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Abstract: 
 

The current research takes grammatical constructions (sentence form-to-meaning 

mappings) as an  alternative to abstract generative grammars in the context of understanding the 

emergence of language.  A model of sentence processing based on this construction grammar 

approach is presented, and then a series of neuropsychological and neurophysiological studies are 

reviewed that attempt to validate the model, and to establish its neurophysiological 

underpinnings.  The resulting model is demonstrated to provide insight into a developmental and 

evolutionary passage from unitary idiom-like holophrases to progressively more abstract 

grammatical constructions.  The model is then functionally validated by its insertion into a 

perceptually grounded system that allows spoken language interaction with a human interlocutor.  

The potential utility of this emergence approach in understanding language is discussed. 
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1. Introduction 

 

Clearly, the emergence of human language at the behavioral level is one of the most 

phenomenal events in biology, and characterizing the underlying neurophysiological basis for 

language and its evolution and development remains one of the principal open challenges in 

cognitive neuroscience.  Because of its uniquely human, and apparently discontinuous sudden 

appearance in evolution, understanding language and its neurophysiology is all the more 

mysterious. In this context, Chomsky took a theoretical stance that has had a highly significant 

impact on language and linguistics research for the last 50 years.  He held that child’s the task of 

inducing the target language grammar based on the very limited quantity of available input data 

rendered the acquisition task highly underspecified:  the input data could correspond to many 

possible grammars – how does the child determine the correct one?  The proposed solution to this 

“poverty of the stimulus” problem was an innate Universal Grammar (UG), such that limited 

input data allowed the infant to adapt (or set the parameters) of the UG in order to tailor it to the 

target language.  This line of reasoning, and the argument against language being acquired by 

general learning mechanisms, was strengthened by two related theoretical positions.  In 1967, 

Gold published a paper on “Learnability in the Limit” in which he provided formal proof that 

under rigorous constraints of learning success, language cannot be learned with a general learning 

system by positive evidence alone, and thus requires some alternative method to restrict the 

learning problem, with UG providing a suitable alternative.  Similarly, the argument that UG is 

innate and is not developed implied the “continuity hypothesis,” which holds that via UG 

children have access to an adult-like syntactic system that they bring to the problem of language 

acquisition (Pinker 1984, and see discussion in Tomasello 2000).  What this would predict is that 
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once children have some aspect of the grammar worked out (i.e. a given parameter is set), then 

this aspect should be fully available in order to generalize to new cases.  From this perspective 

then, language and its evolution and development is truly a formidable problem, as it is quite 

“discontinuous” – with at least two large gaps: the behavioral gap, from no language to UG and 

access to an adult grammar; and the neurophysiological gap from pre-linguistic to linguistic 

beings.  

This paper will attempt to bridge these two gaps, first by considering language acquisition 

from the usage based perspective as proposed by Tomasello (2003) in which the successive 

progression of capabilities leads to a much more learning based approach ; and second, by 

situating the neurophysiological language organ within the known primate neurophysiology of 

sensorimotor sequence processing.  This emergence perspective on language will be supported by 

data from neurophysiologically guided simulation studies and experiments with a perceptually 

grounded robot system for human-robot interaction. 

Section 2 will introduce a functional model of language processing in the context of 

construction grammar (Goldberg 1995), along with demonstration of the language processing 

capabilities and limitations of this model. This will be followed in Section 3 by a characterization 

of the neurophysiological correlates of the functional model.   In Section 4, the model will be 

used to provide insight into the progressive “usage based” (Tomasello 2003) development of 

increasingly abstract grammatical constructions, both from a developmental and from an 

evolutionary perspective. Section 5 then demonstrates the feasibility of this system in a grounded 

agent for human-robot interaction. 
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2. Functional Characterization of the Model 

From a functional perspective, given a set of <sentence, meaning> pairs, a language 

acquisition system should learn the mappings between sentences and meanings in a manner that 

can generalize to new sentences.  The current approach (from Dominey & Boucher 2005) is 

based on a characterization of language as a structured inventory of grammatical constructions, 

each of which defines this sentence – meaning mapping for a class of sentences corresponding to 

that construction.  Thus, the sentence “John gave the ball to Mary” can be considered in terms of 

the dative construction:   

 

Agent action object to recipient”; < ACTION(AGENT, OBJECT, RECIPIENT) > 

 

in which the left-hand component corresponds to the sentence with italicized words 

corresponding to lexical categories that can be replaced by specific noun-phrases and verb-

phrases, and the right-hand side corresponds to the meaning, represented in a predicate-argument 

form, with upper case words corresponding to conceptual representations.  In this context, the 

problem to be solved by the language system involves learning how to map from the structure of 

the sentence onto the structure of the meaning representation.  This corresponds to the problem of 

thematic role assignment, or determining “who did what to whom”.  In this context, cross-

linguistic studies have revealed that open class words (e.g. nouns, verbs, adjectives and adverbs) 

are assigned to their thematic roles based on word order and/or the pattern of closed class words 

(grammatical function words or morphemes including prepositions, determiners) in the sentence 

(Bates et al. 1982).   Thus “John gave the ball to Mary” and “The ball was given to Mary by 

John” will map in a different manner (with respect to the order of the words in the sentences) 
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onto the same meaning, and this mapping will be in part guided by the grammatical function 

words “was, to, by”. 

 

***** Figure 1 About here ***** 

 

The actual mapping of sentence form onto meaning for sentence comprehension takes place 

at two distinct levels:  Words are associated with individual components of event descriptions, 

and grammatical structure is associated with functional roles within scene events.  The first level 

of lexical semantics has been addressed  by Siskind (1996), Roy & Pentland (2002) and Steels 

(2001) and we treat it here in a relatively simple but effective manner.  Our principle interest lies 

more in the second level of phrasal semantics, or mapping between sentence and meaning 

structure, and the ability to handle a large variety of different mappings, or grammatical 

constructions. Figure 1A and B illustrates how two different grammatical constructions are 

processed by the model.  The passive construction “object was verb to recipient by agent” in A 

and the active construction “agent verb object to recipient” in B both map (with different 

transformations) to the semantic representation of the event ACTION(AGENT, OBJECT, 

RECIPIENT) as illustrated.   

Before getting into the technical details, we first provide an abstract overview of how the 

model works, by describing the processes illustrated in Figure 1.  Again, the input to the model is 

a matched <sentence, meaning> pair.  As the input sentence is processed word by word, open and 

closed class words are segregated. Open class words populate the OpenClassArray (OCA), while 

closed class words populate the ConstructionIndex which will play a crucial role in assigning the 

correct sentence-meaning mappings for distinct grammatical constructions. In parallel, the 

meaning component of the input pair is used to populate the Scene Event Array (SEA) in a 
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predicate-argument representation.  Once this initial input processing has occurred,  words in the 

OpenClassArray are translated to Predicted Referents via the WordToReferent mapping to 

populate the Predicted Referents Array (PRA). WordToReferent is an associative memory 

“lexicon” that links words to their meanings.  The crucial “grammatical” function is now to map 

these individual meanings onto their respective roles in the  the Scene Event Array (SEA).  This 

mapping is stored in the SentenceToScene mapping, and is specific to each construction type.  

The structured inventory of these mappings is stored in Construction Inventory.  The key to the 

model is that each distinct grammatical construction has a unique characteristic configuration of 

closed class words that is encoded in the ConstructionIndex.  Thus, the ConstructionIndex can be 

used as an index into the ConstructionInventory memory for storing and retrieving the 

SentenceToScene mapping specific to a given construction.  Once the SentenceToScene mapping 

has been retrieved, the elements in the PredictedReferentsArray can be correctly associated with 

their functions in the SceneEventArray.  Once the model has been trained, it can be tested with 

new <sentence, meaning> pairs, to verify that for a given sentence, the model can generate the 

corresponding meaning. 

Equations 1-7 below implement the model depicted in Figure 1, and are derived from a 

neurophysiologically motivated model of sensorimotor sequence learning (Dominey 2000; 

Dominey et al. 2003; Dominey & Hoen 2004).  In these equations, “=” designates an update of 

the left side by the right side.  The associative memories are implemented as neural networks that 

correspond to modifiable cortico-cortico and cortico-striatal synapses.  The ConstructionIndex 

corresponds functionally to a recurrent cortico-cortical network that has here been simplified for 

computational complexity reduction (see Dominey et al. 2003 for more extensive presentation of 

the underlying neurophysiology).  Corresponding human neurophysiology can be seen in Hoen et 

al. (2004) and Dominey and Hoen (2004), and will be presented in section 3.  Once the model has 
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been trained on well formed <sentence, meaning> pairs, it can then process new sentences that 

were not used in training (with the learned vocabulary or lexicon) and generate for these 

sentences their corresponding meaning.  This is the desired output processing of the trained 

model.  Performance is measured by comparing this predicted meaning to the actual meaning that 

is provided in the <sentence, meaning> input pair. 

In the present approach, the first step in sentence input processing is to discriminate 

between open class (e.g. nouns, verbs) and closed class (e.g. determiners, prepositions) words, 

and to process them in two distinct pathways as illustrated in Figure 1.  Newborn infants are 

sensitive to the perceptual properties that distinguish these two categories (Shi et al. 1999), and in 

adults these categories are processed by dissociable neural systems (Brown et al. 1999).  

Similarly, artificial neural networks can also learn to make this function/content distinction 

(Morgan et al. 1996, Blanc et al. 2003).  Thus, for the speech input that is provided to the 

learning model, open and closed class words are directed to separate processing streams that 

preserve their order and identity, as indicated in Figure 1, with open class words populating the 

OpenClassArray.   

 

2.1 Learning Word Meaning 

For this explanation of learning, we assume that the inputs to the model, a <sentence, 

meaning> pair, are valid and well formed.  Equation (1) describes the associative memory, 

WordToReferent, that links word vectors in the OpenClassArray (OCA) with their referent 

vectors in the SceneEventArray (SEA).  The follwing holds for all k, m,  1 <= k <= 6, 

corresponding to the maximum number of words in the open class array (OCA), and 1 <= m <= 

6, corresponding to the maximum number of elements in the scene event array (SEA). For all i 
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and j, 1 <= i, j <= 25, corresponding to the word and scene item vector sizes, respectively. In the 

initial learning phases there is no influence of syntactic knowledge and the word-referent 

associations are stored in the WordToReferent matrix (Eqn 1) by associating every word with 

every referent in the current scene (α =1), exploiting the cross-situational regularity (Siskind 

1996) that a given word will have a higher coincidence with the referent to which it refers than 

with other referents. This initial word learning contributes to learning the mapping between 

sentence and scene structure (Eqn. 4, 5 & 6 below).  Then, knowledge of the syntactic structure, 

encoded in SentenceToScene can be used to identify the appropriate referent (in the SEA) for a 

given word (in the OCA), corresponding to a zero value of α in Eqn. 1.  In the current studies this 

transition is made manually.  In actual development, a threshold of confidence in the syntactic 

knowledge could be used to determine this transition automatically.  In this "syntactic 

bootstrapping" mode, for the new word "gugle," for example, syntactic knowledge of Agent-

Event-Object structure of the sentence "John pushed the gugle" can be used to assign "gugle" to 

the object of push, rather than “blindly” associating it with all of the possible referents as was 

done before the SentenceToScene knowledge was acquired. 

 

WordToReferent(i,j) = WordToReferent(i,j) +  

OCA(k,i) * SEA(m,j) *  

Max(α, SentenceToScene(m,k)) (1) 

 

2.2 Mapping Sentence to Meaning 

In terms of the architecture in Figure 1, this mapping can be characterized in the following 

successive steps.  First, words in the Open Class Array are decoded into their corresponding 

scene referents (via the WordToReferent mapping) to yield the Predicted Referents Array that 
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contains the translated words while preserving their original order from the OCA (Eqn 2) .    

 

n

i 1

PRA(k,j) = OCA(k,i) * WordToReferent(i,j)
=
�   (2) 

Next, each sentence type will correspond to a specific form to meaning mapping between 

the PRA and the SEA. encoded in the SentenceToScene array. Two possible such mappings are 

illustrated in Figure 1 A and B.  The problem will be to retrieve for each sentence type or 

grammatical form, the appropriate corresponding SentenceToScene mapping.   

 

2.3  Generalizing to Different Grammatical Constructions 

Given the capability to discriminate between open and closed class words, described above, 

we can address the problem of using this information to discriminate between different sentence 

types.  To solve this problem, we recall that each sentence type will have a unique constellation 

of closed class words and/or bound morphemes (Bates et al. 1982) that can be coded in a 

ConstructionIndex (Eqn.3) that forms a unique identifier for each sentence type. The 

ConstructionIndex is a 25 element vector.  Each function word is encoded as a single bit in a 25 

element FunctionWord vector.  When a function word is encountered during sentence processing, 

the current contents of ConstructionIndex are shifted (with wrap-around) by n + m bits where n 

corresponds to the bit that is on in the FunctionWord, and m corresponds to the number of open 

class words that have been encountered since the previous function word (or the beginning of the 

sentence).  Finally, a vector addition is performed on this result and the FunctionWord vector. 

The desired effect is a unique ConstructionIndex for each construction type.  Thus, the 

appropriate SentenceToScene mapping for each sentence type can be indexed in 

ConstructionInventory by its corresponding ConstructionIndex.  We have previously 
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demonstrated how a recurrent network can perform this ConstructionIndex function as a form of 

discrimination between sequences of closed class elements (Dominey et al. 2003).   

 

ConstructionIndex = fcircularShift(ConstructionIndex,  

 FunctionWord) (3) 

 

The link between the ConstructionIndex and the corresponding SentenceToScene mapping 

is established as follows. As each new sentence is processed, we first reconstruct the specific 

SentenceToScene mapping for that sentence (Eqn 4), by mapping words to referents (in PRA) 

and referents to scene elements (in SEA). The resulting, SentenceToSceneCurrent encodes the 

correspondence between word order (that is preserved in the PRA Eqn 2) and thematic roles in 

the SEA.  Note that the quality of SentenceToSceneCurrent will depend on the quality of 

acquired word meanings in WordToReferent.   Thus, syntactic learning requires a minimum 

baseline of semantic knowledge. Given the SentenceToSceneCurrent mapping for the current 

sentence, we can now associate this mapping with the corresponding function word configuration 

or ConstructionIndex for that sentence in the ConstructionInventory, expressed in (Eqn 5).  In 

Eqns 5 and 6 SentenceToScene is linearized for simplification of the matrix multiplication. 

 

n

i=1

SentenceToSceneCurrent(m,k) =

     PRA(k,i)*SEA(m,i)�
  (4) 

ConstructionInventory(i,j) = ConstructionInventory(i,j)  

+ ConstructionIndex(i)  

* SentenceToSceneCurrent(j)  (5) 

 

Finally, once this learning has occurred, for new sentences we can now extract the 
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SentenceToScene mapping from the learned ConstructionInventory by using the 

ConstructionIndex as an index into this associative memory, illustrated in Eqn. 6.  

 

***** Figure 2  About here ***** 

 

Figure 2 illustrates how the model can accomodate sentences with relative phrases that 

describe two events or “dual scenes” in the same sentence.  To accommodate the dual scenes for 

complex events Eqns. 4-7 are instantiated twice each, to represent the two components of the dual 

scene.  In the case of simple scenes, the second component of the dual scene representation is 

null.  This extension is illustrated with an example in Figure 2.  The novel and “revolutionary” 

aspect of this analysis of relative phrase processing is that the structural complexity derives 

directly from that of the semantic or conceptual representation, rather than from an independent 

and abstract syntactic structural complexity. 

 

n

i=1

SentenceToScene(i) = 

  ConstructionInventory(i,j) * ConstructionIndex(j)�
  (6) 

 
 

We evaluate performance of the model by using the WordToReferent and 

SentenceToScene knowledge to construct for a given input sentence the "predicted scene".  That 

is, the model will construct an internal representation of the scene that should correspond to the 

input sentence.  This is achieved by first converting the OpenClassArray into its corresponding 

scene items in the PredictedReferentsArray as specified in Eqn.  2.  The referents are then re-

ordered into the proper scene representation in the PredictedSceneArray via application of the 

SentenceToScene transformation as described in Eqn.  7. 
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PSA(m,i) = PRA(k,i) * SentenceToScene(m,k) (7) 

 
 

                                                              

When learning has proceeded correctly, the predicted scene array (PSA) contents should 

match those of the scene event array (SEA) that is directly derived from input to the model.   We 

then quantify performance error in terms of the number of mismatches between PSA and SEA.  

Dominey and Inui (2004) tested the model with 38 different grammatical construction types, 

some of which are presented in Table 1.  The model was able to learn all of these  constructions, 

and thus able to use each of them to understand new sentences that had not be presented during 

the learning phase.  We also validated the model using Japanese sentences.   This demonstrated 

that at least for these constructions in English and Japanese, the configuration of closed class 

elements uniquely identified each of the constructions and thus provided a basis for storing and 

retrieving the appropriate mappings.  With respect to robustness to noise, we also tested the 

system with degraded input and observed the desired effect of a “graceful degradation” 

proportional to the noise in the input (Dominey & Inui 2004). 

 

***** Table 1 About Here ***** 

 

 

3.  Neurophysiological Basis of the Model 

One of the interesting predictions that this grammatical construction model makes is that its 

functional framework for sentence-to-meaning mapping can also be invoked in a non-linguistic 
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sequence processing context.  As illustrated in Figure 3B, the model can be presented with a form 

of artificial grammar task in which a special set of symbols, X and Y for example, can be 

associated with particular transformations as in the following: ABCXBAC and ABCYABC.  In 

these two sequences, X corresponds to the performance of a systematic transformation of the 

input sequence triplet, and Y corresponds to an identity operation on that triplet.  These abstract 

structure “rules” can be used to generate an open set of sequences, in which A-C are 

systematically replaced by other elements (Dominey et al. 1998).  The net result is that the 

processing of grammatical constructions and of these abstract sequences should rely on a 

common shared neural network.  We tested this hypothesis in a several experiments. 

In a series of neurophysiological experiments we tested the prediction that patients that are 

specifically impaired in syntactic comprehension, i.e. using syntactic cues to determine “who did 

what to whom” would be impaired in a correlated manner in performing these non-linguistic 

abstract structure processing tasks.  In particular we observed that left-hemisphere damaged 

patients with specific deficits in grammatical structure processing demonstrated correlated 

impairments in their ability to process the abstract structure of non-linguistic sequences (Lelekov 

et al. 2000, Dominey et al. 2003).   According to our model this correlation derives from the 

common functional system that performs both tasks.  The existence of such a shared common 

system would predict that training which improves performance on one of these tasks should 

yield improved performance on the other.  

In this context, we observed that the aphasic patients were particularly impaired in the 

understanding of sentences with a relativized structure such as “It was the apple that Bob 

caught”.  We thus developed a re-education program using sequences constructed from the 

abstract structure ABC-BCA that corresponds to the transformation of relativised sentences “It 

was the Apple that Bob Caught” to the canonical form “Bob Caught the Apple.”  The idea is that 
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this abstract transformational structure ABC-BAC corresponds to the grammatical construction 

that maps the relativized form onto the canonical form, and that something like this mapping is 

required for comprehension of the relativized sentences.  We thus trained six agrammatic 

aphasics with non-linguistic sequences generated from this particular ABC-BAC abstract 

structure in one session per week for 10 weeks, and then compared their sentence comprehension 

before and after this re-education program.  Quite interestingly, their performance on active and 

passive sentences remained unchanged in the before and after comparison, while they displayed a 

significant improvement in comprehension of the relativized sentences after the re-education 

(Hoen et al. 2003).  This reinforces the purely correlational observations in the argument that the 

respective processing of these abstract structures and grammatical constructions rely on a 

partially overlapping neural network.      

In a series of event related potential (ERP) experiments, we continued to accumulate 

evidence in favor of this hypothesis.  Neural activity in large populations of neurons that are 

aligned in the cortical surface generates electrical dipoles that can be measured with surface 

electrodes placed in contact with the scalp.  Using this technique for measuring brain activity, we 

first demonstrated that the processing of simple serial structure vs. abstract rule structure relied 

on dissociable neural processes, with abstract structure violations resulting in a P600 response 

similar to that seen in syntactic structure violations which was absent in the case of simple serial 

order violations (Lelekov et al. 2000).  Subsequently, we devised a task in which the choice of 

the abstract structure to apply was guided by the presence of a special “function” symbol, 

analogous to function words in language.  In the sequences ABCZBAC and ABCXABC the 

“function” symbol Z indicates that the second triplet is a transformation of the first, based on the 

rule 123 Z 213, while X indicates an identity operation.  Hoen & Dominey (2000) demonstrated 

that processing of the function symbol Z that indicates a transformation results in a left anterior 
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negativity, or LAN, that is also characteristic of function words that mark subsequent syntactic 

structural complexity.  Subsequent direct comparisons between sequence and sentence processing 

revealed that the LAN effects for function words and function symbols were statistically 

indistinguishable (Hoen & Dominey 2004). 

 This all leads to a question concerning the underlying brain architecture responsible for 

these neuropsychological and neurophysiological observations.  In order to respond to this 

question, Hoen et al. (2005) tested subjects in sentence and abstract sequence processing while 

observing their brain activity in a functional magnetic resonance (fMRI) experiment. The 

structural transformation processing that involves the ConstructionIndex and selection of the 

appropriate Transformation mapping (Figure 3) relies on a non-language-specific transformation 

processing mechanism that corresponds to a local cortical network including Brodmann’s areas 

44, 46, 9 and 6.  Primate neuroanatomy and human brain imagery indicate that at least part of this 

network, in particular area 46, corresponds to the frontal component of the dorsal visual stream 

(Ungerleider et al. 1998).  In this context the dorsal stream is associated with spatial relation 

processing, and this frontal area would likely participate in a working memory for this type of 

relation processing, consistent with its proposed role here in structural transformation processing 

(see also Chang 2002).  We have suggested that the mechanism for storage and retvieval of the 

appropriate transformations relies on recurrent cortical networks and corticostriatal processing 

(Dominey et al. 2003) consistent with and extending the procedural component of Ullman’s 

(2004) sentence processing model.  The ConstructionIndex reflects the cortical integration of 

closed class elements that, via corticostriatal circuitry, retrieve the appropriate Transformation 

implemented in this frontal transformation processing network that includes Brodmann’s area 44 

of Broca’s area.   
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***** Figure 3 About here ***** 

 

In contrast, for sentence comprehension, the integration of lexico-semantic content into 

PredictedReferentsArray for subsequent Transformation processing corresponds to a ventral 

stream mechanism that culminates in the pars triangularis (Ba 45) of Broca’s area, in the inferior 

frontal gyrus region (Ungerleider et al. 1998),  consistent with the declarative component of 

Ullman’s model (2004).  Interestingly, though this area (Ba 45) was specifically activated in the 

language task in our experiment (Hoen et al. 2005), it is more generally characterized as 

participating in object or semantic (vs. spatial) working memory functions (reviewed in 

Ungerleider et al. 1998), consistent with its proposed role here for semantic integration (see 

Dominey and Hoen 2005).  Thus, we begin to have access to the possible neurophysiological 

foundations of the processing of grammatical constructions. 

 

4. Insight into Evolution and Development 

As presented above, once the model learns the grammatical construction that defines the 

mapping between “John gave the ball to Mary” and <GAVE(John, Ball, Mary)>, this knowledge 

can then be used to generate and understand new sentences of the form “Agent action object to 

recipient”.  In child language development, however, this abstract construction capability is 

preceded by the use of fixed, less abstract constructions such as “Gimme that” that are sometimes 

referred to as “holophrases” because they are unitary, non-composed utterances (reviewed in 

Tomasello 2003). Interestingly, the same transition from holophrase to more abstract construction 

has also been suggested at the evolutionary time scale (Wray 2000).  What then would be the 

mechanism of transition from holophrase to a more abstract construction type, and how might 
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this transition be related to the formation of functional lexical categories (like noun vs. verb)? In 

this context we can now consider what happens when the category of concrete "things" (in the 

context of concreteness or imaginability suggested by Gillette et al. (1999)) or nouns, but not 

verbs, becomes processed as a variable category or "slot" with respect to the ConstructionIndex. 

In this intermediate phase, nouns would be processed as open class elements (as described 

above). Verbs however would not yet be considered as open class elements, and thus would be 

bound to distinct constructions via the ConstructionIndex. This would lead to an item-based "verb 

island" phase in which constructions are based around verbs (that continue to contribute their 

identity to the ConstructionIndex) with free variables for the noun arguments. The subsequent 

emergence of verbs as a functional category and the resulting generalization over verbs would 

allow for the full abstract construction capability that we have demonstrated above. This free vs. 

fixed distiction was perhaps first formalized in the pivot grammar of Braine (1963) in which 

certain fixed “pivot” words like “all” in “all gone”, “all done”, “all dressed” are bound into the 

pivot frame, while the following word is defined by a slot that can take free arguments. 

In this context, the progressive emergence of generalized functional lexical categories 

becomes correlated with the emergence of progressively more abstract constructions that 

generalize over those categories. This developmental construction framework was validated with 

a series of three simulations using the following sentences:  

 

1. The moon touched the block. 

2. The cylinder pushed the moon. 

3. The block took the cylinder. 

4. The moon gave the cylinder to the block 

5. The moon pushed the cylinder. 
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6. The block touched the cylinder 

7. The moon gave the block to the cylinder 

 

In the first simulation of the "holophrase" developmental phase, the input processing was 

structured such that all of the open class words would directly contribute to the 

ConstructionIndex, and the OpenClassArray as described above. Closed class words contributed 

to the ConstructionIndex as before. Under these conditions the model learned each sentence as a 

distinct construction, successfully mapping each construction onto its meaning. 

 

 

Construction Type Open Class Element Types Number of Constructions 

Holophrase None 7 

Verb Island Nouns 4 

Abstract Constructions Nouns and Verbs 2 

 

Table 2.  Simulation results.  With no open class elements, the holophrase simulations yeild one construction per 

sentence.  When nouns become “variables” in the verb islands, the sentences can be represented by 4 distinct 

constructions.  When nouns and verbs are open class variables, the set of sentences can be representd by the two 

transitive and di-transitive constructions. 

 

In the second simulation of the "verb island" phase, the input was processed as in the 

holophrase condition, with the exception that nouns no longer contributed directly to the 

ConstructionIndex. Instead, their status as open class words and their relative sentence positions 

were encoded in the ConstructionIndex as in the simulations described in previous sections. 
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Under these conditions we would expect constructions to be organized around specific verbs as in 

the verb island scenario (Tomasello 2003). Indeed, the model learned 4 distinct verb island 

constructions corresponding to touch, push, take and give, that could generalize and take different 

arguments in the agent, object and recipient roles. 

In the final simulation of this section, both nouns and verbs were processed as open class 

elements as described in the previous sections. Thus, there was no longer any noun- or verb-

specific component encoded within the ConstructionIndex, and so the item-based nature of 

constructions was eliminated, yielding the abstract constructions as previously observed. Under 

these simulation conditions, the model learned two distinct construction types, corresponding to 

the transitive and ditransitive constructions. Thus, as constructions become increasingly abstract, 

there is an increasing degree of data compression with respect to the size of the construction 

inventory required to accommodate a give set of utterances. 

These simulated phases may be of use in the interpretation of developmental observations. 

Before three years of age, a child will not use a verb in a transitive construction if she has not 

heard it used that way. However, she will regularly use other verbs in transitive forms that she 

has heard in such forms (reviewed in Tomasello 2003). The item based, or verb island phased 

that we simulated above can explain this condition. Consider the sentences "The moon took the 

block " and "The moon took the block to the cylinder." After training on the seven sentences 

above in the verb island phase, the model will accept this new use of took in a transitive, but not 

in a ditransitive construction. However, once in the abstract phase, the ditransitive construction 

becomes "liberated" and can accept "took" as a ditransitive verb even if this ditransitive 

configuration of "took" had not been experienced in training. 
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5.  Validation of the Model in a Grounded Agent System 

Given this mechanism for learning grammatical constructions as <sentence, meaning> 

mappings along with consideration of its functional neurophysiology and possible contributions 

to the transition from holophrases to abstract constructions, it remains to be seen whether the 

system can actually function in a perceptually grounded context.  In order to respond to this 

question, the model was inserted into such a perceptually grounded context in which physical 

events were performed by a human subject who simultaneously narrated his actions, and the 

resulting spoken sentences and visual scenes were automatically processed to generate <sentence, 

meaning> pairs for training the model.  Figure 4A illustrates the physical setup in which the 

human operator performs physical events with toy blocks in the field of view of a color CCD 

camera.  Figure 4B illustrates a snapshot of the visual scene as observed by the image processing 

system.  Figure 4C provides a schematic characterization of how the physical events are 

recognized by the image processing system.  Using this platform, the human operator performs 

physical events and narrates his/her events.  An image processing algorithm extracts the meaning 

of the events in terms of action(agent, object, recipient) descriptors.  The event extraction 

algorithm detects physical contacts between objects, and then uses the temporal profile of contact 

sequences in order to categorize the events, based on the temporal schematic template illustrated 

in Figure 4C. While details can be found in Dominey (2003), the visual scene processing system 

is similar to related event extraction systems that rely on the characterization of complex physical 

events (e.g. give, take, stack) in terms of composition of physical primitives such as contact (e.g. 

Siskind 2000, Steels and Bailly 2002). Together with the event extraction system, a commercial 

speech to text system (IBM ViaVoiceTM)  was used, such that each narrated event generated a 

well formed <sentence, meaning> pair.    The <sentence, meaning> pairs were provided as 
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training input to a learning model whose architecture is depicted in Figure 1.   

 

***** Figure 4 About here ***** 

 

We thus demonstrated (Dominey 2003a, 2003b) that the model could successfully learn a 

rich variety of grammatical constructions with active, passive and relativized structures, each of 

which allowed the system to generate the correct meaning for new sentences that had not been 

used in training.  These initial  learning results were quite promising, and provided the bases for  

testing this learned language capability in an interactive human-robot communication scenario.  

Technically this raises several issues, including (a) use of the learned grammatical constructions 

to generate sentences from visually perceived scenes, and to do so in a manner that is appropriate 

from a pragmatic discourse perspective; and (b) inserting this capability into an interactive 

environment coupled with speech synthesis and recognition. 

Recall that each grammatical construction in the construction inventory corresponds to a 

mapping from sentence to meaning.  This information can thus be used to perform the inverse 

transformation from meaning to sentence.  For the initial sentence generation studies we 

concentrated on the 5 grammatical constructions in Table 3 below.  These correspond to 

constructions with two and three verb arguments in which each  of the different arguments can 

take the focus position at the head of the sentence.  On the left are presented example sentences, 

and on the right, the corresponding generic construction.  
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Sentence 

1.  The triangle pushed the moon.  

2. The moon was pushed by the triangle. 

3. The block gave the moon to the triangle. 

4. The moon was given to the triangle by the block.  

5. The triangle was given the moon by the block. 

Construction  

Agent event object.  

Object was event by agent.  

Agent event object to recipient. 

Object was event to recipient by agent. 

Recipient was event object by agent. 

 

Table 3:  Sentence and corresponding constructions for robot language generation 

(Extracted from the extended construction set in Table 1). 

 

This construction set provides sufficient linguistic flexibility, so that for example when the 

system is interrogated about the block, the moon or the triangle after describing the event 

give(block, moon, triangle), the system can respond appropriately with sentences of type 3, 4 or 

5, respectively.  The important point is that each of these different constructions places the 

pragmatic focus on a different argument by placing it at the head of the sentence.  Note that 

sentences 1-5 are specific sentences that exemplify the 5 constructions in question, and that  these 

constructions each generalize to an open set of corresponding sentences.  Thus, given an input 

meaning in the form event(arg1, arg2, arg3), and an optional focus item (one of the three 

arguments), the system will deterministically choose the appropriate two or three argument 

construction, with the appropriate focus structure, in a pragmatically relevant manner. 

The next task at hand is to integrate these pieces, including (a) scene processing for event 

recognition, (b) sentence generation from scene description and response to questions, (c) speech 

recognition for posing questions, and (d) speech synthesis for responding -  into an interactive 

environment.  The CSLU Speech Tools Rapid application Development (RAD) 
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(http://cslu.cse.ogi.edu/toolkit/index.html) provides  useful capability in this context.  The system 

provides  dialog management with a flexible and powerful graphical user interface with the 

global ability to link speech recognition and synthesis to the conditional execution of code on the 

same machine or on remote machines via ftp and socket protocols.  This results in a hub 

architecture with RAD at the hub and the vision processing, language model, speech-to-text and 

voice synthesis at the periphery.  This allows the learned constructions to be used in an 

interactive human-machine interface in which the human performs actions, and then the system 

describes the actions, and uses the appropriate grammatical form in order to respond to questions 

(Dominey et al. 2004).  Indeed, within this interactive dialog context, the functional requirement 

for the different constructions such as 3-5 can be seen in the context of the event Gave(Triangle, 

moon, cylinder).  Depending on whether the human asks about what happened to the triangle, the 

moon or the cylinder the system responds “The triangle gave the moon to the cylinder”, “The 

moon was gave to the cylinder by the triangle,” or “The cylinder was gave the moon by the 

triangle” (Dominey et al. 2004). 

 

6. Discussion 

From a functional perspective, the essential problem the proposed grammatical construction 

model is designed to address is that of mapping grammatical structure of sentences onto the 

semantic structure of their meanings.  As illustrated in Figure 1 A and B, the problem of this 

mapping is not trivial, because a given language consists of a large ensemble of possible 

mappings.  The first principle inherent in the model is that instead of representing <sentence, 

meaning> mappings in terms of a generative grammar, these mappings can be represented 

directly in a structured inventory of grammatical constructions that are nothing more than these 
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mappings.  Growing evidence both from studies of human language development (Tomasello 

1999, 2003), and adult processing (Ferreira 2003, Sanford & Sturt 2002) indicate that a 

substantial component of language behavior can be accounted for in this manner.  That is, that 

language production and comprehension is based on the re-use (including recombination) of 

existing templates, in a context in which the templates (i.e. grammatical constructions)  can be 

learned by straight-forward mechanisms as illustrated in Figure 1.  This does not exclude 

existence of truly generative mechanisms for construction and decoding new grammatical forms.  

If the language capability consists of a structured inventory of grammatical constructions, 

then the problem remains concerning how this inventory is managed.  This is where the second 

great principle of developmental linguistics comes in: the cue competition hypothesis of Bates 

and MacWhinney (1982).  They propose that across languages, there is a limited set of possible 

cues including word ordering regularities and the use of grammatical function words (e.g. to, by, 

from, that, was), that code the argument structure of sentences, that allows the determination of 

“who did what to whom.”  Thus, as illustrated in Figure 1, the ensemble of closed class words 

together form  "construction index" that serves as an index into an associative memory that stores 

the appropriate transformations.  This memory store is referred to  as the ConstructionInventory 

in Figure 2.  In a series of experiments (Dominey 2003a, b) we have demonstrated that the system 

can thus learn an extensive set of grammatical constructions, including those in Table 1. 

The current analysis of this model attempts to shed light on two related issues in the domain 

of the emergence of language.  The first is that both from an evolutionary and a developmental 

perspective, the behavioral emergence of language follows a certain form of progression that 

eliminates the need for a single mechanism that does “everything at once”.  As suggested by 

Wray (2000) and Tomasello (2003) this progression begins with a limited collection of 

“holophrases” that communicate packages of meaning in a manner that cannot be readily 
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decomposed for the formation of ad-hoc new messages.  Through processes that are beginning to 

become more clearly understood and documented, particularly in development, these 

holoconstructions begin to take on more abstract forms via the liberation of functional slots or 

variables that can be filled in by a free set of arguments.  This leads to a behavioral progression 

from holophrases via verb islands to full blown abstract argument constructions, in a hierarchy of 

progressively increasing generativity.  If this analysis is at least partially correct, it radically 

changes the perspective on the emergence of language, as the proposed progression can be much 

more directly mapped onto functional/computational processes that can in turn be associated with 

their corresponding neurophysiological bases.  In this context, one might ask how the current 

system that has been illustrated using constrained inputs will generalize to real data.  The system 

has learned on the order of  Nx101 constructions – can it learn 102, 103, 104?  To the extent that 

constructions are identifiable either by their interal closed class structure, or by extra-sentential 

cues such as discourse context, and to the extent that these factors can be encoded, the system 

will be extendable.  But the tough issue is whether the system can learn to accomodate new 

constructions that it has not previously encountered.  In this context, Miikkulainen (1996) has 

demonstrated a hybrid neural network system that can accomodate novel well-formed relative 

phrase structure based on a pre-wired parsing capability.  Our future research will demonstrate 

that this kind of generative capability can also be acquired in a developmental context. 

This leads to the second, neurophysiological, issue.  Data reviewed above suggest that in 

the functional neurophysiology of grammatical constructions, the structural transformations for 

mapping semantic components into the global meaning structure are realized in part by frontal 

cortical regions including Brodmann’s areas 6, 44 and 46 that correspond to the spatial 

transformation working memory system of the dorsal pathway.  In parallel, the insertion of the 

semantic meaning components into this transformation mechanism is realized in part by the 
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frontal extension of the semantic object property system of the ventral pathway.  As noted by 

Ungerleider et al. (1998), a relative displacement of frontal cortical areas for spatial working 

memory in humans with respect to monkeys may be related to the emergence of language related 

processing during the course of human evolution.   Thus, though clearly there are still more 

questions than answers, this emergence approach provides a perspective in which the evolution 

and development of language follows a trajectory of increasing complexity and functionality.  

Ideally, as the current work hopes to illustrate, this trajectory provides a progressive series of 

targets for explanation that can provide a useful guide for progress in understanding the 

emergence of language. 
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Figure 1.  Model Overview: Processing of active and passive sentence types in A, B, respectively.  1. On input, open 

and closed class words are segregated. Open class words populate the Open Class Array (OCA), while closed class 

words populate the ConstructionIndex. Visual Scene Analysis populates the Scene Event Array (SEA) with the 

extracted meaning as scene elements.  2.  Words in OCA are translated to Predicted Referents via the 

WordToReferent   mapping to populate the Predicted Referents Array (PRA). 3.  PRA elements are mapped onto 

their roles in the Scene Event Array (SEA) by the SentenceToScene mapping, specific to each sentence type .  4.  

This mapping is retrieved from Construction Inventory, via the ConstructionIndex that encodes the closed class 

words that characterize each sentence type. Words in sentences, and elements in the scene are coded as single ON 

bits in respective 25-element vectors. Note the different SentToScene mapping for active and passive in A and B. 
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Figure 2.  Processing of relative sentences.  The relativized input sentence describes two distinct events that are 

linked by the common argument, ball.  Thus, by adding a second Event representation in the SceneEventArray 

component, the meaning structure onto which the sentence can map is made available.  The ConstructionIndex thus 

becomes associated with a pair of mapping structures, one that maps elements from the PRA onto the first event 

representation, and the second that maps elements from the PRA onto the second event representation.   
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Figure 3. Shared mechanism for grammatical constructions and abstract structure processing.  A.  Sentence 

Comprehension:  1. Lexical categorization - Open and closed class words processed in seperate streams. 2. Open 

class words in Open Class Array are translated to their referent meanings via the WordToReferent mapping.   

Insertion of this referent semantic content into the Predicted Referents Array (PRA) is realized in pars triangularis 

Ba45. 3. PRA elements are mapped onto their roles in the SceneEventArray by the Transformation mapping, specific 

to each sentence type.  4.  This mapping is retrieved from Construction Inventory, via the ConstructionIndex that 

encodes the closed class words that characterize each grammatical construction  type.  The structure mapping process 

is associated with activation of pars opercularis Ba44.  B.  Abstract Sequence Processing:  Lexical categorization 

takes place for function and content elements of non-linguistic sequences (see Hoen & Dominey 2000).  As with 

sentences, function elements allow retrieval of learned transformation from ConstructionInventory via 

ConstructionIndex.  The transformation processing will continue to be associated with activation of pars opercularis 

Ba44, but not with activation of pars triangularis Ba45. 
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Figure 4.  Overview of human-robot interaction platform.  A.  Human user interacting with the blocks, narrating 

events, and listening to system generated narrations.  B. Snapshot of visual scene viewed by the CCD camera of the 

visual event processing system. C.  Temporal contact sequence templates for recognition of touch, push, take and 

give events.  Each of these five event types is characterized by its respective decomposition into the illustrated 

sequence of contact events.  These context sequences provide the basis for an event parser that can thus categorize 

these different event types, and for each identify the agent, object and recipient (if appropriate). 

 

 

 

A B 

C 



 37

 
Example Sentences and Meanings 
1. The block pushed the cylinder.  
 Push(block, cylinder) 
2. The cylinder was pushed by the block. 
 Push(block, cylinder) 
3. The block gave the cylinder to the moon.   

Give(block, cylinder, moon) 
4. The cylinder was given to the moon by the block.  

Give(block, cylinder, moon) 
 
Dual-Event Relative Constructions 
6. The block that pushed the cylinder touched the 

moon. 
push(block, cylinder), Touch(block, moon) 

7. The block was pushed by the moon that touched the 
cylinder.  
Touch(moon, cylinder), Push(moon, block) 

17. The cat was given from the dog to the block that 
pushed the cylinder. 
Push(block, cylinder), Give(dog, cat, block)  

18. The cylinder that was pushed by the block gave the 
cat to the dog. 
Push(block, cylinder), give(cylinder, cat, dog). 
 

Dual-Event Conjoined Constructions 
27. The block pushed the cylinder and the moon. 

Push(block, cylinder), Push(block, moon) 
 
28. The block and the cylinder pushed the moon. 

Push(block, moon), Push(cylinder, moon) 
 
29. The block pushed the cylinder and touched the 

moon. 
Push(block, cylinder), Touch(block, moon). 

30. The moon and the block were given to the cylinder 
by the cat. 
Give(cat, moon, cylinder), Give(cat, block, 
cylinder).  

 

Grammatical Constructions 
1. Agent verb object.  (Active) 
 Verb(agent, object) 
2. Object was verbed by agent.  (Passive) 
 Verb(agent, object). 
3. Agent verbed object to recipient. (Dative) 
 Verb(agent, object, recipient) 
4. Object was verbed to recipient by agent. (Dative 

passive) 
Action1(agent1, object2, recipient3). 

 
6. Agent1 that verb1ed object2 verb2ed object3.  
Acion1(agent1,object2),   Action2 (agent1, object3) 
 
7. Object3 was action2ed by  agent1 that action1ed 
object2.  
Action1(agent1,object2), Action2 (agent1, object3) 
17. Ag3 act2ed obj4 to recip1 that act1ed obj2 
Action1(agent1,object2), Action2 
(agent3,object4,recipient1)  
 18. Obj4 was act2ed from ag3 to recip1 that act1ed 
obj2 
Action1(agent1,object2), Action2 (agent3, 
object4,recipient1)  

 
27. Agent1 action1 object1 and object. 

Action1(agent1, object1),  
 Action1(agent1, object2) 
28. Agent1 and agent3 action1ed object2. 

Action1(agent1, object2),  
 Action1(agent3, object2) 
29. Agent1 action1ed object2 and action2 object3.   
 Action1(agent1, object2),  
 Action2(agent1, object3) 
30. Object2 and object3 were action1ed to recipient4 

by agent1. 
Action1(agent1, object2, recipient4), Action1(agent1, 

object3, recipient4) 
 

 
Table 1.  Sample sentences with their meanings (left column) and the corresponding abstract grammatical constructions (right 
column). 
 


