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Abstract:

The current research takes grammatical constructions (sentEmopeto-meaning
mappings) as an alternative to abstract generative granmmidwes context of understanding the
emergence of language. A model of sentence processing based oconstrsiction grammar
approach is presented, and then a series of neuropsychological and neugphbhgsstudies are
reviewed that attempt to validate the model, and to establish wsopig/siological
underpinnings. The resulting model is demonstrated to provide insight deeebopmental and
evolutionary passage from unitary idiom-like holophrases to progressimere abstract
grammatical constructions. The model is then functionally validbtedts insertion into a
perceptually grounded system that allows spoken language interadtiom uman interlocutor.

The potential utility of this emergence approach in understanding language isetiscuss



1. Introduction

Clearly, the emergence of human language at the behavioral sew#iei of the most
phenomenal events in biology, and characterizing the underlying neurophysablbgsis for
language and its evolution and development remains one of the principal legkmges in
cognitive neuroscience. Because of its uniquely human, and apparentigtidiscus sudden
appearance in evolution, understanding language and its neurophysiology tie athore
mysterious. In this context, Chomsky took a theoretical stance thdiatha highly significant
impact on language and linguistics research for the last 50 yearéield that child’s the task of
inducing the target language grammar based on the very limitedtgudrdavailable input data
rendered the acquisition task highly underspecified: the input data coutspond to many
possible grammars — how does the child determine the correct dreefroposed solution to this
“poverty of the stimulus” problem was an innate Universal Gramfd&), such that limited
input data allowed the infant to adapt (or set the parameteisg@ &G in order to tailor it to the
target language. This line of reasoning, and the argument afgaigsge being acquired by
general learning mechanisms, was strengthened by two relatedtitegpositions. In 1967,
Gold published a paper on “Learnability in the Limit” in which he provittadhal proof that
under rigorous constraints of learning success, language cannotrisel legth a general learning
system by positive evidence alone, and thus requires some altermatilked to restrict the
learning problem, with UG providing a suitable alternative. Sitgiléine argument that UG is
innate and is not developed implied the “continuity hypothesis,” which holdsviaaUG
children have access to an adult-like syntactic system thabtheyto the problem of language

acquisition (Pinker 1984, and see discussion in Tomasello 2000). What thespedilct is that



once children have some aspect of the grammar worked out (i.e. apgraneter is set), then
this aspect should be fully available in order to generalize tocases. From this perspective
then, language and its evolution and development is truly a formidable mroddeit is quite
“discontinuous” — with at least two large gaps: the behavioral gam, o language to UG and
access to an adult grammar; and the neurophysiological gap frohmgunstic to linguistic
beings.

This paper will attempt to bridge these two gaps, first by consgié&anguage acquisition
from the usage based perspective as proposed by Tomasello (2003) intlheéhisinccessive
progression of capabilities leads to a much more learning based @ppraad second, by
situating the neurophysiological language organ within the known prineatephysiology of
sensorimotor sequence processing. This emergence perspective ogdamifjuze supported by
data from neurophysiologically guided simulation studies and experimétttsa perceptually
grounded robot system for human-robot interaction.

Section 2 will introduce a functional model of language processingnancontext of
construction grammar (Goldberg 1995), along with demonstration of the fgEnguacessing
capabilities and limitations of this model. This will be followadSection 3 by a characterization
of the neurophysiological correlates of the functional model. Iniddedt the model will be
used to provide insight into the progressive “usage based” (Tomasello @&@3ppment of
increasingly abstract grammatical constructions, both from a a@mwental and from an
evolutionary perspective. Section 5 then demonstrates the feagbiiitig system in a grounded

agent for human-robot interaction.



2. Functional Characterization of the M odel

From a functional perspective, given a set of <sentence, meanings; @alanguage
acquisition system should learn the mappings between sentences amugsméeaa manner that
can generalize to new sentences. The current approach (from Do&niBeuycher 2005) is
based on a characterization of language as a structured inventgngnohatical constructions,
each of which defines this sentence — meaning mapping for a clesstehces corresponding to
that construction. Thus, the sentence “John gave the ball to Maryecaonsidered in terms of

the dative construction:

Agent action object to recipient”; < ACTION(AGENT, OBJECT, RECIPIEN)>

in which the left-hand component corresponds to the sentence with zédlicvords
corresponding to lexical categories that can be replaced by ispeciin-phrases and verb-
phrases, and the right-hand side corresponds to the meaning, represarneedicate-argument
form, with upper case words corresponding to conceptual representatiotisis tontext, the
problem to be solved by the language system involves learning how tlsamathe structure of
the sentence onto the structure of the meaning representation.oifbgponds to the problem of
thematic role assignment, or determining “who did what to whom?”. hig ¢ontext, cross-
linguistic studies have revealed that open class words (e.g. nouns,adgelotives and adverbs)
are assigned to their thematic roles based on word order and/ottdre péclosed class words
(grammatical function words or morphemes including prepositions, denshiin the sentence
(Bates et al. 1982). Thus “John gave the ball to Mary” and “Thewzell given to Mary by

John” will map in a different manner (with respect to the ordghefwords in the sentences)



onto the same meaning, and this mapping will be in part guided by @hemgttical function

words “was, to, by”".

*eekx Figure 1 About here *****

The actual mapping of sentence form onto meaning for sentence compmehakss place
at two distinct levels: Words are associated with individual compsrad event descriptions,
and grammatical structure is associated with functional ralésvscene events. The first level
of lexical semantics has been addressed by Siskind (1996), Roy karféle(2002) and Steels
(2001) and we treat it here in a relatively simple but effectiaaner. Our principle interest lies
more in the second level of phrasal semantics, or mapping betweemcger@nd meaning
structure, and the ability to handle a large variety of diffem@appings, or grammatical
constructions. Figure 1A and B illustrates how two different gratcalaconstructions are
processed by the model. The passive constructibyect wasverb to recipient by agent” in A
and the active constructioradent verb object to recipient” in B both map (with different
transformations) to the semantic representation of the event AGAGENT, OBJECT,
RECIPIENT) as illustrated.

Before getting into the technical details, we first provide amratisoverview of how the
model works, by describing the processes illustrated in Figure &inAde input to the model is
a matched <sentence, meaning> pair. As the input sentence isspbagsd by word, open and
closed class words are segregated. Open class words populapeti@a&sArray (OCA), while
closed class words populate the Constructionindex which will playaatrrole in assigning the
correct sentence-meaning mappings for distinct grammatical rgotghs. In parallel, the

meaning component of the input pair is used to populate the Scene Evant(3EA) in a



predicate-argument representation. Once this initial input progelsas occurred, words in the
OpenClassArray are translated to Predicted Referents viaVdrelToReferent mapping to
populate the Predicted Referents Array (PRA). WordToReferemnisassociative memory
“lexicon” that links words to their meanings. The crucial “graatical” function is now to map
these individual meanings onto their respective roles in the time &aent Array (SEA). This
mapping is stored in the SentenceToScene mapping, and is specificht@anstruction type.
The structured inventory of these mappings is stored in Constructiondnyerithe key to the
model is that each distinct grammatical construction has a uniguacteristic configuration of
closed class words that is encoded in the Constructionindex. Thus, theuGendndex can be
used as an index into the Constructioninventory memory for storing andvireg the
SentenceToScene mapping specific to a given construction. Oncenteaced oScene mapping
has been retrieved, the elements in the PredictedReferentgArrdye correctly associated with
their functions in the SceneEventArray. Once the model has beeadird can be tested with
new <sentence, meaning> pairs, to verify that for a given sentiecejodel can generate the
corresponding meaning.

Equations 1-7 below implement the model depicted in Figure 1, and avedd&om a
neurophysiologically motivated model of sensorimotor sequence learniagiriBy 2000;
Dominey et al. 2003; Dominey & Hoen 2004). In these equations, “=" desgyaatupdate of
the left side by the right side. The associative memoriesmlemented as neural networks that
correspond to modifiable cortico-cortico and cortico-striatal synap3éee Constructionindex
corresponds functionally to a recurrent cortico-cortical networkhthathere been simplified for
computational complexity reduction (see Dominey et al. 2003 for moeasxe presentation of
the underlying neurophysiology). Corresponding human neurophysiology can be slEmiet

al. (2004) and Dominey and Hoen (2004), and will be presented in section 3th®meedel has



been trained on well formed <sentence, meaning> pairs, it can thesspnmoew sentences that
were not used in training (with the learned vocabulary or lexicon) gemerate for these
sentences their corresponding meaning. This is the desired outputsprgoesthe trained
model. Performance is measured by comparing this predicted méativegactual meaning that
is provided in the <sentence, meaning> input pair.

In the present approach, the first step in sentence input processiagdiscriminate
between open class (e.g. nouns, verbs) and closed class (e.g. detepréparstions) words,
and to process them in two distinct pathways as illustrated wrd=ity Newborn infants are
sensitive to the perceptual properties that distinguish these tegodas (Shi et al. 1999), and in
adults these categories are processed by dissociable neusthsyd@rown et al. 1999).
Similarly, artificial neural networks can also learn to makis function/content distinction
(Morgan et al. 1996, Blanc et al. 2003). Thus, for the speech input tpabvigled to the
learning model, open and closed class words are directed to sgmpaessing streams that
preserve their order and identity, as indicated in Figure 1, with dpes words populating the

OpenClassArray.

2.1 Learning Word Meaning

For this explanation of learning, we assume that the inputs to thel,naogsentence,
meaning> pair, are valid and well formed. Equation (1) describesgbeciative memory,
WordToReferent, that links word vectors in the OpenClassArray (O®i&) their referent
vectors in the SceneEventArray (SEA). The follwing holds forkalim, 1 <= k <= 6,
corresponding to the maximum number of words in the open class a€#),(Gnd 1 <=m <=

6, corresponding to the maximum number of elements in the scene eagn{SEA). For all i



and j, 1 <=1, ] <= 25, corresponding to the word and scene item ventsr, sespectively. In the
initial learning phases there is no influence of syntactic knowlettge the word-referent
associations are stored in the WordToReferent matrix (Eqn 1)dwogiasng every word with
every referent in the current sceree=1), exploiting the cross-situational regularity (Siskind
1996) that a given word will have a higher coincidence with the refémewhich it refers than
with other referents. This initial word learning contributes tanieq the mapping between
sentence and scene structure (Eqn. 4, 5 & 6 below). Then, knowledge yitdwtis structure,
encoded in SentenceToScene can be used to identify the appropriaet r@fethe SEA) for a
given word (in the OCA), corresponding to a zero value iof EQn. 1. In the current studies this
transition is made manually. In actual development, a threshold oflenné in the syntactic
knowledge could be used to determine this transition automatically. thisn "syntactic
bootstrapping” mode, for the new word "gugle,” for example, syntactic lkdge of Agent-
Event-Object structure of the sentence "John pushed the gugle" caadb® @ssign "gugle” to
the object of push, rather than “blindly” associating it with althef possible referents as was

done before the SentenceToScene knowledge was acquired.

WordToReferent(i,j) = WordToReferent(i,j) +
OCA(k,i) * SEA(m,j) *

Max(a, SentenceToScene(m,k)) (1)

2.2 Mapping Sentence to Meaning

In terms of the architecture in Figure 1, this mapping can beatherzd in the following
successive steps. First, words in the Open Class Array aoelatkanto their corresponding

scene referents (via the WordToReferent mapping) to yield thdickr@ Referents Array that



contains the translated words while preserving their original order from the Ex2A2).

n
PRA(k,)) = Z OCA(k,i) * WordToReferent(i)j (2)
i=

Next, each sentence type will correspond to a spdoifio to meaning mapping between
the PRA and the SEA. encoded in the SentenceToScene array. Two passiblaappings are
illustrated in Figure 1 A and B. The problem will be to retriéve each sentence type or

grammatical form, the appropriate corresponding SentenceToScene mapping.

2.3 Generalizing to Different Grammatical Constructions

Given the capability to discriminate between open and closed otads,wdescribed above,
we can address the problem of using this information to discrimetteeen different sentence
types. To solve this problem, we recall that each sentence t§gewe a unique constellation
of closed class words and/or bound morphemes (Bates et al. 1982) tha¢ caxded in a
Constructionindex (Egn.3) that forms a unique identifier for each sentgmeEe The
Constructionindex is a 25 element vector. Each function word is encodesiragle bit in a 25
element FunctionWord vector. When a function word is encountered duringseptecessing,
the current contents of Constructionindex are shifted (with wrap-ardyynd)+ m bits where n
corresponds to the bit that is on in the FunctionWord, and m correspondsitorther of open
class words that have been encountered since the previous function wbil l{eginning of the
sentence). Finally, a vector addition is performed on this resulth@enBunctionWord vector.
The desired effect is a unique Constructionindex for each construggoen t Thus, the
appropriate SentenceToScene mapping for each sentence type can bed index

Constructioninventory by its corresponding Constructionindex. We have previously
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demonstrated how a recurrent network can perform this Constructionkmetioh as a form of

discrimination between sequences of closed class elements (Dominey et al. 2003).

Constructionindex =¢f.uarsnif(Constructionindex,

FunctionWord) 3)

The link between the Constructionindex and the corresponding SentenceTotqygrieg
is established as follows. As each new sentence is processdiistweconstruct the specific
SentenceToScene mapping for that sentence (Eqn 4), by mapping wortlsdotse(in PRA)
and referents to scene elements (in SEA). The resulting, SehtStwneCurrent encodes the
correspondence between word order (that is preserved in the PRA Eagg tPlemnatic roles in
the SEA. Note that the quality of SentenceToSceneCurrent willndepe the quality of
acquired word meanings in WordToReferent.  Thus, syntactic learemqmgreés a minimum
baseline of semantic knowledge. Given the SentenceToSceneCurrent miapping current
sentence, we can now associate this mapping with the correspondingrfuvatd configuration
or Constructionindex for that sentence in the Constructioninventory, eegresgEqn 5). In

Eqgns 5 and 6 SentenceToScene is linearized for simplification of the matrix roatidpi.

SentenceToSceneCurrent(m,k

i PRA(K,))*SEA(M,i) “)

i=1
Constructionlnventory(i,j) = Constructionlnventory(i,j)
+ Constructionindex(i)

* SentenceToSceneCurrent(j) (5)

Finally, once this learning has occurred, for new sentences we canextoact the

11



SentenceToScene mapping from the learned Constructioninventory by wusing the

Constructionindex as an index into this associative memory, illustrated in Eqn. 6.
xRk Figure 2 About here **x**

Figure 2 illustrates how the model can accomodate sentenceselativer phrases that
describe two events or “dual scenes” in the same sentence. droraodate the dual scenes for
complex events Eqns. 4-7 are instantiated twice each, to represent tloerpanents of the dual
scene. In the case of simple scenes, the second component of theedeatepresentation is
null. This extension is illustrated with an example in FigurelTBe novel and “revolutionary”
aspect of this analysis of relative phrase processing is hbkasttuctural complexity derives
directly from that of the semantic or conceptual representatitrerrthan from an independent

and abstract syntactic structural complexity.

SentenceToScene(i) =

(6)

Zn: Constructioninventory(i,j) * Construonindex(j)
i=1
We evaluate performance of the model by using the WordToReferent and

SentenceToScene knowledge to construct for a given input sentenceettiet&or scene”. That
is, the model will construct an internal representation of the dbaneshould correspond to the
input sentence. This is achieved by first converting the OpenClagsiito its corresponding
scene items in the PredictedReferentsArray as specifiednn 2. The referents are then re-
ordered into the proper scene representation in the PredictedScgneArepplication of the

SentenceToScene transformation as described in Eqn. 7.
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PSA(m,i) = PRA(k,i) * SentenceToScene(m,k) @)

When learning has proceeded correctly, the predicted scene a@Ay ¢Bntents should
match those of the scene event array (SEA) that is directiyedefrom input to the model. We
then quantify performance error in terms of the number of mismabgtesen PSA and SEA.
Dominey and Inui (2004) tested the model with 38 different grammatmadtruction types,
some of which are presented in Table 1. The model was ablenaaleaf these constructions,
and thus able to use each of them to understand new sentences thatdeagraesented during
the learning phase. We also validated the model using Japaneseeaentel his demonstrated
that at least for these constructions in English and Japaneseyntiguiation of closed class
elements uniquely identified each of the constructions and thus provideisddyastoring and
retrieving the appropriate mappings. With respect to robustness ®, masalso tested the
system with degraded input and observed the desired effect of eeftgralegradation”

proportional to the noise in the input (Dominey & Inui 2004).

**x** Table 1 About Here *****

3. Neurophysiological Basis of the Model

One of the interesting predictions that this grammatical cotstrumodel makes is that its

functional framework for sentence-to-meaning mapping can also be involkedan-linguistic
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sequence processing context. As illustrated in Figure 3B, the wandéke presented with a form
of artificial grammar task in which a special set of symb&lsand Y for example, can be
associated with particular transformations as in the followirBCRBAC and ABCYABC. In
these two sequences, X corresponds to the performance of a systeamsiormation of the
input sequence triplet, and Y corresponds to an identity operation onipleit tThese abstract
structure “rules” can be used to generate an open set of sequencekich A-C are
systematically replaced by other elements (Dominey et al. 1998 net result is that the
processing of grammatical constructions and of these abstractneegushould rely on a
common shared neural network. We tested this hypothesis in a several experiments.

In a series of neurophysiological experiments we tested the fiwedicat patients that are
specifically impaired in syntactic comprehension, i.e. using syataages to determine “who did
what to whom” would be impaired in a correlated manner in perfornfiaget non-linguistic
abstract structure processing tasks. In particular we observedefihbemisphere damaged
patients with specific deficits in grammatical structure essthg demonstrated correlated
impairments in their ability to process the abstract strualinn-linguistic sequences (Lelekov
et al. 2000, Dominey et al. 2003). According to our model this correldgames from the
common functional system that performs both tasks. The existersteclofa shared common
system would predict that training which improves performance on otlees¢ tasks should
yield improved performance on the other.

In this context, we observed that the aphasic patients were paiticuhpaired in the
understanding of sentences with a relativized structure such agasltthe apple that Bob
caught”. We thus developed a re-education program using sequences tehdtam the
abstract structure ABC-BCA that corresponds to the transformatioglativised sentences “It

was the Apple that Bob Caught” to the canonical form “Bob Caught pipéeA The idea is that
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this abstract transformational structure ABC-BAC correspondeeggtammatical construction
that maps the relativized form onto the canonical form, and that lsmgédike this mapping is
required for comprehension of the relativized sentences. We thusdiraix agrammatic
aphasics with non-linguistic sequences generated from this partidlH€-BAC abstract
structure in one session per week for 10 weeks, and then compareeértezice comprehension
before and after this re-education program. Quite interestirgdy, performance on active and
passive sentences remained unchanged in the before and after compduileahgey displayed a
significant improvement in comprehension of the relativized senteafters the re-education
(Hoen et al. 2003). This reinforces the purely correlational obsengaith the argument that the
respective processing of these abstract structures and graaln@instructions rely on a
partially overlapping neural network.

In a series of event related potential (ERP) experiments, onénaed to accumulate
evidence in favor of this hypothesis. Neural activity in large popuaksitof neurons that are
aligned in the cortical surface generates electrical dipthials can be measured with surface
electrodes placed in contact with the scalp. Using this techroguedasuring brain activity, we
first demonstrated that the processing of simple serial steuggirabstract rule structure relied
on dissociable neural processes, with abstract structure violaisakirig in a P600 response
similar to that seen in syntactic structure violations which absent in the case of simple serial
order violations (Lelekov et al. 2000). Subsequently, we devised a tagkah the choice of
the abstract structure to apply was guided by the presence ofcial sifienction” symbol,
analogous to function words in language. In the sequence<ZBSC and ABCXABC the
“function” symbolZ indicates that the second triplet is a transformation of tee based on the
rule 123 Z 213, whileX indicates an identity operation. Hoen & Dominey (2000) demonstrated

that processing of the function symlbthat indicates a transformation results in a left anterior
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negativity, or LAN, that is also characteristic of function wotltlst mark subsequent syntactic
structural complexity. Subsequent direct comparisons between se@ueln®entence processing
revealed that the LAN effects for function words and function symb@ee statistically
indistinguishable (Hoen & Dominey 2004).

This all leads to a question concerning the underlying brain arthge@sponsible for
these neuropsychological and neurophysiological observations. In orderptmdet® this
guestion, Hoen et al. (2005) tested subjects in sentence and absjugctceeprocessing while
observing their brain activity in a functional magnetic resonanbtRI{jf experiment. The
structural transformation processing that involves the Constructionladéxselection of the
appropriate Transformation mapping (Figure 3) relies on a non-langpagdic transformation
processing mechanism that corresponds to a local cortical netwasHim Brodmann'’s areas
44, 46, 9 and 6. Primate neuroanatomy and human brain imagery indicatieléhat part of this
network, in particular area 46, corresponds to the frontal component of d& digual stream
(Ungerleider et al. 1998). In this context the dorsal streanssgcated with spatial relation
processing, and this frontal area would likely participate in a wgrkaemory for this type of
relation processing, consistent with its proposed role here in sautamsformation processing
(see also Chang 2002). We have suggested that the mechanismalge stad retvieval of the
appropriate transformations relies on recurrent cortical netwaritscarticostriatal processing
(Dominey et al. 2003) consistent with and extending the procedural compaiéiiman’s
(2004) sentence processing model. The Constructionindex reflects tloalcotegration of
closed class elements that, via corticostriatal circuitryieke the appropriate Transformation
implemented in this frontal transformation processing network thitdes Brodmann’s area 44

of Broca's area.
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**&xx Eigure 3 About here *****

In contrast, for sentence comprehension, the integration of lexicay8ermantent into
PredictedReferentsArray for subsequent Transformation processirgspamds to a ventral
stream mechanism that culminates in the pars triangularid§Baf Broca’s area, in the inferior
frontal gyrus region (Ungerleider et al. 1998), consistent withddwarative component of
Uliman’s model (2004). Interestingly, though this area (Ba 45) wesifecally activated in the
language task in our experiment (Hoen et al. 2005), it is more {¢gneharacterized as
participating in object or semantic (vs. spatial) working memamctions (reviewed in
Ungerleider et al. 1998), consistent with its proposed role here foandie integration (see
Dominey and Hoen 2005). Thus, we begin to have access to the possible nénlapbsk

foundations of the processing of grammatical constructions.

4. Insight into Evolution and Development

As presented above, once the model learns the grammatical coosttheti defines the
mapping between “John gave the ball to Mary” and <GAVE(John, Bally)Mathis knowledge
can then be used to generate and understand new sentences of thigemtaction object to
recipient”. In child language development, however, this abstract constructiomildgpes
preceded by the use of fixed, less abstract constructions sucinasé@hat” that are sometimes
referred to as “holophrases” because they are unitary, non-composehagise(reviewed in
Tomasello 2003). Interestingly, the same transition from holophrasertahstract construction
has also been suggested at the evolutionary time scale (Wray 200Gt then would be the

mechanism of transition from holophrase to a more abstract cormtriigtie, and how might
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this transition be related to the formation of functional lexieé¢gories (like noun vs. verb)? In
this context we can now consider what happens when the category aétedlibings” (in the
context of concreteness or imaginability suggested by Gilégttd. (1999)) or nouns, but not
verbs, becomes processed as a variable category or "slot" scte¢o the Constructionindex.
In this intermediate phase, nouns would be processed as open classtel@sedescribed
above). Verbs however would not yet be considered as open class eleméritajs would be
bound to distinct constructions via the Constructionindex. This would lead to an iteth~lsas
island" phase in which constructions are based around verbs (that contioometribute their
identity to the Constructionindex) with free variables for the nounraegits. The subsequent
emergence of verbs as a functional category and the resultingalggaten over verbs would
allow for the full abstract construction capability that we haveatestrated above. This free vs.
fixed distiction was perhaps first formalized in the pivot gramofaBraine (1963) in which
certain fixed “pivot” words like “all” in “all gone”, “all done”, dll dressed” are bound into the
pivot frame, while the following word is defined by a slot that can take free arguments

In this context, the progressive emergence of generalized funclexiedl categories
becomes correlated with the emergence of progressively moreacbsbnstructions that
generalize over those categories. This developmental constructioewfaak was validated with

a series of three simulations using the following sentences:

=

The moon touched the block.

2. The cylinder pushed the moon.

3. The block took the cylinder.

4. The moon gave the cylinder to the block

5. The moon pushed the cylinder.

18



6. The block touched the cylinder

7. The moon gave the block to the cylinder

In the first simulation of the "holophrase" developmental phase, the pnpc¢ssing was

structured such that all

of the open class words would directly lootdrito the

Constructionindex, and the OpenClassArray as described above. Closedalds contributed

to the Constructionindex as before. Under these conditions the modetlleactesentence as a

distinct construction, successfully mapping each construction onto its meaning.

DNS

Construction Type Open Class Element Types Number of Constructic
Holophrase None 7
Verb Island Nouns 4
Abstract Constructions Nouns and Verbs 2

Table 2. Simulation results. With no open claesnents, the holophrase simulations yeild one coasbn per

sentence.

constructions. When nouns and verbs are open etagsbles, the set of sentences can be reprebgntide two

transitive and di-transitive constructions.

When nouns become “variables” in thé v&lands, the sentences can be represented bgtidcti

In the second simulation of the "verb island" phase, the input was pedcassin the

holophrase condition, with the exception that nouns no longer contributed ditecthe

Constructionindex. Instead, their status as open class words ancekihersentence positions

were encoded in the Constructionindex as in the simulations descriq@évious sections.
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Under these conditions we would expect constructions to be organized arouhd e@dxs as in
the verb island scenario (Tomasello 2003). Indeed, the model learned ng¢tdistib island
constructions corresponding to touch, push, take and give, that could gersrdlia&e different
arguments in the agent, object and recipient roles.

In the final simulation of this section, both nouns and verbs were prdcassgpen class
elements as described in the previous sections. Thus, there was nodoypg®un- or verb-
specific component encoded within the Constructionindex, and so the itech-baikee of
constructions was eliminated, yielding the abstract constructiopsea®usly observed. Under
these simulation conditions, the model learned two distinct construgpes, tcorresponding to
the transitive and ditransitive constructions. Thus, as constructions é@comeasingly abstract,
there is an increasing degree of data compression with resp#det size of the construction
inventory required to accommodate a give set of utterances.

These simulated phases may be of use in the interpretation of degatapobservations.
Before three years of age, a child will not use a verb inresitrae construction if she has not
heard it used that way. However, she will regularly use other wertransitive forms that she
has heard in such forms (reviewed in Tomasello 2003). The item basestbasland phased
that we simulated above can explain this condition. Consider the sent@heemoon took the
block " and "The moon took the block to the cylinder." After training onsthveen sentences
above in the verb island phase, the model will accept this new usekohta transitive, but not
in a ditransitive construction. However, once in the abstract phasditrifaesitive construction
becomes "liberated” and can accept "took" as a ditransitive venb iévilis ditransitive

configuration of "took" had not been experienced in training.
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5. Validation of the Model in a Grounded Agent System

Given this mechanism for learning grammatical constructionssastence, meaning>
mappings along with consideration of its functional neurophysiology and possibtributions
to the transition from holophrases to abstract constructions, it men@ibe seen whether the
system can actually function in a perceptually grounded context. der tw respond to this
guestion, the model was inserted into such a perceptually grounded danexth physical
events were performed by a human subject who simultaneously narratedtibns, and the
resulting spoken sentences and visual scenes were automaticadlygethto generate <sentence,
meaning> pairs for training the model. Figure 4A illustratespimgsical setup in which the
human operator performs physical events with toy blocks in the fieldeaf of a color CCD
camera. Figure 4B illustrates a snapshot of the visual scaimsas/ed by the image processing
system. Figure 4C provides a schematic characterization of hewphysical events are
recognized by the image processing system. Using this platfeerfjuman operator performs
physical events and narrates his/her events. An image procegginthen extracts the meaning
of the events in terms of action(agent, object, recipient) desiptdihe event extraction
algorithm detects physical contacts between objects, and therhedemporal profile of contact
sequences in order to categorize the events, based on the temporatscteenplate illustrated
in Figure 4C. While details can be found in Dominey (2003), the visuakgu®cessing system
is similar to related event extraction systems that relthercharacterization of complex physical
events (e.g. give, take, stack) in terms of composition of physicaitipes such as contact (e.g.
Siskind 2000, Steels and Bailly 2002). Together with the event extraytsbem, a commercial
speech to text system (IBM ViaVoit® was used, such that each narrated event generated a

well formed <sentence, meaning> pair. The <sentence, meaniing>wme provided as

21



training input to a learning model whose architecture is depicted in Figure 1.

*rekx Eigure 4 About here *****

We thus demonstrated (Dominey 2003a, 2003b) that the model could succésarfalls
rich variety of grammatical constructions with active, passig ralativized structures, each of
which allowed the system to generate the correct meaning foiseetences that had not been
used in training. These initial learning results were quite ging) and provided the bases for
testing this learned language capability in an interactive huotaot-communication scenario.
Technically this raises several issues, including (a) use dédneed grammatical constructions
to generate sentences from visually perceived scenes, and to d@ s@ammer that is appropriate
from a pragmatic discourse perspective; and (b) inserting tipabiddy into an interactive
environment coupled with speech synthesis and recognition.

Recall that each grammatical construction in the construction mryeobrresponds to a
mapping from sentence to meaning. This information can thus be usedaionpthe inverse
transformation from meaning to sentence. For the initial sentgaoeration studies we
concentrated on the 5 grammatical constructions in Table 3 below. e Toegespond to
constructions with two and three verb arguments in which each offfeeedi arguments can
take the focus position at the head of the sentence. On the lpfeasnted example sentences,

and on the right, the corresponding generic construction.
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Sentence Construction

1. The triangle pushed the moon. Agent event object.
2. The moon was pushed by the triangle. Object was event by agent.
3. The block gave the moon to the triangle. Agent event object to recipient.

4. The moon was given to the triangle by the block. | Object was event to recipient by agent.

5. The triangle was given the moon by the block. | Recipient was event object by agent.

Table 3: Sentence and corresponding constructions for robot languageatiganer

(Extracted from the extended construction set in Table 1).

This construction set provides sufficient linguistic flexibilitg, that for example when the
system is interrogated about the block, the moon or the triangle deseribing the event
give(block, moon, triangle), the system can respond appropriately with sentences of type 3, 4 or
5, respectively. The important point is that each of these diffe@métructions places the
pragmatic focus on a different argument by placing it at the bédlde sentence. Note that
sentences 1-5 are specific sentences that exemplify the Sumbiasis in question, and that these
constructions each generalize to an open set of corresponding sentéhass.given an input
meaning in the form event(argl, arg2, arg3), and an optional focus aeenof the three
arguments), the system will deterministically choose the appteptwo or three argument
construction, with the appropriate focus structure, in a pragmatically relevanema

The next task at hand is to integrate these pieces, includisg€g@ag¢ processing for event
recognition, (b) sentence generation from scene description and regpgugstions, (c) speech
recognition for posing questions, and (d) speech synthesis for responditg an interactive

environment. The CSLU Speech Tools Rapid application Development (RAD)
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(http://cslu.cse.ogi.edu/toolkit/index.html) provides useful capabilithisicontext. The system
provides dialog management with a flexible and powerful graphieal ingerface with the
global ability to link speech recognition and synthesis to the conditexaaiution of code on the
same machine or on remote machines via ftp and socket protocols. re$tits in a hub
architecture with RAD at the hub and the vision processing, languadel nspeech-to-text and
voice synthesis at the periphery. This allows the learned comstisicio be used in an
interactive human-machine interface in which the human perfornmactnd then the system
describes the actions, and uses the appropriate grammaticahforger to respond to questions
(Dominey et al. 2004). Indeed, within this interactive dialog contk&tfunctional requirement
for the different constructions such as 3-5 can be seen in the cohthgtevent Gave(Triangle,
moon, cylinder). Depending on whether the human asks about what happenedaodtes the
moon or the cylinder the system responds “Tifi@ngle gave the moon to the cylinder”, “The
moon was gave to the cylinder by the triangle,” or “Ttyinder was gave the moon by the

triangle” (Dominey et al. 2004).

6. Discussion

From a functional perspective, the essential problem the proposed giaatroonstruction
model is designed to address is that of mapping grammaticatus&ruaf sentences onto the
semantic structure of their meanings. As illustrated in Figufe and B, the problem of this
mapping is not trivial, because a given language consists of @ érgemble of possible
mappings. The first principle inherent in the model is that instéaépresenting <sentence,
meaning> mappings in terms of a generative grammar, these mspmngbe represented

directly in a structured inventory of grammatical constructions ahea nothing more than these
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mappings. Growing evidence both from studies of human language develofdioeraséllo
1999, 2003), and adult processing (Ferreira 2003, Sanford & Sturt 2002) indicata tha
substantial component of language behavior can be accounted for in thig.m@hatis, that
language production and comprehension is based on the re-use (including matiombiof
existing templates, in a context in which the templates (i@ngratical constructions) can be
learned by straight-forward mechanisms as illustrated in FigureThis does not exclude
existence of truly generative mechanisms for construction and decoding new ¢jcainfiomns.

If the language capability consists of a structured inventoryahgratical constructions,
then the problem remains concerning how this inventory is managed.is Minere the second
great principle of developmental linguistics comes in: the cue dittopehypothesis of Bates
and MacWhinney (1982). They propose that across languages, themnite@ $et of possible
cues including word ordering regularities and the use of gramrftiedion words (e.g. to, by,
from, that, was), that code the argument structure of sentencealldina the determination of
“who did what to whom.” Thus, as illustrated in Figure 1, the enseofltéosed class words
together form "construction index" that serves as an index intesaciative memory that stores
the appropriate transformations. This memory store is refasremstthe Constructioninventory
in Figure 2. In a series of experiments (Dominey 2003a, b) we havend&ated that the system
can thus learn an extensive set of grammatical constructions, including thosesid.Tabl

The current analysis of this model attempts to shed light on two relates i the domain
of the emergence of language. The first is that both from an mr@ny and a developmental
perspective, the behavioral emergence of language follows anctsten of progression that
eliminates the need for a single mechanism that does “everyghingce”. As suggested by
Wray (2000) and Tomasello (2003) this progression begins with a lincdddction of

“holophrases” that communicate packages of meaning in a manner atiabt cbe readily
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decomposed for the formation of ad-hoc new messages. Through probasses beginning to
become more clearly understood and documented, particularly in developrhesg t
holoconstructions begin to take on more abstract forms via the ldrematifunctional slots or
variables that can be filled in by a free set of argumentss [€hds to a behavioral progression
from holophrases via verb islands to full blown abstract argument gotistrs, in a hierarchy of
progressively increasing generativity. If this analysistideast partially correct, it radically
changes the perspective on the emergence of language, as the propgsessipn can be much
more directly mapped onto functional/computational processes that wan ime associated with
their corresponding neurophysiological bases. In this context, one nsightoav the current
system that has been illustrated using constrained inputs willaigeeto real data. The system
has learned on the order of NxIbnstructions — can it learn4A0, 10*? To the extent that
constructions are identifiable either by their interal closedsc#ructure, or by extra-sentential
cues such as discourse context, and to the extent that these ¢actdre encoded, the system
will be extendable. But the tough issue is whether the systamieaan to accomodate new
constructions that it has not previously encountered. In this contexkWinen (1996) has
demonstrated a hybrid neural network system that can accomodate mtivigirnved relative
phrase structure based on a pre-wired parsing capability. Our fesearch will demonstrate
that this kind of generative capability can also be acquired in a developmental context.

This leads to the second, neurophysiological, issue. Data reviewed aalgmest that in
the functional neurophysiology of grammatical constructions, the stalictansformations for
mapping semantic components into the global meaning structure hredea part by frontal
cortical regions including Brodmann's areas 6, 44 and 46 that corresporite tepatial
transformation working memory system of the dorsal pathway. Idlglatae insertion of the

semantic meaning components into this transformation mechanismalizedein part by the
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frontal extension of the semantic object property system of thealgrathway. As noted by
Ungerleider et al. (1998), a relative displacement of frontal cadrireas for spatial working
memory in humans with respect to monkeys may be related to thigesroe of language related
processing during the course of human evolution. Thus, though clearlyatieestill more
guestions than answers, this emergence approach provides a perspestinehithe evolution
and development of language follows a trajectory of increasing critypbnd functionality.
Ideally, as the current work hopes to illustrate, this trajegbooyides a progressive series of
targets for explanation that can provide a useful guide for progmessderstanding the

emergence of language.
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Figure 1. Model Overview: Processing of active padsive sentence types in A, B, respectivelyOriLinput, open
and closed class words are segregated. Open otads wopulate the Open Class Array (OCA), whilesetbclass
words populate the Constructionindex. Visual Scénalysis populates the Scene Event Array (SEA) lite
extracted meaning as scene elements. 2. Word®GA are translated to Predicted Referents via the
WordToReferent mapping to populate the Predi®eterents Array (PRA). 3. PRA elements are mapp#d
their roles in the Scene Event Array (SEA) by tlemtBnceToScene mapping, specific to each sentgpee. t 4.
This mapping is retrieved from Construction Invepfovia the Constructionindex that encodes the edoslass

words that characterize each sentence type. Wardsritences, and elements in the scene are codsagés ON

bits in respective 25-element vectors. Note thfediht SentToScene mapping for active and passikeand B.
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Figure 2. Processing of relative sentences. TEhetivized input sentence describes two distinenéy that are
linked by the common argument, ball. Thus, by agdh second Event representation in the SceneExagtA
component, the meaning structure onto which théesea can map is made available. The Construaiiex thus
becomes associated with a pair of mapping strugtwee that maps elements from the PRA onto tlsé évent

representation, and the second that maps elemeniglie PRA onto the second event representation.
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Figure 3. Shared mechanism for grammatical corsbng and abstract structure processing. A. 3ente
Comprehension: 1. Lexical categorization - Oped @losed class words processed in seperate str@arfipen
class words in Open Class Array are translatedhé&r treferent meanings via the WordToReferent magppi
Insertion of this referent semantic content inte Hredicted Referents Array (PRA) is realized irsgdangularis
Ba45. 3. PRA elements are mapped onto their raléisel SceneEventArray by the Transformation map@pgcific
to each sentence type. 4. This mapping is retddvom Construction Inventory, via the Constructimex that
encodes the closed class words that characterireggammatical construction type. The structuegping process
is associated with activation of pars opercularégl®8 B. Abstract Sequence Processing: Lexidalgoaization
takes place for function and content elements @flimguistic sequences (see Hoen & Dominey 2008% with
sentences, function elements allow retrieval ofrried transformation from Constructioninventory via
Constructionindex. The transformation processiiljoontinue to be associated with activation ofapercularis

Ba44, but not with activation of pars trianguldB@45.

35



[ —

C
Touch(1.3) Pushi1,3) Taka(13) Take(13.2) Giva(2.3.1)
21 21 21 &1, =1,
30 30 30 m 3m D
LG & LGy LGy &
= = = m_‘} ‘%}
LS = =, SN 2y
= = By By
L4 v 1
T || v | || [®.
[ 2 e I P
= > ) )

Figure 4. Overview of human-robot interaction fleah. A. Human user interacting with the blocksyrating
events, and listening to system generated nargati@ Snapshot of visual scene viewed by the C@meta of the
visual event processing system. C. Temporal cosguence templates for recognition of touch, ptete and
give events. Each of these five event types igadterized by its respective decomposition into ithustrated
sequence of contact events. These context sequenaede the basis for an event parser that cas ¢htegorize

these different event types, and for each idetitiéyagent, object and recipient (if appropriate).
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Example Sentences and M eanings

1. The block pushed the cylinder.
Push(block, cylinder)

2. The cylinder was pushed by the block.
Push(block, cylinder)

3. The block gave the cylinder to the moon.
Give(block, cylinder, moon)

4. The cylinder was given to the moon by the block.
Give(block, cylinder, moon)

Dual-Event Relative Constructions

6. The block that pushed the cylinder touched
moon.
push(block, cylinder), Touch(block, moon)

7. The block was pushed by the moon that touche
cylinder.
Touch(moon, cylinder), Push(moon, block)

17. The cat was given from the dog to the block
pushed the cylinder.
Push(block, cylinder), Give(dog, cat, block)

18. The cylinder that was pushed by the block dhe¢

cat to the dog.
Push(block, cylinder), give(cylinder, cat, dog).

Dual-Event Conjoined Constructions
27. The block pushed the cylinder and the moon.
Push(block, cylinder), Push(block, moon)

28. The block and the cylinder pushed the moon.
Push(block, moon), Push(cylinder, moon)

29. The block pushed the cylinder and touched
moon.
Push(block, cylinder), Touch(block, moon).

30. The moon and the block were given to the clif
by the cat.
Give(cat,
cylinder).

moon, cylinder), Give(cat, blog

Grammatical Constructions

1. Agent verb object. (Active)
Verb(agent, object)

2. Object was verbed by agent. (Passive)
Verb(agent, object).

3. Agent verbed object to recipient. (Dative)
Verb(agent, object, recipient)

4. Object was verbed to recipient by agent. (Dg
passive)
Actionl(agentl, object2, recipient3).

thé. Agentl that verbled object2 verb2ed object3.
Acionl(agentl,object?2), Action2 (agentl, object

0 ti. Object3 was action2ed by agentl that actiof
object2.

Actionl(agentl,object?2), Action2 (agentl, object
thal 7. Ag3 act2ed obj4 to recipl that actled obj2
Actionl(agentl,object2), Action2
(agent3,object4,recipientl)

18. Obj4 was act?ed from ag3 to recipl that ac
obj2

Actionl(agentl,object?), Action2 (agent3,
object4,recipientl)

27. Agentl actionl objectl and objg
Actionl(agentl, objectl),
Actionl(agentl, object2)
28. Agentl and agent3 actionled obje

Actionl(agentl, object2),
Actionl(agent3, object2)

29 Agentl actionled object2 and action2 object3.
Actionl(agentl, object2),
Action2(agentl, object3)

n@0. Object2 and object3 were actionled to recigi
by agent1.

KActionl(agentl, object2, recipient4), Actionl(ade
object3, recipient4)

tive

3)

nled

)

tled

ct2.

Table 1. Sample sentences with their meaningssddéfimn) and the corresponding abstract grammatarastructions (right

column).
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