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Introduction

Languages convey information using several methods, and rely to different extents on different
methods. The amount of reliance of a language on a method is termed the ’functional load’ of
the method in the language. The term goes back to early Prague School days (Mathesius, 1929;
Jakobson, 1931; Trubetzkoy, 1939), though then it was usually taken to refer only to the importance
of phonemic contrasts, particularly binary oppositions.

We recently described a general framework to find the functional load (FL) of phonemic oppositions,
distinctive features, suprasegmentals, and other phonological contrasts (Surendran and Niyogi,
2003). It is a generalization of previous work on quantifying functional load in linguistics (Hockett,
1955; Wang, 1967) and automatic speech recognition (Carter, 1987).

While still an approximation, it has already produced results not obtainable with previous defini-
tions of functional load. For instance, Surendran and Levow (2004) found that the functional load
of tone in Mandarin is as high as that of vowels. This means it is at least as important to identify
the tone of a Mandarin syllable as it is to identify its vowels.

King (1967b) notes that Mathesius (1931) ”regarded functional load as one part of a complete
phonological description of a language along with the roster of phonemes, phonemic variants, dis-
tinctive features, and the rest.” We agree with this view. While we have an interest in any role
functional load might have in sound change, our primary concern here is that a historical linguist
who wants to investigate such a role has the computational tools to do so.

The outline of this article is as follows. First, in Section 1, we give an example of how functional
load values can be used to investigate a hypothesis regarding sound change. Then, in Sections 2 and
3, we describe a framework for functional load in increasing levels of generality, starting with the
limited form proposed by Hockett (1955). Several examples, abstract and empirical, are provided.

1 Example: Testing the Martinet Hypothesis in a Cantonese merger

One factor determining whether phonemes x and y merge in a language is the perceptual distance
between them. Another factor, suggested by Martinet (1933), also see Peeters (1992), is the func-
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l ph th kh p t k w ts tsh m h f s ng kwh kw j

9 3 1 3 0 1 7 0 3 5 9 3 2 2 1 0 0 4 n
6 4 3 7 37 70 37 38 24 44 14 8 9 3 0 5 14 l

1 1 2 3 5 2 2 2 6 2 1 1 1 0 0 2 ph

0 2 4 8 2 6 3 1 15 2 24 1 0 2 4 th

1 1 4 0 1 1 0 1 0 1 0 0 0 3 kh

7 25 10 7 4 6 9 2 19 1 0 3 39 p
13 7 31 11 5 36 5 15 1 0 1 7 t

83 27 12 17 17 8 20 2 0 11 33 k

8 11 9 15 3 6 1 0 12 5 w
21 11 17 4 22 1 0 2 25 ts

15 5 2 10 10 0 2 7 tsh

29 3 3 1 0 1 9 m
2 24 1 0 2 4 h

7 1 0 1 1 f
4 0 3 12 s

0 0 1 ng
0 1 kwh

1 kw

Table 1: The functional load of all binary consonantal oppositions (in word-initial position) in
Cantonese, as computed with a word unigram model on the CANCORP corpus (Lee et al., 1996).
All values shown should be multiplied by 0.0001.

tional load FL(x, y) of the x-y opposition i.e. how much the language relies on telling apart x and
y. Martinet hypothesized that a high FL(x, y) leads to a lower likelihood of a merger.

The only computational investigation of this hypothesis thus far is that of King (1967a), who found
no evidence that it was true. Doubts have been raised to his methodology (Hockett, 1967), and
to his overly harsh conclusion that the hypothesis was false. However, while King’s work had
limitations, it was done in a time of limited computing resources and was a major advance on
talking about functional load qualitatively. Sadly, it was not followed up.

A full test of the Martinet Hypothesis requires examples of mergers in different languages, with
appropriate (pre-merger) corpora for each case. We only have one example, but this suffices for
illustrative purposes.

In the second half of the 20th century, n merged with l in Cantonese in word-initial position (Zee,
1999). For such a recent merger, corpus data is available. We used a word-frequency list derived
from CANCORP (Lee et al., 1996), a corpus of Cantonese adult-child speech which has coded n
and l as they would have occurred before the merger. It is not a large corpus, and its nature means
that there is a higher percentage of shorter words than is normal. However, it is appropriate since
mergers are most likely to occur as children learn a language.

Leaving definitions for later, we obtained the value 0.00090 for FL(n,l), where the n-l opposition
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was only lost in word-initial position. Such a small number might tempt one to conclude that this
is indeed an example of the loss of a contrast with low functional load. However, that would be
premature, as the absolute value for the load of a contrast is meaningless by itself. It can only
become meaningful when compared to loads of other contrasts.

Table 1 shows the FL values for all binary consonantal oppositions in Cantonese, when the oppo-
sition was lost only in word-initial position. This gives a much better sense of how small or large
FL(n,l) is. However, ‘much better’ does not mean ‘definite’, and linguistic knowledge is required to
interpret the data. The key question is which of the 171 oppositions of Table 1 should be compared
to the n-l opposition. Consider the following possibilities:

1. All 171 oppositions are comparable. Of these, 121 (74%) have a lower FL than the n-l opposi-
tion. Thus, the n-l opposition had a moderately high importance compared with consonantal
oppositions.

2. On the other hand, several of those pairs seem irrelevant for the purpose of mergers. Perhaps
only those pairs that are likely to merge should be considered. While it is not clear what
’likely to merge’ means, let us suppose for argument’s sake that only consonants that have
a place of articulation in common (consonants with secondary articulations have two places)
can merge.

In this case, only coronal consonants should be considered, namely n, l, t, th, s, ts, tsh. Of
the 21 binary coronal oppositions, 10 have a larger functional load than the n-l opposition
and 10 have a smaller functional load. Thus, the n-l opposition was of average importance
compared to other coronal oppositions.

3. Yet a third point to bear in mind for interpretative purposes is that the phoneme that vanished
in the n-l merger was n. Resorting to blatant anthropomorphism for a moment, if n had to
disappear (in word-initial position), why did it have to merge with l rather than with some
other consonant?

In this case, only consider the 18 oppositions of the form n-x, where x is any consonant other
than n. Of these, only FL(n,m) = 0.00091 is higher than FL(n,l). Even when allowing
for random variation in the FL values obtained, it is clear that the n-l opposition was very
important compared to binary oppositions involving n and other consonants.

There are, of course, other possible interpretations. The key point to note is that functional load
values should be interpreted with respect to other functional load values, and the choice of ’other’
makes a difference. The most conservative conclusion based on the above observations is that this
is an example of the loss of a binary opposition with non-low functional load.

More examples in other languages must be analyzed before we can make further generalizations.
We hope we have at least whetted the reader’s appetite for functional load data.
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2 Defining the functional load of binary oppositions

Binary oppositions of phonemes are the most intuitive kind of phonological contrast. As Meyerstein
(1970) noted in his survey of functional load, this was the only type of contrast most linguists
attempted to quantify.

Perhaps the most common definition of FL(x, y), the functional load of the x-y opposition, is the
number of minimal word pairs that are distinguished solely by the opposition. The major flaw with
this definition is that it ignores word frequency. Besides, it is not generalizable to a form that takes
into account syllable and word structure or suprasegmentals. We shall say no more about it.

2.1 Hockett’s definition

The first definition of FL(x, y) that took word frequency into account was that of Hockett (1955).
He did not actually perform any computations with this definition, although Wang (1967) did.

The definition was based on the information theoretic methods introduced by Shannon (1951),
and assumes that language is a sequence of phonemes whose entropy can be computed. This
sequence is infinite, representing all possible utterances in the language. We can associate with a
language/sequence L a positive real number H(L) representing how much information L transmits.

Suppose x and y are phonemes in L. If they cannot be distinguished, then each occurrence of x
or y in L can be replaced by one of a new (archi)phoneme to get a new language Lxy. Then the
functional load of the x-y opposition is

FL(x, y) =
H(L) − H(Lxy)

H(L)
(1)

This can be interpreted as the fraction of information lost by L when the x-y opposition is lost.

2.2 Computational Details

It is not possible to use (1) in practice. We now give the details of how it can be made usable,
taking care to note the additional parameters that are required.

To find the entropy H(L) of language/sequence L, we have to assume that L is generated by
a stationary and ergodic stochastic process (Cover and Thomas, 1991). This assumption is not
true, but is true enough for our purposes. We need it because the entropy of a sequence is a
meaningless concept — one can only compute the entropy of a stationary and ergodic stochastic
process. Therefore, we define H(L) to be the entropy of this process or, more precisely, the entropy
of the process’s stationary distribution.

Intuitively, this can be thought of as follows: suppose there are two native speakers of L in a room.
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When one speaks, i.e. produces a sequence of phonemes, the other one listens. Suppose the listener
fails to understand a phoneme and has to guess its identity based on her knowledge of L. H(L)
refers to the uncertainty in guessing; the higher it is, the harder it is to guess the phoneme and the
less redundant L is.

Unfortunately, we will never have access to all possible utterances in L, only a finite subset of them.
This means we must make more assumptions; that L is generated by a k-order Markov process, for
some finite non-negative integer k. This means that the probability distribution on any phoneme
of L depends on the k phonemes that occurred before it.

In our speaker-listener analog above, this means that the only knowledge of L that the listener
can use to guess the identity of a phoneme is the identity of the k phonemes preceding it and the
distribution of (k + 1)-grams in L. An n-gram simply refers to a sequence of n units, in this case
phonemes. The uncertainty in guessing, with this limitation, is denoted by Hk(L), and decreases as
k increases. A classic theorem of Shannon (1951) shows that Hk(L) approaches H(L) as k becomes
infinite.

The finite subset of L that we have access to is called a corpus, S. This is a large, finite sequence
of phonemes. As S could be any subset of L, we have to speak of HkS(L) instead of Hk(L). If
Xk+1 is the set of all possible (k + 1)-grams and Dk+1 is the probability distribution on Xk+1, so
that each (k + 1)-gram x in X has probability p(x), then

HkS(L) =
1

k + 1

(

−
∑

x∈X

p(x) log2 p(x)

)

(2)

There are several ways of estimating Dk+1 from S. The simplest is based on unsmoothed counts
of (k + 1)-grams in S. Suppose c(x) is the number of times that (k + 1)-gram x appears in S, and
c(Xk+1) =

∑

x∈Xk+1
c(x). Then

p(x) =
c(x)

c(Xk+1)
(3)

To illustrate, suppose we have a toy language K with phonemes a, u and t. All we know about
K is in a corpus S = “atuattatuatatautuaattuua”. If we assume K is generated by a 1-order
Markov process, then X2 = { aa, at, au, ta, tt, tu, ua, ut, uu } and c(aa) = 1, c(at) = 6,
c(au) = 1, c(ta) = 3, c(tt) = 2, c(tu) = 4, c(ua) = 4, c(ut) = 1, c(uu) = 1. The sum of these
counts is c(X2) = 23. D2 is estimated from these counts: p(aa) = 1

23 , p(at) = 6
23 , etc. Finally

H1,S = 1
2 [ 1

23 log2
23
1 + 6

23 log2
23
6 + . . . + 1

23 log2
23
1 ] = 1

2(2.86) = 1.43.

In other words, a computationally feasible version of (1) is :

FLkS(x, y) =
HkS(L) − HkS.xy(Lxy)

HkS(L)
(4)
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Figure 1: Comparing functional load values, and their logarithms, obtained with k=0 and k=3
on the vertical and horizontal axes respectively, of American English from the ICSI subset of the
Switchboard Corpus (Greenberg, 1996). The correlation of the FL values is 0.928 (p << 0.001)
and of the log FL values is 0.945 (p << 0.001).

S.xy is the corpus S with each occurrence of x or y replaced by that of a new phoneme. It represents
Lxy in the same way that S represents L. FLkS(x, y) can no longer be interpreted as the fraction
of information lost when the x − y opposition is lost, as such an interpretation would only be true
if L was generated by a k-order Markov process. However, by comparing several values obtained
with the same parameters, as we did with the Cantonese merger example of the previous section,
we can interpret this value relatively.

Returning to our toy example, suppose we want to know the functional load of the a-u opposition
with the same k and S. We create a new corpus S.au with each a or u replaced by a new phoneme
V. Then S.au = “VtVVttVtVVtVtVVtVVVttVVV”, c(Vt) = 7, c(VV) = 7, c(tt) = 2, c(tV) = 7,
and eventually H1,S.au = 1

2 [ 7
23 log2

23
7 + 7

23 log2
23
7 + 2

23 log2
23
2 + 7

23 log2
23
7 ] = 1

2(1.87) = 0.94. Then
the functional load FL1,S(a,u) = (1.43 − 0.94)/1.43 = 0.34.
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2.3 Robustness to k (Markov order)

It would be nice to have some assurance that the values used for k and S in (4) make little difference
to our interpretation of the values we get. Surprisingly, there has been no mention, let alone study,
of this problem in the functional load literature. This may be because it is mathematically clear
that different choices of k and S (e.g. different k for the same S) result in different FL values.

However, there is a loophole. We have already said that FL values should be interpreted relative
to other FL values. Once we accept this relativity, then preliminary experiments suggest that
interpretations are often robust to different choices of k and S.

For example, we computed the functional load of all consonantal oppositions in English with k = 0
and k = 3 using the ICSI subset of the Switchboard corpus (Godfrey et al., 1992; Greenberg, 1996)
of hand-transcribed spontaneous telephone conversations of US English speakers. Figure 1 shows
how FL0,Swbd(x, y) and FL3,Swbd(x, y) compare for all pairs of consonants x and y. The correlation
is above 0.9 (p << 0.001), indicating that one is quite predictable from the other. This is surprising,
since the k = 0 model does not use any context at all, and is simply based on phoneme frequencies.

2.4 Generalizing to sequences of units other than phonemes

The problems with modeling language as a sequence of phonemes are manifold. There is no way
to account for prosody, tones, syllable structure, word structure, phoneme deletion/insertion, etc.

Many of these problems can be fixed by modeling language as a sequence of discrete units of some
type, such as phonemes, morphemes, syllables, or words. We shall call an arbitrary type T , and a
unit of that type a T -unit. Much sophistication can go into the definition of a type: for example,
a word can have several components representing its phonemic and prosodic (and even syntactic
and semantic) structure.

This permits the kind of hierarchical definition advocated by Rischel (1961) and and implemented
to a limited extent by Kucera (1963). It also permits us to find the functional load of a much larger
class of phonological contrasts than previously envisaged. It does not get around the problems of
cohort-based language variability models pointed out by Wittgott and Chen (1993).

Everything said in the definition above for phonemes can be said for T -units. This means that there
are now three parameters going into the definition of H and FL, and we must speak of HTkS(L)
and FLTkS(x, y) instead of H(L) and FL(x, y). The formula (4) is now

FLTkS(x, y) =
HTkS(L) − HTkS.xy(Lxy)

HTkS(L)
(5)

Table 2 shows the functional load of all binary consonantal oppositions in American English using
the Switchboard corpus, with T = ‘syllable’ and k = 0. A syllable here is just a phoneme sequence.
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p b t d k g C J f v T D s z S Z m n N l r j h w
2 3 6 4 4 2 1 1 3 3 1 3 6 4 2 0 5 7 1 4 4 3 2 5 x

4 5 4 4 2 2 1 4 4 2 4 5 3 2 1 5 5 0 4 3 3 3 5 p
5 5 5 3 2 1 3 3 2 6 6 3 2 1 5 7 0 5 5 4 3 7 b

9 7 4 3 2 5 5 2 6 10 6 3 1 8 12 2 8 7 6 4 9 t
7 3 2 2 5 5 2 6 9 6 3 1 6 9 1 7 6 5 4 8 d

4 2 2 5 5 2 6 8 5 2 0 3 5 0 3 3 3 2 4 k
1 1 2 2 1 3 5 3 2 0 3 5 0 3 3 3 2 4 g

1 2 2 1 2 2 2 1 0 2 2 0 2 2 2 1 2 C
1 1 1 2 2 2 1 1 2 2 0 2 1 2 1 2 J

4 1 3 5 4 2 1 5 6 1 4 4 3 2 5 f
2 4 6 5 2 1 5 7 1 5 4 3 2 6 v

2 2 2 1 0 2 2 0 2 2 1 1 2 T
7 4 2 1 6 8 0 5 5 5 4 8 D

8 3 1 9 13 2 8 7 5 4 9 s
2 1 5 10 2 6 5 3 2 6 z

1 3 3 0 3 2 2 2 3 S
1 1 0 1 1 1 0 1 Z

11 1 7 7 4 4 8 m
3 12 10 6 5 11 n

1 1 0 0 1 N
9 4 3 9 l

4 3 8 r
4 5 j

4 h

Table 2: FL(x, y) for all pairs x, y of consonants in American English, based on syllable unigram
data from the ICSI subset of the Switchboard corpus. C and J are the un/voiced affricate ’ch’ and
’dzh’ respectively, T and D the un/voiced alveolar fricatives ’th’ and ’dh’, S and Z the un/voiced
alveolar sibilants ’sh’ and ’zh’, N the velar nasal ’ng’ and x the glottal stop. All values should be
multiplied by 0.001.

2.5 Robustness to corpus used

It is a plain fact that the entropy of a language depends on the corpus used - it can even be used
to distinguish between authors in the same language (Kontoyannis, 1993). However, as functional
load values are a ratio of entropies, and are to be interpreted relatively anyway, we can hope they
will not be as corpus-dependent as raw entropy values.

To test this, we recomputed the values in Table 2 with CELEX (Baayen et al., 1995), a very
different source of corpus data. The correlation was 0.797 (p << 0.001), which is good, but not
entirely satisfactory. However, the agreement is much better for binary oppositions of obstruents,
the correlation being 0.892 (p << 0.001).

There is an important subtlety hiding here, because syllables in CELEX are different from those
in Switchboard. CELEX syllables have two parts instead of one. The first is the phonemic part as
before, while the second is a stress part that can have one of the values <primary>, <secondary>
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and <unstressed>. Thus the syllables (’pirz’,<primary>) would still be distinguishable from
(’parz’,<unstressed>) when the a-i opposition was lost, but not from (’parz’,<primary>).

This means that the 0.797 and 0.892 figures above were computed with the same k and different
S and T . To make a comparison with the same k and T but different S, we redid the experiment
with the stress values from CELEX ignored. Then the corresponding figures are 0.816 and 0.920
respectively.

This agreement, especially for obstruents, is quite remarkable given the differences between the
Switchboard and CELEX corpora. Switchboard has about 36 000 syllable tokens of 4000 types,
while CELEX is a word-frequency list derived from a corpus (Birmingham/COBUILD) with 24
000 000 syllable tokens of 11 000 types. Switchboard syllables are based on spontaneous speech
of American English, and thus have far fewer consonant clusters than CELEX syllables, which are
based on canonical pronunciations of British English. Frequency values for Switchboard are based
on spoken language, while those from CELEX are derived mostly from written texts.

This is very good news for historical linguists, as available corpora of historical languages represent
written rather than spoken texts, and pronunciations are at best canonical ones.

3 Defining the functional load of general phonological contrasts

Suppose we are computing functional load values with parameters k, S and T , that is, assuming
that the language in a corpus S is a sequence of T -units generated by a k-order Markov process.
X = X1 is the set of all T -units.

Let f : X → Y be any function on X. The range Y of f , can be considered to be a set of units of
a new type U . Then the functional load FL(f) of f is defined as :

FLTkS(f) =
HTkS(L) − HUkf(S)(f(L))

HTkS(L)
(6)

The function f represents the loss of the contrast we wish to find the functional load of, and f(L)
and f(S) represent the language L and corpus S after the loss of the contrast.

For example, consider the only contrasts we have dealt with so far: the binary opposition of two
phonemes p and q. If T = ‘phoneme’, then X is the set of phonemes, so that p, q ∈ X. We define
Y to be X with p and q removed, and a new phoneme p′ added. If we define a function g : X → Y
by g(p) = g(q) = p′, and g(x) = x for any x in X −{p, q}, then FLTkS(g) = FLTkS(p, q) as before.

What if T is not a phoneme? Suppose T = ‘syllable’, where a syllable (x1 . . . xb, s) has both a
phoneme sequence x1 . . . xb and stress component s. We can define a function h on the set of
syllables that takes such a syllable to (g(x1) . . . g(xb), s) where g is the function of the previous
paragraph. Then FLTkS(h) = FLTkS(p, q).
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Dutch English German Mandarin

Syll Word Syll Word Syll Word Syll Word

Place 67 11 73 20 61 13 65 14
Manner 27 5 39 11 27 8 34 6
Voicing 30 3 23 5 21 1
Aspiration 17 3
Nasality 15 2 12 3 16 2 8 3i

Table 3: The functional load of some distinctive features in four languages, based on unigram
(k = 0) counts of syllables and words. Data summarized from Surendran and Niyogi (2003). All
values shown should be multiplied by 0.001.

And if T is a word, where a word is a sequence of syllables of the form s1 . . . sc then the required
function takes this to h(s1) . . . h(sc). Note that the positive integer c is different for different words.

The generalization to draw here is that any function from phonemes to phonemes induces one from
syllables to syllables, which in turn induces one from words to words.

3.1 The functional load of a distinctive feature

Phonemes can be described in terms of distinctive features (Jakobson and Halle, 1956), which do
not have to be binary. In the absence of a distinctive feature, certain phonemes would sound alike,
and the function f should be defined so that such phonemes are ‘collapsed’ into a single phoneme.

For example, without aspiration, a Mandarin speaker would be unable to distinguish between ts
and tsh, p and ph, t and th, etc. The functional load of aspiration is defined by FL(f), where f is
a function defined by f(ts) = f(tsh) =ts′, f(p) = f(ph) =p′, f(t) = f(th) =t′, . . . and f(x) = x if
x is any phoneme that is not part of an aspirated-unaspirated pair of consonants.

Another example: without manner, an English speaker would be unable to tell apart b from m
from w or d from dh from n, etc. The functional load of place in English is defined by FL(f) where
f(b) = f(m) = f(w) =b′, f(d) = f(dh) = f(n) =d′, f(t) = f(th) =t′, . . ., and f(x) = x for any
other phoneme x.

Functional load values for some distinctive features in Dutch, English, German and Mandarin
appear in Table 3. Place is more important than manner in all four languages.

3.2 The functional load of a suprasegmental feature

By suprasegmentals, we refer primarily to stress and, in tonal languages, tone. The definition of
these terms is by no means standard.

Return to the situation where the types of units we are dealing with are syllables with both a
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phoneme sequence and stress component. Define a function f that takes a syllable (x1 . . . xb, s)
to (x1 . . . xb), i.e. ignores the value of its stress component. Then FL(f) is the functional load of
stress.

In some tonal languages, syllables can be assumed to have three components: phonemic, stress
and tone. Then the functional load of stress is FL(f), where f is a function that takes a syllable
(x1 . . . xb, s, t) to (x1 . . . xb, t) and the functional load of tone is FL(g), where g is a function that
takes a syllable (x1 . . . xb, s, t) to (x1 . . . xb, s).

If words are modeled as sequences of syllables, then f and g above induce word-converting functions
whose functional load is what we require.

3.3 The functional load of a condition-dependent contrast

This is best described with a couple of non-trivial examples.

In the Cantonese merger example several pages ago, we computed the functional load of binary
phonemic oppositions in word-initial position. No previous definition of functional load suggested
how one might deal with conditional loss of contrasts.

We modeled Cantonese as a sequence of words, with each word as a sequence s1 . . . sc of syllables,
and each syllable (p1 . . . pb, t) as a sequence of phonemes with a tone. Note that c and b vary
with word and syllable respectively. We then defined f so that it converted a word s1 . . . sc to
g(s1)s2 . . . sc, where g converted a syllable (x1 . . . xb, t) to (h(x1)x2 . . . xb, t). When the binary
opposition in question was of phonemes p and q, h was defined as h(p) = h(q) = p′ and h(x) = x
for every other phoneme x.

In other words, the p − q opposition was only lost when the first phoneme in a word was p or q.
Recall that g would convert (x1 . . . xb, t) to (h(x1) . . . h(xb), t) and f would convert a word s1 . . . sc

to g(s1) . . . g(sc) if f was supposed to represent the regular (everywhere) loss of the x-y opposition.

For another example, suppose we represented English as a sequence of syllables and we wanted to
represent vowel reduction. This is the loss of distinction between vowels in unstressed syllables.
Then we would define f so that it converted a syllable (x1 . . . xb, s) to (g(x1) . . . g(xb), s) if s =
‘unstressed’ and to (x1 . . . xb, s) otherwise. The function g converts x to x if it is a consonant and
to V if it is a vowel. Then FL(f) is the functional load of being able to distinguish between vowels
in unstressed syllables.

4 Summary

We have outlined a method for providing quantitative data on how much a language relies on phone-
mic opposition, distinctive feature, or suprasegmental feature, even when the opposition/feature
is lost only in certain conditions. Initial tests suggest it is reasonably robust, even with non-ideal
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representations of spoken language such as word-frequency lists with canonical pronunciations of
words and frequencies from written texts. While it needs to be improved both statistically and
linguistically, it can be used in its present state as a tool at the intersection of historical and corpus
linguistics.

This article is meant to be a more accessible version of Surendran and Niyogi (2003). The reader
seeking more computational details is referred there and to
http://people.cs.uchicago.edu/∼dinoj/research/fload .

We would like to thank Stephanie Stokes for pointing us to the Cantonese data and Bert Peeters
for useful discussions on how functional load is viewed in the Martinet tradition.
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André Martinet. 1933. Remarques sur le Systême Phonologique du Francais. Bulletin de la Société
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