
Unify and Merge in

Fluid Construction Grammar

Luc Steels1,2 and Joachim De Beule2

1 SONY Computer Science Laboratory - Paris
2 Vrije Universiteit Brussel, Artificial Intelligence Laboratory

Pleinlaan 2, B-1050 Brussel

Abstract. Research into the evolution of grammar requires that we
employ formalisms and processing mechanisms that are powerful enough
to handle features found in human natural languages. But the formal-
ism needs to have some additional properties compared to those used
in other linguistics research that are specifically relevant for handling
the emergence and progressive co-ordination of grammars in a popula-
tion of agents. This document introduces Fluid Construction Grammar,
a formalism with associated parsing, production, and learning processes
designed for language evolution research. The present paper focuses on
a formal definition of the unification and merging algorithms used in
Fluid Construction Grammar. The complexity and soundness of the al-
gorithms and their relation to unification in logic programming and other
unification-based grammar formalisms are discussed.

1 Introduction

Computational research into the origins of language and meaning is flourishing.
There is a growing set of experiments showing how certain aspects of human
natural languages emerge in a population of agents endowed with specific cogni-
tive components such as a bi-directional associative memory or an articulatory
and auditory apparatus. (See overviews and representative samples of current
work in [3], [4], [18], [28]). Most of the solid results so far have been reached for
the emergence of lexicons and perceptually grounded categories. Although there
have been a number of experiments on the role of syntax and grammar (see e.g.
[12] [26], [1], [25]), there are as yet only very few demonstrations where non-
trivial grammars arise in grounded situated interactions between robotic agents.
Part of the reason is of course that the problem of grammar emergence is much
more encompassing than that of lexicons and many fundamental questions re-
main unanswered. In addition, the world models of agents and the nature of their
interactions needs to be much more complex than in lexical experiments. But
another reason, we believe, has to do with the nature of the computational ap-
paratus that is required to do serious systematic experiments. Whereas lexicon
emergence can be studied with relatively standard neural networks, grammar
requires much more powerful symbolic processing which falls outside the scope
of connectionist modeling today.



Our group has therefore been working for many years on a formalism that
would be adequate for handling phenomena typically found in natural language
grammars, but that would at the same time support highly flexible parsing and
production (even of ungrammatical sentences or partially unconventionalised
meanings) and invention and learning operators that could lead to the emer-
gence, propagation, and further evolution of grammar, all this in a multi-agent
setting. Our formalism has been called Fluid Construction Grammar, as it is
in line with the approaches advocated in usage-based cognitive approaches to
language in general and construction grammar in particular, and because it is
designed to support highly flexible language processing in which conventions
are not static and fixed but fluid and emergent. At this point the FCG system
is ready for use by others. An implementation on a LISP substrate has been
released for free download through http://arti.vub.ac.be/FCG/. This site also
contains very specific examples on how to do experiments in language evolution
with FCG. The goal of the present paper is to define some core aspects of FCG
more precisely, building further on earlier reports [8], [29]. The application of
FCG to various issues in the emergence of grammar is discussed in some other
papers (see [27], [7], [24]).

Fluid Construction Grammar (FCG) uses as much as possible existing widely
accepted notions in theoretical and computational linguistics, specifically feature
structures for the representation of syntactic and semantic information during
parsing and production, and abstract templates or rules for the representation of
lexical and grammatical usage patterns, as in [19] or [2]. Contemporary linguis-
tic theories propose general operators for building up syntactic and semantic
structures, such as Merge in Chomsky’s Minimalist Grammar [5] or Unify in
Jackendoff’s framework [14]. Unification based grammars [19, 15, 2] are similarly
based on a unification operator, and more generally many generic inference sys-
tems, particularly within the logic programming framework, use some form of
unification [22]. There is also some research on finding the neural coordinates
of unify and merge in language processing [13]. Unfortunately there are quite
substantial differences between the use of the terms unify and merge in all these
different frameworks and one of the goals of this paper is to clarify in detail the
unify and merge operators that form the core of FCG. For this, we build further
on the comparative analysis done by [21] who reformulated FCG in prolog.

The remainder of the paper has five parts. The next section defines first the
requirements for grammar formalisms needed to do experiments in the emer-
gence of non-trivial grammars and the basic ideas behind the Fluid Construction
Grammar approach. Then there is a section with some preliminary definitions
and background notions. The remainder of the paper focuses on a formal defini-
tion of the unify and merge operations in FCG. Section 4 defines the unification
in general, and particularly the FCG extensions to standard unification, section
5 then applies this to FCG feature structures. Section 6 defines merging in gen-
eral, and section 7 applies it to FCG feature structures. Section 7 contains a
worked out example.



2 Fluid Construction Grammars

It is obvious that there many possible formalisms could be (and have been)
invented for capturing aspects of language, depending on the nature of the lin-
guistic theory and the types of processing one wants to study. For example,
generative (derivational) grammar is adequate for studying ways to generate the
set of all possible sentences of a language but it is not well suited for parsing
or production, while a constituent structure grammar is adequate for studying
syntactic structure but not helpful for investigating how case frames intervene
between the mapping from meaning to form, etc. Fluid Construction Grammar
takes a strong stance with respect to current linguistic theorising and attempts
in addition to satisfy specific requirements which arise when one wants to do
experiments in the emergence of grammar in grounded situated interactions.

2.1 Linguistic Assumptions

The linguistic perspective of FCG is in the general line of cognitive grammar
[17] and more specifically construction grammar [11]. This means the following:

1. FCG is usage-based: The inventories available to speakers and hearers
consist of templates which can be highly specialised, perhaps only pertaining
to a single case, or much more abstract, covering a wide range of usage events.
There is no sharp distinction therefore between idiomatic and general rules. New
sentences are constructed or parsed by assembling the templates using the unify
and merge operators defined later in this paper.

2. The grammar and lexicon consist of symbolic units: A symbolic unit as-
sociates aspects of meaning with aspects of form. The templates of FCG are
all symbolic units in this sense. They feature a semantic pole and a syntactic
pole. Templates are always bi-directional, and so are usable both for production
and for parsing. This makes FCG unique not only with respect to derivational
formalisms (like generative grammar or HPSG) but also with respect to other
construction grammar formalisms which tend to be uni-directional (such as Em-
bodied Construction Grammar).

3. There is a continuum between grammar and the lexicon. Not only can tem-
plates be of different levels of abstraction, but there is also no formal distinction
in the structure or the processing of lexical and grammatical entries. In the case
of lexical entries, the syntactic pole concerns mostly a lexical stem and the se-
mantic pole tends to be equal to some concrete predicate-argument structure.
In the case of grammatical constructions, the syntactic pole contains various
syntactic categories constraining the sentence, and the semantic pole is based
on semantic categories, but otherwise there is no formal difference between the
two types of templates.

4. Schematisation occurs through variables and categorisation. A template
has the same form as an association between a semantic structure and a syn-
tactic structure, in other words both poles of a template are feature structures.
However, templates are more abstract (or schematic) in three ways: Some parts
of the semantic or syntactic structure are left out, variables are used instead of



units and values, and syntactic or semantic categories are introduced to constrain
the possible values of the semantic and syntactic pole. These categories are often
established by syntactic or semantic categorisation rules. In some experiments
the categories have been defined using a memory-based approach with typical
examples and prototypes but this is not yet embedded in the current release of
FCG.

5. Syntagmatic and Paradigmatic Compositionality: To produce or parse a
sentence, templates can be combined (several templates all matching with dif-
ferent parts of the meaning in production or with parts of the sentence in pars-
ing are simply applied together) or integrated (using hierarchical templates that
combine partial structures into larger wholes, possibly after a modification of
the syntactic or semantic aspects of the component units). Apart from this syn-
tagmatic composition, there is also the possibility that several templates are
overlayed and each contribute additional constraints to the final sentence. This
is paradigmatic compositionality. Both forms of compositionality are completely
supported with the unify and merge operators defined later in the paper. Of
particular importance is that the FCG unify and merge operators handle linking
(resolving equalities introduced by separate lexical items) by unifying variables
in merge. This topic is discussed more extensively in [29].

2.2 Additional Requirements

In addition to these characteristics, which we take to be general features of
cognitive grammars and construction grammars, there are some additional re-
quirements for a formalism if it is to be adequate for modeling emergent natural
language like grammars.

1. All inventory entries have scores: We assume that speakers and hearers cre-
ate new templates which are often competing with each other. Not all templates
are widely accepted (entrenched) in the population and there is a negotiation
process. To enable this capability we associate with every item in the lexico-
grammar a score that reflects the degree of entrenchment of that item. It is
based on feedback from success or failure in the language games in which the
item has been used. We know from our other experiments in lexicon emergence
that an appropriate lateral inhibition dynamics is the most adequate way for
driving a population to a sufficiently co-ordinated repertoire to have success in
communication and the same dynamics is part of FCG.

2. The set of syntactic and semantic categories is open. Often linguistic for-
malisms posit specific sets of semantic categories (for example semantic roles like
agent, patient, etc.) or syntactic categories (such as parts of speech, syntactic
features, and others). Because we are interested in how all these categories arise,
we make the formalism completely open in this respect. Constraints on feature
values are expressed as propositions or predicate- argument clauses so that the
set of categories can be expanded at any time. In our experiments there are
typically hundreds or even thousands of new categories built. This openness of
categories is in line with the Radical Construction Grammar approach which
argues that linguistic categories are not universal and subject to evolution [6].



3. The multi-agent perspective: In traditional Chomskyan linguistics only the
grammar or lexicon of an ‘idealised speaker or hearer’ is considered. In contrast,
when we want to study how grammar arises in a population we need to take
a multi-agent perspective, where every agent possibly has a different inventory.
We need to understand in particular how agents co-ordinate their inventories
to be successful in communication. This raises a large number of computational
issues (for example linguistic knowledge is always local to an agent) as well as
issues in how to track and measure ‘the grammar’ in the population.

Although all these issues are dealt with in the current FCG design and im-
plementation, the remainder of this paper focuses only on the core of the system,
namely the unify and merge operators.

3 Preliminaries

This section starts the more formal discussion and assumes some familiarity with
fcg (e.g. from [27], [29], [8] or the FCG website http://arti.vub.ac.be/FCG).
We will adopt the standard terminology of logic, which is unfortunately different
from the terminology often used in other unification-based approaches to natural
language. In logic, the term ‘unification’ does not involve the merging of two
structures or a change to a structure, so unification is a kind of ‘matching’ which
yields a set of variable bindings. In contrast with simpler forms of matching (as
used in many production rule systems), variables can be present both in the
source and in the target. This is the meaning of ‘unify’ as used in the rest of
the paper. Because we also want a way to extend or build up structure based on
templates, we have an additional operator called ‘merge’ which takes a source
and a target and combines them into a new structure.

We now introduce some definitions which are common in logic (see e.g. [22,
10]). Symbols are the atomic units. Symbols starting with a question mark are
variables. A denotes the set of all symbols, V the set of all variables. Symbols
that are not variables are constants. A simple expression is defined as a
symbol or a list of one or more simple expressions. More formally, let (.|.) be the
list-creator operator (similar to cons in lisp) and let () be an operator of arity
0 (similar to nil in lisp).

Definition 1. Let Es denote the set of all simple expressions:

– All elements of A as well as () are elements of Es.
– If e1 ∈ Es and e2 ∈ Es and if e2 is not in A then (e1|e2) ∈ Es.

In addition to simple expressions, we will consider later non-simple expressions
which feature special operators and will be called general fcg-expressions or
simply expressions.

Let us denote the set of variables in an expression e by vars(e). Often an
expression of the form (e1|(e2|...(ek|())...)) is represented as (e1e2...ek) and is
called a list of length k. The operator () is called a list of length 0.

A binding [?x/X] specifies the value X of a variable ?x. If X is itself a
variable then such a binding is called an equality. A set of bindings B =



{[?x1/X1], ..., [?xn/Xn]} defines a function σB : V → T such that σB(?x) =?x
except for the variables ?x1 to ?xn in B, called the domain of σB . For these
variables it holds that σB(?xi) = Xi. The set {X1, ..., Xn} is denoted by ran(σB).
Such a function is called a substitution and the set of bindings B is sometimes
called the graph of σB and is written simply as [?x1/X1, ..., ?xn/Xn]. Often
a substitution σB is represented by its graph B. The empty substitution (the
identity function) is denoted by ε. Furthermore define fail to be a special symbol
which will be used to specify the failure to find a substitution.

The extension of a substitution to the domain Es can be defined using struc-
tural induction. If σB is the substitution constructed from the set of bindings
B then the application of σB to an expression e is written either as σB(e) or as
[e]B .

Definition 2. Two simple expressions x and y are said to be equal (written as
x = y) iff either:

1. x and y are both the same atom
2. both x = (x1...xn) and y = (y1...ym) are lists of the same length (m = n)

and for every i = 1..n : xi = yi.

Substitutions can be ordered according to the pre-order ¹V which is defined
as follows: If σ1 and σ2 are two substitutions then σ1 ¹V σ2 iff there exists a
substitution λ such that σ1(v) = (σ2 ◦ λ)(v) for each v ∈ V. When clear from
the context, σ1 ¹V σ2 is written as σ1 ¹ σ2.

If σ1 ¹V σ2 and σ2 ¹V σ1 then we say that σ1 =V σ2.

Definition 3. Two simple expressions e1 and e2 are said to unify iff there
exists a substitution σ such that σ(e1) = σ(e2). In this case the substitution σ is
called a unifier of the two expressions and the set of all unifiers of e1 and e2 is
written as

⋃

T (e1, e2).

Example 1. The expression e = (a ?x) unifies with the expression e′ = (?y a)
with unifier [?x/a, ?y/a].

It is easy to see that the set of unifiers of two unifiable expressions e1 and
e2 is infinite (if V is infinite.) Indeed, a unifier can always be extended with
an additional binding for a variable that is not an element of either vars(e1) or
vars(e2). In order to exclude these unifiers we only assume unifiers that satisfy
the protectiveness condition. A unifier σ of two expressions e1 and e2 satisfies
this condition iff dom(σ) ⊆ vars(e1)

⋃

vars(e2) and dom(σ)∩ vars(ran(σ)) = ∅
A complete set of unifiers c

⋃

T (e1, e2) is a subset of
⋃

T (e1, e2) that sat-
isfies the additional condition that for any unifier σ of e1 and e2 there exists a
θ ∈ c

⋃

T (e1, e2) such that θ ¹ σ.
The set of most general unifiers µ

⋃

T (e1, e2) is a complete set of unifiers
that additionally satisfies the minimality condition: for any pair µ1, µ2 ∈
µ
⋃

T (e1, e2), if µ1 ¹ µ2 then µ1 = µ2.
It is well known that if two simple expressions x and y unify, then there always

is only one most general unifier (up to a renaming of variables, see e.g. [22]).



Let f(x, y, {ε}) be the function that computes the set containing only this most
general unifier. Before showing how this function can be computed we first define
the notion of valid extensions.

Definition 4. The set of valid extensions Ξ(B, b) of a set of bindings B =
[?x1/X1, ..., ?xn/Xn] with a binding b = [?x/X] is defined as follows:

Ξ(B, b) =







f(X,Xi, {B}) if ?x =?xi for some i ∈ {1, ..., n}
f(?x,Xj , {B}) if X ∈ C and X =?xj for some j ∈ {1, ..., n}
{[?x/X] ∪ B} otherwise.

Using this definition, f(x, y,Bs), with Bs a set of sets of bindings, can be com-
puted as follows [20]:

1. if x ∈ V and x 6= y and x does not occur in y then
f(x, y,Bs) = {Ξ(B, [x/y]);B ∈ Bs}.

2. else if y ∈ V and x 6= y and y does not occur in x then
f(x, y,Bs) = {Ξ(B, [y/x]);B ∈ Bs}.

3. else if x = (x1|x2) and y = (y1|y2) then f(x, y,Bs) = f(x1, y1, f(x2, y2,Bs))
4. else if x = y then f(x, y,Bs) = Bs
5. else f(x, y,Bs) = fail

fcg unification of two simple expressions is equivalent to standard unification
and thus returns the single most general in this case.

4 Unifying

fcg expressions are more extensive than simple expressions because they may in-
clude special operators such as the includes-operator ‘==’ which specifies which
elements should be included in a feature’s value, or the J-operator which plays a
key role in defining hierarchy.3 Each of these operators has a dedicated function
for defining how unification should be carried out.

Let O be the set of special operator symbols. It includes for example the
symbol ‘==’.

Definition 5. Let E denote the set of all fcg expressions. Then:

1. All elements of A and O as well as () are elements of E.
2. if e1 ∈ E and e2 ∈ E and if e2 is not in A ∪O then (e1|e2) ∈ E.

For every operator o in O and for all expressions e1 = (o|e′1) and e2 and sets
of bindings Bs a designated unification function fo(e1, e2,Bs) must be defined
returning a set of unifiers for e1 and e2.

Definition 6. fcg unification ffcg(x, y,Bs) of two expressions x and y, given
the sets of bindings Bs, is defined as follows:

3 The J-operator is treated in a separate paper [8].



1. if x = (o|x′) with o ∈ O then ffcg(x, y,Bs) = fo(x, y,Bs)
2. else if y = (o|y′) with o ∈ O then ffcg(x, y,Bs) = fo(y, x,Bs)
3. else if x ∈ V and x 6= y and x does not occur in y then

ffcg(x, y,Bs) = {Ξ(B, [x/y]);B ∈ Bs}.
4. else if y ∈ V and x 6= y and y does not occur in x then

ffcg(x, y,Bs) = {Ξ(B, [y/x]);B ∈ Bs}.
5. else if x = (x1|x2) and y = (y1|y2) then

ffcg(x, y,Bs) = ffcg(x1, y1, ffcg(x2, y2,Bs))
6. else if x=y then ffcg(x, y,Bs) = Bs
7. else ffcg(x, y,Bs) = fail

Clearly fcg-unification is equivalent to standard unification if only simple ex-
pressions (and thus no special operators) are considered. Hence the properties of
fcg-unification depend on the properties of the dedicated unification functions
fo. We now define some of these special operators so that fcg unification of fcg

feature structures can be defined. The list of special operators can in principle
be extended by defining the relevant unification functions.

4.1 The includes operator ==

Let us first define the notion of containment.

Definition 7. An expression xi is contained in a list iff it fcg-unifies with an
element in this list.

A list starting with the includes operator (== x1...xn) unifies with any source
list that at least contains the elements x1 to xn. The order in which the elements
occur in the source list is irrelevant, however every xi should unify with a different
element in the source, as in the following examples:

Example 2.

f==((== a a b), (a b), {ε}) = fail

f==((== a a b), (a a b), {ε}) = {ε}

f==((== a a b), (b a a), {ε}) = {ε}

f==((== a ?x), (a b c), {ε}) = {[?x/b], [?x/c]} (1)

This is formalized in the following

Definition 8. Let pn((e1...em)) with n ≤ m be the set of expressions (ei1 ...ein
)

for every variation (i1, ..., in) of n elements out of (1, ...,m).4 Then

f==((== x1...xn), (a1...am),Bs) ≡
⋃

a∈pn((a1...am))

ffcg((x1...xn), a,Bs)

Example 3. Consider again the last example in (1). We have to consider all
variations of two elements out of (abc), i.e. (a b), (b a), (a c), (c a), (b c) and
(c b). Unifying these with (a ?x) results in {[?x/b]}, fail, {[?x/c]}, fail, fail and
fail respectively. Keeping only the successful ones indeed leads to {[?x/b], [?x/c]}.

4 We intend here the set-theoretic notion of variation, i.e. all subsets of n elements
from (1, ..., m) where the order of the elements matters.



4.2 Special cases of f==

First of all, the unification of two include-lists x = (== x1...xn) and y = (==
y1...ym) is not well defined. One possibility is to state that two such lists always
unify. However, it is not clear what the resulting set of bindings should be. For
simplicity we define ffcg((o1|x), (o2|y),Bs) with o1, o2 ∈ O to always be equal
to fail.

Second, the pattern (x1...xk == y1...yl) with a source (z1...zm), m ≥ k + l is
well defined. More formally, the pattern should be written as

(x1...xk == y1...yl) ≡ (x1|(...|(xk|(== |(y1|(...|(yl|())...).

The ffcg function will progressively unify the elements x1 to xk with the first k
elements in the source. At this point ffcg is recursively applied to the pattern
(== |(y1|(...|(yl|())...), which can be re-written as (== y1...yl), and the source
(zk+1...zm).

Third, operators are treated as ordinary symbols if they are not the first
element of a list:

f==((== a ?x), (a == b), {ε}) = {[?x/ ==], [?x/b]}

4.3 Minimality, Completeness and Complexity of f==

Theorem 1 (Completeness of f==). The function f==((== |X), Y, , {ε})
computes a complete set of unifiers c

⋃

T ((== |X), Y )

Proof. From the definition of f== it follows that, if a substitution τ is a unifier
of (== |X) = (== x1...xn) and Y = (y1...ym), then it must be that τ(X) is
a variation of n elements from Y . Let σ ∈ f==((== |X), Y, {ε}) be the substi-
tution that computes this variation, so that σ(X) = τ(X). If X and Y do not
contain any special operators then, from the completeness of Ffcg for simple
expressions, it follows that σ ¹ τ and thus that f==(X,Y, {ε}) computes a com-
plete set of unifiers. If some element xi (yi) of X (Y ) is of the form (== |z),
with z not containing a special operator, then the same argument can be used
recursively. Continuing in this way, it follows that f== computes a complete set
of unifiers. ut

Theorem 2 (Non-minimality of f==). The function f==((== |X), Y, , {ε})
does not necessarily compute the most general set of unifiers µ

⋃

T ((== |X), Y ).

Proof. It suffices to show that f== does not satisfy the minimality condition.
Consider the unification of (== ?x ?y) with (?x ?y) which results in {ε, [?x/?y]}.
This is different from the minimal set of unifiers which consists of the empty
substitution ε only (this example was taken from [21].) ut

Theorem 3 (Complexity of f==). f==((== x1...xn), (y1...ym≥n) is of expo-
nential complexity in n.



Proof. Basically, the exponential complexity arises from the need to calculate the
variations. Indeed, when xi 6= yj for all possible combinations of i and j then
f==((== x1...xn), (y1...ym)) is equivalent with the subset unification of {xi}
and {yj}. General subset unification is exponential and the subset-unifiability
problem is NP-complete [16, 9]. ut

The implementation of f==((== x1...xn), (y1...ym≥n) can be made more
efficient by calculating in advance the set of candidate expressions Ci = {yj |yj

unifies with xi} and by only considering combinations of n distinct elements out
of each Ci. However the inherent exponential complexity cannot be improved
upon in general.

In the following we introduce two additional special operators which are de-
fined as special cases of the includes operator. This ensures that the completeness
of ffcg is maintained. However they can be computed more efficiently.

4.4 The permutation operator ==p

The permutation operator is like the includes operator except that the source
should contain exactly the elements specified in the pattern. Thus we have:

Definition 9.

f==p
((==p x1...xn), (a1...am),Bs)

≡

{

f==((== x1...xn), (a1...am),Bs) if n = m,
fail otherwise.

(2)

4.5 The includes-uniquely operator ==1

The function of this operator will become more important in merging (see later.)
However its behavior in unification must be specified because fcg-templates may
contain this operator.

Definition 10. Let s = (y1...ym). Then f==1
((==1 x1...xn), s) is the set {B} ⊂

f==((== x1...xn), s) of substitutions B that satisfy the following conditions

1. No two symbols σB(yi) and σB(yj) of σB((y1...yn)) with i 6= j are allowed
to unify: ffcg(yi, yj , {B}) = fail and

2. if σB(yi) = σB((yi1|yi2)) and σB(yj) = σB((yj1|yj2)) are two non-atomic
elements of σB((y1...yn)) with i 6= j then their first elements are not allowed
to unify: ffcg(yi1, yj1, {B}) = fail

The above definition ensures that every element in σB((y1...yn)), B ∈ Bs is
distinct. It also implies that no element σB(yi) can be a variable or start with a
variable if n ≥ 1.

Example 4.

f==1
((==1 ?x1 a), (?y1 (?y2) b)) = {[?y1/a, ?x1/(?y2)], [?y1/a, ?x1/b]}

f==1
((==1 ?x1 a), (?y1 ?y2 b)) = fail

f==1
((==1 ?x1), (?y1 b)) = fail. (3)



In contrast with the last of these examples, consider that:

Example 5.

f==((== ?x1), (?y1 b)) = {[?x1/b], [?x1/?y1]}. (4)

Note that some includes-uniquely patterns cannot be satisfied (e.g. (==1 a a).)

5 Unifying Feature Structures

We are now ready to define the matching of two fcg structures. We begin by
defining fcg feature structures which are more constrained than feature struc-
tures in other unification grammars [19], in the sense that they are not hier-
archical. Hierarchy is represented instead by using the name of a unit as the
definition of the syn-subunits or sem-subunits slots. This has many advantage,
including that a unit can be the subunit of more than one other unit. It also
simplifies computation enormously.

5.1 Feature structures in fcg

A syntactic or semantic structure in fcg consists of a set of units which each
consist of a unique name and a set of feature-value pairs. A unit typically corre-
sponds to a lexical item or to constituents like noun phrases or relative clauses.
The name can be used to identify or refer to a unit and unit-names can be bound
to variables. Feature-values cannot themselves be feature structures. We always
introduce separate units with their own names and associate feature-value pairs
with this new

Example 6. The following expression could be a syntactic structure in fcg.
The structure contains three units named sentence-unit, subject-unit and
predicate-unit. The sentence-unit has two features named syn-subunits

and syn-cat, with respective values the lists (subject-unit predicate-unit)

and (SV-sentence).

((sentence-unit (syn-subunits (subject-unit predicate-unit))

(syn-cat (SV-sentence)))

(subject-unit (syn-cat (proper-noun (number singular)))

(form John))

(predicate-unit (syn-cat (verb (number singular)))

(form walks))).

Without separate units or unit names (as in other formalisms) this would look
like:

(sentence-unit

(syn-subunits

((syn-cat (proper-noun)

(number singular))



(form John))

((syn-cat (verb)

(number singular))

(form walks)))).

A template’s pole has the same form as a feature structures but typically contains
variables as well as special operators (like ‘==’).

Example 7. The following expression could be the syntactic pole of a template.
Note how agreement in number between subject and verb is handled through
the variable ?number which will be bound to a specific number value.

((?sentence-unit

(syn-cat (SV-sentence))

(syn-subunits (?subject-unit ?predicate-unit))

(form (== (precedes ?subject-unit ?predicate-unit))))

(?subject-unit

(syn-cat (== proper-noun (number ?number))))

(?predicate-unit

(syn-cat (== verb (number ?number))))).

The features that may occur are restricted to a limited set of symbols: {sem-
subunits, referent, meaning, sem-cat} for semantic structures and {syn-subunits,
utterance, form, syn-cat} for syntactic structures. The syntactic or semantic
categories are completely open-ended, and so the example categories used here
(like number, proper-noun, etc.) are just intended as illustration. Syntactic and
semantic structures always come in pairs, and units in a syntactic structure are
paired with those in the semantic structure through common unit names. More
formally, we have the following

Definition 11. a feature-value pair is an expression of the form (en ev). The
expression en is called the feature name and ev is the feature value. A unit is
any expression of the form (en f1...fk) with the expression en the unit’s name
and fi, i = 1...k the features. Unit names are usually but not necessarily symbols.
Finally a unit structure (or feature structure) is any expression of the form
(u1...ul) with all of the ui units.

Thus, a unit structure can be represented by an expression of the form

((u1 (f11 v11)...(f1n1
v1n1

))

...

(um (fm1 vm1)...(fmnm
vmnm

))). (5)

Here is another (simplistic) example of a syntactic structure for the utterance
“red ball”:

((np-unit (syn-subunits (adjective-unit noun-unit)))

(adjective-unit (syn-cat (adjective))

(form ((stem adjective-unit "red"))))

(noun-unit (syn-cat (noun))

(form ((stem noun-unit "ball"))))),



which may be associated with the following semantic structure:

((np-unit (sem-subunits (adjective-unit noun-unit)))

(adjective-unit (meaning ((color obj-1 red))))

(noun-unit (referent obj-1)

(meaning ((sphere obj-1)(used-for obj-1 play)

(mentioned-in-discourse obj-1))))).

The names of the units allow cross-referencing between the two structures.
Unification in fcg determines the applicability of templates. An example

of an fcg template that should be triggered by the above semantic structure
is shown below (the template’s left (semantic) and right (syntactic) poles are
separated by a double-arrow):5

((?unit (referent ?obj)

(meaning (== (sphere ?obj) (used-for ?obj play)))))

<-->

((?unit (form (== (stem ?unit "ball")))))

However.it can be seen that the left pole of this template does not unify with the
semantic structure above: only (part of) the noun-unit is specified by the pole
but specifications for the other units are missing. Therefore no substitution can
make the source structure equal to the pole or vice versa. If however the pole is
changed to:

(==1 (?unit (referent ?obj)

(meaning (== (sphere ?obj) (used-for ?obj play)))),

then this indeed unifies with the source structure to yield the bindings

[?obj/obj-1,?unit/noun-unit].

5.2 The unification of feature structures

Definition 12. The function unify-structures(P,S,B) takes a pattern struc-
ture P , a source structure S and a set of bindings B and can be computed as
follows. If P is as represented in (5) then the pattern is first transformed to the
pattern P ′:

(==1(u1 ==1 (f11 v′
11)...(f1n1

v′
1n1

))

...

(um ==1 (fm1 v′
m1)...(fmnm

v′
mnm

))), (6)

in which the new feature values v′
ij are determined as follows: Every non-atomic

feature value vij = (v1|v2) in the pattern for which v1 is not a special operator is
replaced by v′

ij = (==p |vij). Atomic feature values remain unchanged: v′
ij = vij

if vij is atomic. Unify-structures(P,S,B) is then defined as ffcg(P ′, S, {B}).

5 These examples have all been simplified for didactic reasons.



6 Merging

Informally, merging a source expression s and a pattern expression p means
changing the source expression such that it unifies with the pattern expression.
Merging two general fcg-expressions is undefined in this paper, we only consider
the case where at least the source is a simple expression (i.e. does not contain
special operators.) We first examine the case where also the pattern is a simple
expression.

6.1 Merging of Simple Expressions

Definition 13. Let g(p, s,B) denote the merge function that computes a set
of tuples (s′,Bs′) of new source patterns s′ and bindings sets Bs′ such that
ffcg(p, s′, {B}) = Bs′. g(p, s,B) on simple expressions p and s is defined as
follows:

1. If Bs = ffcg(p, s, {B}) 6= fail then g(p, s,B) = (s,Bs).
2. Else if p = (p1|p2) and s = (s1|s2) then let G′

1 = g(p1, s1, B).
(a) If G′

1 6= ∅ then

g(p, s,B) =
⋃

(s′

1
,B1)∈G′

1





⋃

g′

2
∈g(p2,s2,B1)





⋃

(s′

2
,Bs′)∈g′

2

{

((s′1|s
′
2),Bs′)

}









(b) Else, if length(p) > length(s) then let G′
2 = g(p2, s, B) and let

S′
1 =

⋃

(s′

2
,Bs′)∈G′

2





⋃

B′∈Bs′
{σB′(p1)}



 .

Then

g(p, s,B) =
⋃

s′

1
∈S′

1





⋃

(s′

2
,Bs′)∈G′

2

{

((s′1|s
′
2),Bs′)

}





3. Else if p = (p1|p2) and s = () then g(p, s,B) = {(σB(p), {B})}
4. Else g(p, s,B) = ∅

Let us clarify these steps. The first step is obvious and ensures that no unneces-
sary modifications are done: the merging of a pattern and a source that unify is
equivalent to leaving the source unchanged and unifying them.

The second step consists of two possibilities. If the first element of the pattern
merges with the first element of the source (case (a)) then the result is further
completely determined by the results g′

2 = (s′2,Bs′) of merging the remaining
elements of the source and the pattern.

Else (case (b), the first elements do not merge), if the pattern is longer
then the source we can consider extending the source with the first element of
the pattern. The result is then further completely determined by the result G′

2



of merging the remaining elements of the pattern with the entire source. And
because this might involve a set of bindings which could potentially lead to
different expressions for the first element of the pattern p1, the combinations of
such distinct expressions and bindings need to be computed.

Theorem 4 ((Termination of g(p, s,B))). The definition above can be viewed
as an algorithm to compute the value of g(p, s,B). It is obvious that this algo-
rithm will always terminate when called on a pattern of finite length: although
it is called recursively in steps 2(a) and (b), it is always called on a pattern of
smaller length. This can only continue until the pattern is of length 0 (i.e. is
equal to ()) in which case the algorithm always returns from steps 1 or 4. ut

Example 8. Let a and b be constants. Then:

g(a, a, {ε}) = {(a, {ε})}

g((a b), (a), {ε}) = {((a b), {ε})}

g((a b), (b), {ε}) = {((a b), {ε})}

g((a ?y), (a), {ε}) = {((a?y), {ε})}

g((?x b), (a), {ε}) = {((a b), {[?x/a]})}

g((?x ?y), (a), {ε}) = {((a ?y), {[?x/a]})}. (7)

6.2 Merging a general pattern

We now turn to the case where the pattern p can be any fcg-expression. As with
unification, the merge function g is extended with specialized merge functions
whenever the pattern is of the form p = (o...) with o ∈ O.

The includes operator Let us first look at the case where p = (== e1...en).
The main differences with the simple case is that now neither the order nor the
number of elements in the source matters:

Example 9.

g==((== b a), (a b), {ε}) = {((a b), {ε})}

g==((== b a), (a), {ε}) = {((a b), {ε})} (8)

The algorithm presented above can be used to compute the merge of an includes
list with only a minimal amount of changes. Let p = (== |(p1|p2)). First, in
step 2, instead of trying to merge p1 only to the first element of the source, all
source elements must be considered. Every source element that merges with p1

now leads to a case similar to 2(a). The computation of the union of the re-
sults for these cases is somewhat more complicated and requires some additional
bookkeeping.

If no source element merges with the first pattern element then this leads to
a case similar to 2(b). G′

2 is now computed as

G′
2 = g((== |p2), s, B)



i.e. the includes operator must be propagated.
Merging an includes list also always terminates for the same reasons as why

the merging of simple expressions terminates.

The permutation operator Merging a permutation pattern p = (==p e1...en)
is similar to simple merging except that the order of elements in the source is
arbitrary. As in the case of the includes operator, this requires that in step 2 all
elements in the source are considered instead of only the first. A more easy but
possibly less efficient implementation would be to merge the pattern as if it is
an includes pattern and only keep those results that are of the same length as
the original pattern (without the permutation operator.)

The includes uniquely operator The includes uniquely operator can be used
to block merging. Consider for example the patterns

p1 = ((?unit (form (== (string ?unit "car"))

(syn-cat (== (number singular))))))

and
p2 = ((?unit (form (==1 (string ?unit "car"))

(syn-cat (==1 (number singular))))))

and the source
s = ((unit (form ((string unit "cars")))

(syn-cat ((number plural))))).

The source represents (part of) a syntactic structure. The patterns represent
template-poles that are tried to merge with the source to obtain a new syntactic
structure. In this case both patterns are intended to fail because a unit cannot
be both singular (as specified by the patterns) and plural (as specified in the
source.) However, merging p1 and s results in

g(p1, s, ε) = {(((unit (form ((string unit "car")

(string unit "cars")))

(syn-cat ((number singular)

(number plural))))), {[?unit/unit]})}

whereas p2 and s do not merge: the merging is blocked by the includes uniquely
operator.

An includes uniquely pattern can be merged with a source by first treating
the pattern as a normal includes pattern and then filtering the result on the
conditions of section 4.5. This can be made more efficient by checking whether
it is allowed to add a new element to the source in step 2(b) of the merging
algorithm.

7 Merging Feature Structures

As with unification, the merging of a pattern feature structure P with a source
structure S will be defined as merging a transformed pattern P ′ with the source.



The transformation consists of adding special operators to the pattern. However,
the set of special operators defined so far does not suffice. Consider the merging
of the pattern:

((?unit (sem-cat (== (agent ?e ?a) (human ?a))))),

with the following source:

((unit (sem-cat ((agent e a) (motion-event e))))).

The intended result with bindings [?e/e, ?a/a] is clearly:

((unit (sem-cat ((agent e a) (motion-event e) (human a))))).

This solution requires that the first includes element is unified with the first
source element and that the human part is added. However, the first includes
element also merges with the second source element by adding agent to it,
leading to the solution:

((unit (sem-cat ((agent e a) (agent motion-event e)

(human e))))),

with bindings [?e/motion-event, ?a/e].
In this particular case the spurious solution can be ruled out by changing the

includes operator == to an includes uniquely operator ==1. However, this is
not always possible, and some more general mechanism is needed that allows to
specify that feature values like (motion-event e) may not be modified during
merging.

Therefore, for every special operator o ∈ O a non-destructive version o! is
defined which behaves the same in unification (i.e. fo=fo!) but which differs in
merging such that the modification of candidate source elements for an element
of a non-destructive pattern is prohibited. In terms of the merge algorithm g
in section 6.1 this means that the recursive call to g in step 2 to determine G′

1

is replaced by a call to ffcg and that steps 2(b) and step 3 are not allowed
because they modify the source.

By using non-destructive special operators the modification of already present
feature value elements can be prohibited. However, there is another problem.
Consider the merging of the pattern

(==1 (unit1 ==1 (F1 V1))

(unit2 ==1 (F2 V2))),

with the source

((unit1)

(unit2)))

One expected result is

((unit1 (F1 V1))

(unit2 (F2 V2))).



However, the following is also a valid merge:

((unit1 unit2 (F1 V1))

(unit2 unit1 (F2 V2))).

Prohibiting this solution requires the introduction of a final special operator
==1l which is equivalent to the includes uniquely operator except that it only
allows its elements to be lists.

Definition 14. The function expand-structure(P,S,B) which takes a pattern
structure P , a source structure S and a set of bindings B is defined as follows.
If P is as represented in (5) then the pattern is first transformed to the pattern
P ′:

(==1l (u1 ==1l (f11 v′
11)...(f1n1

v′
1n1

))

...

(um ==1l (fm1 v′
m1)...(fmnm

v′
mnm

))), (9)

with the new feature values determined as follows: Every non-atomic feature
value vij = (v1|v2) in the pattern for which v1 is not a special operator is replaced
by v′

ij = (==!p|vij). If v1 is a special operator then it is replaced by its non-
destructive version. Atomic feature values are left unchanged: v′

ij = vij if vij is
atomic. Expand-structures(P,S,B) is then equal to g(P ′, S, {B}).

8 Examples

The examples presented in this section are simplified to focus on the unification
and merging aspects of fcg-template application and do not take the J-operator
into account.

8.1 Example of syntactic categorisation in parsing

Assume the following syntactic structure, which could be built based on the
utterance “Mary walks”:

Syn=((sentence-unit (syn-subunits (Mary-unit walks-unit)))

(Mary-unit (form ((string Mary-unit "Mary"))))

(walks-unit (form ((string walks-unit "walks")))))

The structure contains three units: one for both words (‘strings’) in the sentence,
and one to keep these together in a sentence unit. The initial corresponding
semantic structure might look like:

Sem=((sentence-unit (sem-subunits (Mary-unit walks-unit)))

(Mary-unit)

(walks-unit))



It does not yet contain any meanings because we are in the beginning of the
parsing process before application of the lexical templates.

As explained elsewhere, the first type of templates that is applied during
parsing in fcg is concerned with morpho-syntactic transformations and syntac-
tic and semantic categorisations. In parsing, this phase is comparable to more
traditional part-of-speech tagging. However, in fcg these templates can be ap-
plied both during production and in parsing and the set of form-constraints and
syntactic categories (like parts of speech) is open-ended.

The following template categorises the string “walks” as the third-person
singular form of the verb-stem “walk”:

((?unit (form (== (stem ?unit "walk")))

(syn-cat (==1 (number singular)

(person third)))))

<-->

((?unit (form (== (string ?unit "walks")))))

While producing, the same rule would be applied to establish the third-person
singular form “walks” for the stem “walk”.

To test the applicability of the above template while parsing, the right pole
must be unified with the syntactic structure. As explained earlier, this requires
first the transformation of the pole to the pattern R′ (see equation 6):

R’=(==1 (?unit ==1 (form (== (string ?unit "walks"))))),

followed by the unification of this new pattern with the syntactic structure:

Bs = ffcg(R′, Syn, {ε}) = {[?unit/walks-unit]}

Because this yields a valid set of bindings, the template’s left pole can be applied
to compute a new, extended syntactic structure Syn’ (syntactic categorisation
rules always work only on syntactic structures). This requires that the template’s
left pole is merged with the syntactic structure. Therefore, it is first transformed
to the pattern L′ (see equation 9):

L’= (==1l (?unit ==1l (form (==! (stem ?unit "walk") ))

(syn-cat (==1! (number singular)

(person third))))),

which then is merged with the syntactic structure: g(L′, Syn,Bs) = {(Syn′, Bs)},
yielding:

Syn’=((sentence-unit (syn-subunits (Mary-unit walks-unit)))

(Mary-unit (form ((string Mary-unit "Mary"))))

(walks-unit (form ((string walks-unit "walks")

(stem walks-unit "walk")))

(syn-cat ((number singular)

(person third))))).



8.2 Example of lexicon lookup in parsing

Here is next a lexical template associating a predicate-argument structure with
the stem “walk”:

((?unit (referent ?event)

(meaning (== (walk ?event) (walker ?event ?person)))))

<-->

((?unit (form (== (stem ?unit "walk")))))

In parsing, this template is triggered by a successful unification of its right
pole with the syntactic structure. Therefore, the pole is first transformed to the
pattern R′′:

R’’=(==1 (?unit ==1 (form (== (stem ?unit "walk"))))).

It is easy to see that R′′ indeed unifies with the syntactic structure Syn’ from
the previous example with unifier Bs’=[?unit/walks-unit].

Given successful unification, the left pole can be merged with the semantic
structure, yielding the new semantic structure Sem’, with g(L′′, Sem,Bs′) =
{(Sem′, Bs′)},

L’’=(==1l (?unit ==1l (meaning (==! (walk ?event)

(walker ?event ?person)))))

and thus

Sem’=((sentence-unit (sem-subunits (Mary-unit walks-unit)))

(Mary-unit)

(walks-unit (referent ?event)

(meaning ((walk ?event)

(walker ?event ?person))))).

8.3 Example of construction application in production

Assume that conceptualization, lexicalisation and categorisation resulted in the
following semantic and syntactic structures:

Sem=((sentence-unit (sem-subunits (Mary-unit walk-unit)))

(Mary-unit (referent person-1)

(meaning ((Mary person-1))))

(walk-unit (referent ev-1)

(meaning (walk ev-1)

(walker ev-1 person-1))

(sem-cat (motion-event ev-1)

(agent ev-1 person-1))))

and



Syn=((sentence-unit (syn-subunits (Mary-unit walk-unit)))

(Mary-unit (form ((stem Mary-unit "Mary")))

(syn-cat ((person third)

(number singular))))

(walk-unit (form ((strem walk-unit "walk"))))).

The above syntactic structure specifies that there are two lexical items involved
(the stems “Mary” and “walk”), reflecting the fact that the meaning to express
involves some person person-1 (Mary) and some walk event ev-1. However it
is not yet specified that it is Mary who fulfills the role of walker (agent) in the
walk event. The following simple SV-construction template can be used for this
and uses word order and agreement as would be the case in English:

((?SV-unit (sem-subunits (?subject-unit ?predicate-unit)))

(?subject-unit (referent ?s))

(?predicate-unit (referent ?p)

(sem-cat (==1 (agent ?p ?s)))))

<-->

((?SV-unit (syn-subunits (?subject-unit ?predicate-unit))

(form (== (precedes ?subject-unit ?predicate-unit))))

(?subject-unit (syn-cat (==1 NP

(number ?n)

(person ?p))))

(?predicate-unit (syn-cat (==1 verb

(number ?n)

(person ?p))))).

Many other syntactic constraints can easily be incorporated into this kind of
template. The above template’s left pole unifies with the semantic structure Sem
with unifier

Bs=[?SV-unit/sentence-unit, ?subject-unit/Mary-unit,

?predicate-unit/walk-unit, ?s/person-1, ?p/event-1].

Thus, a new syntactic structure Syn’ can be computed by merging the template’s
right pole with the structure Syn: g(R′, Syn,Bs) = {(Syn′, Bs′)}, with

R’=(==1l

(?SV-unit ==1l

(syn-subunits (==p! ?subject-unit ?predicate-unit))

(form (==! (precedes ?subject-unit ?predicate-unit))))

(?subject-unit

==1l

(syn-cat (==1! NP

(number ?n)

(person ?p))))

(?predicate-unit

==1l



(syn-cat (==1! verb

(number ?n)

(person ?p))))),

,

Bs’=[?SV-unit/sentence-unit, ?subject-unit/Mary-unit,

?predicate-unit/walk-unit, ?s/person-1, ?p/event-1,

?n/singular, ?p/third]

and

Syn’=((sentence-unit

(syn-subunits (Mary-unit walk-unit))

(form ((precedes Mary-unit walk-unit))))

(Mary-unit (form ((stem Mary-unit "Mary")))

(syn-cat (NP

(person third)

(number singular))))

(walk-unit (form ((strem walk-unit "walk")))

(syn-cat (verb

(person third)

(number singular)))))

9 Conclusion

Experiments in the emergence of grammatical languages require powerful for-
malisms that support the kind of features that are typically found in human nat-
ural languages. Linguists have been making various proposals about the nature
of these formalisms. Even though a clear consensus is lacking, most formalisms
today use a kind of feature structure representation for syntactic and semantic
information and templates with variables and syntactic and semantic categories.
There are also several proposals on how templates are to be assembled, cen-
tering around concepts like match, unify, merge, etc. although the proposals are
often too vague to be operationalised computationally. We argued that computer
simulations of the emergence of grammar have some additional technically very
challenging requirements: the set of linguistic categories must be open-ended,
templates can have various degrees of entrenchment, and inventories and pro-
cessing must be distributable in a multi-agent population with potentially very
diverse inventories.

Fluid Construction Grammar has been designed to satisfy these various re-
quirements and the system is now fully operational and has already been used
in a number of experiments.

In this document the unification and merging algorithms used in fcg were
formally defined as they form the core of the system. It was shown that fcg

unification is a special type of multi-subset-unification, which is inherently of
exponential complexity in the length of the expressions that are unified. Fcg



unification always returns a complete but not necessarily minimal set of unifiers.
Fcg merging was properly defined and it was shown that it always terminates.

The unification of a source with an includes list (==) was formally defined
and the unification of a permutation list (==p) and of an includes-uniquely list
(==1) were shown to be special cases hereof. These made it possible to define
the matching of structures, needed for fcg template application in terms of the
general unification function. Non-destructive versions of these operators were
introduced to enable the definition of fcg structure merging in terms of the
general merging function.

FCG can be used without considering all the technicalities discussed in the
present paper, but these details are nevertheless of great importance when con-
structing new implementations.

10 Acknowledgment

The research reported here has been conducted at the Artificial Intelligence
Laboratory of the Vrije Universiteit Brussel (VUB) and at the Sony Computer
Science Laboratory in Paris. Joachim De Beule was funded as a teaching as-
sistant at the VUB. Additional funding for the Sony CSL activities has come
from the EU FET-ECAgents project 1170. Many other researchers have been
important in shaping FCG. We are particularly indebted to Nicolas Neubauer
for early work on the unification and merge algorithms, Josefina Sierra for an
early re-implementation in Prolog, and to Martin Loetzsch for recent contri-
butions towards making FCG a more professional software engineered artifact.
Other contributions have come from Benjamin Bergen, Joris Bleys, Remi Van
Trijp, and Pieter Wellens.

References

1. Batali, J. (2002) The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In Ted Briscoe, editor, Linguistic Evolution through
Language Acquisition: Formal and Computational Models. Cambridge University
Press.

2. Bergen, B.K. and Chang, N.C.: Embodied Construction Grammar in Simulation-
Based Language Understanding. In: Ostman, J.O. and Fried, M. (eds): Construction
Grammar(s): Cognitive and Cross-Language Dimensions. John Benjamin Publ Cy.,
Amsterdam (2003)

3. Briscoe, T. (ed.) (2002) Linguistic Evolution through Language Acquisition: Formal
and Computational Models. Cambridge University Press, Cambridge, UK.

4. Cangelosi, A. and D. Parisi (eds.) (2001) Simulating the Evolution of Language.
Springer-Verlag, Berlin.

5. Chomsky, N.: Logical Structure of Linguistic Theory. Plenum (1955)
6. Croft, William A. (2001). Radical Construction Grammar; Syntactic Theory in Ty-

pological Perspective. Oxford: Oxford University Press.
7. De Beule, J. and B. Bergen (2006) On the emergence of compositionality.Accepted

for the sixth evolution of language conference, Rome, 2006



8. De Beule, J. and Steels, L. (2005) Hierarchy in Fluid Construction Grammar. In
Furbach U., editor, Proceedings of KI-2005, pages 1–15. Berlin: Springer-Verlag.

9. Degyarev, A., Voronkov, A.: Equality Elimination for Semantic Tableaux. Tech. re-
port 90, Computer science department, Uppsala University, Upsalla, Sweden (1994)

10. Dovier, A., Pontelli, E., Rossi, G.: Set Unification. arXiv:cs.LO/0110023v1 (2001)
11. Goldberg, A.E. (1995) Constructions: A construction grammar approach to argu-

ment structure. University of Chicago Press, Chicago.
12. Hashimoto, T. and Ikegami, T. (1996) Emergence of net-grammar in communicat-

ing agents. Biosystems, 38(1):1–14.
13. Hagoort, P.: On Broca, brain and binding: a new framework. Trends in Cognitive

Science 9(9) (2005) 416–423
14. Jackendoff, R.: Foundations of Language: Brain, Meaning, Grammar, Evolution.

Oxford University Press (2002)
15. Kay, M.: Functional unification grammar: A formalism for machine translation.

Proceedings of the International Conference of Computational Linguistics (1984)
16. Kapur, D. and Narendran, P.: NP-completeness of the set-unification and matching

problems. In: Proceedings of the Eighth International Conference on Automated
Deduction. Springer Verlag, Lecture Notes in Computer Science 230 (1986) 289–
495

17. Langacker, R.W. (2000) Grammar and Conceptualization. Mouton de Gruyter,
Den Haag.

18. Minett, J. W. and Wang, W. S-Y. (2005) Language Acquisition, Change and Emer-
gence: Essays in Evolutionary Linguistics. City University of Hong Kong Press: Hong
Kong.

19. Pollard, C. and Sag, I.: Head-driven phrase structure grammar. University of
Chicago Press (1994)

20. Russell S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edition.
Upper Saddle River, New Jersey 07458, Prentice Hall, Inc. (2003)

21. Sierra-Santibàñez, J.: Prolog Implementation of Fluid Construction Grammar. Pre-
sented at the first fcg workshop, Paris (2004)

22. Sterling, L. and Shapiro, E.: The art of PROLOG. MIT Press, Cambridge, Mas-
sachusetts (1986)

23. Steels, L.: Self-organizing vocabularies. In: Langton, C. (ed.): Proceedings of the
Conference on Artificial Life V (Alife V) (Nara, Japan) (1996)

24. Steels, L., M. Loetzsch and B. Bergen (2005) Explaining Language Universals: A
Case Study on Perspective Marking. [submitted]

25. Smith, K., Kirby, S., and Brighton, H. (2003) Iterated Learning: a framework for
the emergence of language. Artificial Life, 9(4):371–386

26. Steels, L. (1998) The origins of syntax in visually grounded robotic agents. Artificial
Intelligence, 103(1-2):133–156.

27. Steels, L. (2004) Constructivist Development of Grounded Construction Grammars
Scott, D., Daelemans, W. and Walker M. (eds) (2004) Proceedings Annual Meeting
Association for Computational Linguistic Conference. Barcelona. p. 9-19.

28. Steels, L. (2005) The emergence and evolution of linguistic structure: from lexical
to grammatical communication systems. Connection Science, 17(3-4):213–230.

29. Steels, L., De Beule, J., Neubauer, N.: Linking in Fluid Construction Grammar. In:
Transactions Royal Flemish Academy for Science and Art. Proceedings of BNAIC-
05. (2005) p. 11-18.


