3) Compute d(O’, O) of all candidate pairs.
(4) Go through every pair in the list and merge object categories (0,, 0,) into one object
category o, if the net change of merging is less than a pre-defined value.
(5) Replace O with O’ and compute new association probabilities p(w|0).
until converge.

We also apply the same mechanism to group words into several categories (bags of words) that
share the same object category; and we run the categorization of visual objects and the grouping
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of words in parallel on alternate iterations. Compared with other algorithms, this approach
estimates association probabilities of word—meaning pairs as well as categorizes visual objects
in an interactive manner. As a result, the cross-modal information effects object categorization
by guiding the grouping of visual prototypes. Consequently, a new set of categories also
changes the association probabilities between word and category components.

4. Experiments

Subjects wore a head-mounted CCD camera to capture a first-person point of view. Visual data
were collected at a resolution of 320 columns by 240 rows of pixels. Acoustic signals were
recorded using a headset microphone at a rate of 22 kHz with 16-bit resolution. Six subjects,
all native speakers of English, participated in the experiment. They were asked to narrate the
picture book ‘I went walking’ in English. The book is for 1-3-year-old children and the story
is about a young child who goes for a walk and encounters several familiar friendly animals.
For each page of the book, there are several animals, as shown in figure 6. Subjects were
instructed to pretend that they were telling this story to a child so that they should keep verbal
descriptions of pictures as simple and clear as possible. We collected multisensory data when
they performed the task, which were used as the training data for our computational model.
The regions of visual objects were segmented from the background based on the method
described in Yu and Ballard (2004). For each region, we applied the visual feature extraction
method described in section 3.2. For acoustic signals, we implemented an endpoint detec-
tion algorithm to segment the speech stream into spoken utterances. Each spoken utterance
contained one or more spoken words. Then the ‘Dragon Naturally Speaking’ software was
employed to convert spoken utterances into text. Given a spoken utterance consisting of several
spoken words, the speech recognizer converted the continuous wave pattern into a series of
recognized words by considering phonetic likelihoods and grammars. In practice, the recogni-
tion rate was above 90% in our experiments. Next, we paired visual features of objects with the
text of individual spoken utterances to form co-occurring word—context parallel sequences.
By applying the learning mechanism described in section 3, the present model obtained
grounded lexical items, including categories of visual objects paired with their correspond-
ing linguistic labels. There were 12 animals and some other objects (e.g. tree, basket) shown
in the picture book. Compared with animals, those objects rarely occur so are barely men-
tioned in speech. Consequently, we did not treat them as lexical items that the model was
expected to acquire. To evaluate the experimental results, we defined the following three
measures: (1) Word—meaning grounding accuracy measures the percentage of the perceptual

visual
perception ﬁ

speech _’}w’ the cat, the horse and
' the pig follow the boy.

Figure 6. Left: spoken descriptions and image sequences are collected when subjects narrate the picture book.
Right: visual objects are segmented from the background scene and then multiple features are extracted to form
perceptual representations. The acoustic signals are converted into text. Those visual features and words are used as
the training data.
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representations of objects that are correctly associated with linguistic labels. Given a visual
feature, the model is expected to find related linguistic labels. Thus, the corresponding word
components will be activated through their connections with category components. Likewise,
given a word, the model is able to activate the corresponding components of visual proto-
types that represent perceptually grounded meanings. (2) Word spotting accuracy measures
the percentage of word—object pairs that are spotted by the computational model. This mea-
sure provides a quantitative indication about the percentage of grounded lexical items that can
be successfully found. (3) Object categorization accuracy measures the percentage of visual
features that are grouped into correct object categories.

To demonstrate more directly the role of links between perceptual categorization and linguis-
tic development, we included two other learning conditions in this experiment. In a no-word
condition (similar to the one in Waxman and Hall (1993)), we applied Gaussian Mixture
Models to cluster visual features. The clustering results were used as distinct object categories
and directly associated with words. Thus, there was no interaction between association and
categorization in this method, which clearly reduced the amount of computation needed. Note
that the above two learning conditions are intended to simulate closely human development
in a natural environment. Therefore, there are no explicit linguistic labels provided. In the
third condition—the labelling condition (similar to the linguistic-cued condition in Yoshida
and Smith (2005))—we assume that there is a linguistic label paired with every instance of
an object. Thus, there is no ambiguity in the word-to-world mapping and every word is per-
fectly mapped to its meaning. This is, of course, an ideal learning condition that does not
exist in a natural learning environment. The purpose here is to provide a complete evaluation
of the influence of language in object categorization. The results in this condition indicate
to what degree linguistic labels can enhance object categorization. In practice, we applied
support vector machines (SVM) on visual data that are paired linguistic labels. With explicit
teaching signals and the start-of-art classification method, this approach provides a baseline
and illustrates the difficulty of categorizing visual data in the experiment. Table 1 shows the
comparative results of these three learning conditions.

The significant difference between the first two conditions lies in the fact that there exists a
multitude of co-occurring word-to-object pairs in natural environments that infants are situated
in, and modelling the links between language and category learning captures cross-modal and
spatio-temporal constraints in co-occurring multimodal data. This fact shows that language
can strengthen learning about object categories. It is not surprising that the labelling condition
performs best with additional teaching labels of objects provided during the training. The
categorization accuracy obtained from our model, however, is closer to that of a supervised
labelling condition. Both learning conditions use linguistic labels to help object categorization
while correlated linguistic cues are provided in the labelling condition but not in the link
condition. Nonetheless, the model in the link condition simulates the possible correlations
between object name learning and object categorization. By doing so, it is able to bootstrap
these two advances and form a developmental feedback loop, showing that these two difficult
learning problems can be fundamentally simplified by considering them in a general system.

Table 1. Results of object categorization and word learning.

‘Word-meaning association Word spotting Object categorization
(%) (%) (%)
Link condition 76.6 732 82.9
No-word condition 51.9 52.5 62.3

Labelling condition 82.1 77.6 85.3
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Most importantly, this observation is quite in line with the results obtained from human subjects
(Waxman 2004, Jones and Smith 2004, Yoshida and Smith 2005), suggesting not only that
our model is cognitively plausible, but also that the emergence of links between perceptual
and linguistic development can be appreciated by both human learners and the computational
model.

5. Discussion and conclusion

Computational models of development and cognition have changed radically in recent years.
Many cognitive scientists have recognized that models that incorporate constraints from
embodiment—that is, how mental and behavioural development depends on complex inter-
actions among brain, body and environment (Clark 1997)—are more successful than models
that ignore these factors. Language represents perhaps the most sophisticated cognitive system
acquired by human learners, and it clearly involves complex interactions between a child’s
innate capacities and the social, cognitive and linguistic information provided by the environ-
ment (Gleitman and Newport 1995). The model outlined in this study focuses on the initial
stages of word learning — How are words attached to their perceptually grounded meanings?
Many existing models of language acquisition have been evaluated by artificially derived data
of speech and semantics (Brent and Cartwright 1996, Siskind 1996, Bailey ez al. 1998, Cohen
et al. 2001). In contrast, multisensory data (materials used by the model) are real and natural.
Our model proved successful by taking advantage of recent advances in cognitive modelling,
machine learning and computer vision.

There is evidence that, from an early age, infants are able to form perceptually-based
category representations (Quinn et al. 1993). Those categories are highlighted by the use
of common words to refer to them. Thus, the meaning of the word ‘dog’ corresponds to the
category of dogs, which is initially a non-linguistic mental representation in the brain. Further-
more, Schyns and Rodet (1997) argued that the representations of object categories emerge
from the features that are perceptually learned from visual input during the developmental
course of object recognition and categorization. In this way, object naming by young children
is essentially about mapping words to selected perceptual properties. Our model simulates the
underlying mechanism of this mapping process. It represents the meanings of object names as
visual features consisting of shape, colour and texture extracted from the visual appearances of
objects. Then the model learns to associate those visually grounded meanings with linguistic
labels.

Moreover, our model attempts to answer a more intriguing question in object naming — How
does word learning during infancy influence the formation of the categories to which those
words refer? Waxman and Hall (1993) showed that linguistic labels may facilitate the forma-
tion of a category by infants at 16-21 months of age. Hence, the formation of categories in
the presence of auditory input is possibly based on both the similarities of perceptual features
and on shared linguistic labels. Our current model offers a formal account of how linguistic,
perceptual and conceptual advances are linked. The model demonstrates the bi-directional
relationship between lexical acquisition and object category learning. Thus, object catego-
rization provides mental representations of meanings that are mapped to words. Meanwhile,
linguistic labels enhance object categorization by providing additional teaching signals. Our
simulation results provide a dynamic view of the essential interactions between word learning
and object categorization that is quite in line with evidence obtained from empirical studies
(Roberts and Jacob 1991, Waxman 2004, Landau 2004, Yoshida and Smith 2005), suggesting
the cognitive plausibility of our model.



Lexical acquisition and object categorization 395

Several aspects in word acquisition are simplified in the present model. First, the model uses
transcriptions of speech as linguistic input but not raw speech signals. Segmenting continuous
speech into isolated words is the first task in language acquisition. Indeed, English-learning
infants do display some ability to segment words as early as about 7.5 months (Jusczyk and
Aslin 1995). This model focuses on how they acquire the meanings of these segmented words.
Second, the model is a passive learner that perceives multimodal data without active explo-
ration and manipulation of the environment, while a true embodied agent has the opportunity
to explore and acquire information more effectively than the passive one here (Clark 1997,
Rizzolatti and Arbib 1998). Third, Goldstone et al. (2001) showed that judgements of the
similarity of two members of the same category agree more to a third non-categorized object
as a result of category learning. This suggests that grouping two objects together changes their
internal descriptions because features are created to subserve the representations and cate-
gorizations of objects (Schyns et al. 1998). More specifically, the elements that two objects
share become more important parts of the objects’ descriptions. In the context of our model,
this suggests that language could potentially influence not only the computation in the cate-
gorization module, but also that in the perceptual module (see figure 5). Further studies are
needed to explore whether language shapes both perceptual learning and conceptual learning
simultaneously and, if so, how these two learning processes interact and co-ordinate over the
course of acquisition.

The principal technical contribution of this paper is to use multimodal data for object cate-
gorization. Clustering visual data is a descriptive task that seeks to identify homogeneous
groups of objects based on the values of their attributes that can be high-dimensional. The
curse of dimensionality in high-dimensional clustering is well known, and researchers in statis-
tics, pattern recognition and machine learning have developed various algorithms to tackle it.
The typical technique is to transform the original feature space into a lower dimensional space.
Considering the technical difficulty of the problem, it is surprising that even young children
can easily recognize various objects. How do they accomplish this? We attempt to simulate
the underlying mechanism applied by human learners. Our model explores the possibility of
utilizing the spatio-temporal and cross-modal constraints in multimodal data for perceptual
categorization. The results indicate that the unimodal categorization problem can be funda-
mentally simplified by incorporating linguistic cues co-occurring in a natural environment.
Furthermore, the model considers perceptual categorization and word—meaning mapping in
an integrative framework, suggesting a unified view of different aspects of human develop-
ment and learning. Hence, this work potentially provides some useful insights for further
experimental studies about how the brain co-ordinates linguistic and perceptual learning, and
combines information from different sensory modalities.
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