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Abstract

There is a growing body of research on multi-agent systems
bootstrapping a communication system. Most studies are
based on simulation, but recently there has been an increased
interest in the properties and formal analysis of these sys-
tems. Although very interesting and promising results have
been obtained in these studies, they always rely on major
simplifications. For example, although much larger popula-
tions are considered than was the case in most earlier work,
previous work assumes the possibility ofmeaning transfer.
With meaning transfer, two agents always exactly know what
they are talking about. This is hardly ever the case in ac-
tual communication systems, as noise corrupts the agents’
perception and transfer of meaning. In this paper we first
consider what happens when relaxing the meaning-transfer
assumption, and propose a cross-situational learning scheme
that allows a population of agents to still bootstrap a common
lexicon under this condition. We empirically show the valid-
ity of the scheme and thereby improve on the results reported
in (Smith, 2003) and (Vogt and Coumans, 2003) in which no
satisfactory solution was found. It is not our aim to reduce
the importance of previous work, instead we are excited by
recent results and hope to stimulate further research by point-
ing towards some new challenges.

Introduction
The use of computer experiments and computational model-
ing has been a continuous source of interesting results in the
fields of language evolution, acquisition and emergence —
see for example (Steels, 1995; Cangelosi and Parisi, 2001;
Kirby, 2002). A large number of these efforts is aimed at
studying how autonomous agents can learn the meaning of
words. This has long been the domain of semiotics and typ-
ically linguistics and philosophy have been used to set the
agenda in these discussion. Recently computer modelling
and artificial life have had an impact on the field, and it has
added new vigour to the discussion. One of the major con-
tributions has been to instigate a paradigm shift in language
evolution studies, language development and language evo-
lution is now seen as a complex dynamic system in which
linguistic properties self-organise to the ecological, cogni-
tive and physiological constraints (de Boer, 2000; Steels and
Belpaeme, 2005).

The challenge is to let a population of language users
agree on a set of words and their meanings. As in ani-
mal or human communication systems, there can be no cen-
tral control. The agents have to reach consensus on what
words mean through local interactions. For example, there is
no central authority imposing that unsolicited email should
nowadays be called “spam”. The word “spam” is a consen-
sus which arose between millions of language users. Our
work focuses on the mechanisms that underlie this process
and on the conditions under which we observe dynamics
similar to how humans learn the meaning of words and come
up with words for novel meanings.

In a related field, new technologies and web-applications
that support or exploit the self-organization of communica-
tion systems are emerging and provide an additional field to
which these results and techniques can be applied, e.g. (von
Ahn and Dabbish, 2004). However, most of these models
lack a solid theoretical foundation, and researchers are only
recently taking up this challenge. For example, although
many experimental studies have shown the successful emer-
gence of a communication system in a population of mul-
tiple autonomous agents in the absence of any central con-
trol, only very recently a set of sufficient convergence cri-
teria were formulated supporting this finding — see for ex-
ample (De Vylder and Tuyls, 2005). And it was shown by
(Baronchelli et al., 2005) that the emergence of a success-
ful communication system through self organization scales
to large populations, clearly a necessary property for large-
scale web-applications.

However, these formal studies of word-meaning acqui-
sition make very strong simplifications. More specifically,
they consider only single-word utterances and assume a
meaning transfer: when a speaker utters a word, the hearer
knows what the intended meaning is. These simplifications
greatly reduce both the complexity of the language emer-
gence task and the difficulty of analyzing and understanding
the dynamics involved.

In this paper we consider the effects of removing the
meaning-transfer simplification. We propose a cross-
situational learning mechanism that enables the agents to



establish a successful and minimal communications system.
Although we do not at this stage offer a formal proof, we
support our claim with simulation results, and thereby im-
prove on the notable work reported in (Smith, 2003) and
(Vogt and Coumans, 2003). In their models the agents never
seem to attain a one-to-one mapping between words and
meanings, which hampered the agents’ ability to communi-
cate. The challenge in constructing artificial communication
systems is to avoid homonymy (having words that have more
than one meaning) and synonymy (having several words for
the same meaning). If a communication contains a too high
degree of homonymy of synonymy it can not be used ef-
fectively. We have solved this by introducing an improved
learning algorithm that manages to avoid non-effective com-
munication systems while at the same time being able to
adapt to shifting semantics.

Learning the meaning of words using
cross-situational learning

In cross-situational learning(Siskind, 1996) agents statis-
tically infer the meaning of words by monitoring the co-
occurence of words and sets of meanings. To illustrate this,
suppose you do not know the word “banana” but you hear
it often enough together with observing situations where a
banana is involved. As you hear “banana” across different
situations, there will come a time where you can unambigu-
ously infer that it refers to yellow, sickle-shaped fruit.

We formalise this into alanguage gamemodel in which
N agents try to bootstrap a common lexicon for refering to
(aspects of) some setO of objects. At each time-stept two
agents are randomly selected from the population. One of
them is thespeaker, the other is thehearer. They are both
presented with the current contextCt ⊂ O, which contains
a random subset of objects fromO. The speaker randomly
selects one of the objects inCt as the topic to which he wants
to draw the hearer’s attention. He therefore first calculates
a semantic description for the topic object, in our case con-
sisting of a single conceptual category like the objects ID (if
it has one) or its color or size. Next, he calculates a word
associated with the category and transmits it to the hearer.
This may involve inventing a new word. We will refer to the
set of possible conceptual categories asM.

The simplest language game is thenaming gamein which
all objects are uniquely identifiable, like persons, but un-
like chairs or appels. Such objects can be categorized with
uni-referential categories. Because of this, each object can
be uniquely named or labeled with aproper name. If in
this setup both the speaker and the hearer know the topic
(for example because the speaker points to it as is com-
monly done in many experiments and models), and if the
probability of re-inventing an existing word is zero, then no
homonymy can arise: an agent can always associate the cor-
rect meaning with an unknown and unique word. In con-
trast, synonymy may always arise whenever the population

size is bigger than two because different agents will intro-
duce different names for the same object. Most of the litera-
ture on language games has focused on synonymy damping
mechanisms, such aslateral inhibition (Oliphant, 1996): a
succesfully used association between a word and its mean-
ing is strengthened and all competing synonyms are weak-
ened. The dynamics involved can be studied for each ob-
ject indepentently and are already well understood — see
e.g. (De Vylder and Tuyls, 2005) and (Baronchelli et al.,
2005).

In this paper we investigate what happens when
homonymy is introduced, something which is much less
understood and which has been largely neglected. There
are several possible sources of homonymy. For example,
homonymy may be introduced in the naming game when
the speaker does not point to the topic and the context con-
tains more than one object. Or homonymy is also intro-
duced when there is a finite probability to re-invent an ex-
isting word. Homonymy also arises naturaly in aguessing
game: when the objects involved are not uniquely identifi-
able but instead need to be categorized by multi-referential
categories or concepts like color, size or position. These
cases all share the property that a hearer is confronted with
the problem of identifying one out of a set of possible mean-
ings as the meaning of a (known or unknown) word, irre-
spective of whether these meanings are uni-referential cat-
egories (uniquely identifying an object) or multireferential
categories (possibly applying to several objects in the con-
text.) In the following, unless otherwise stated, we will
therefore only consider the naming game case without point-
ing in which every uni-referential category inM identifies an
object inO in a one-to-one fashion, but keep in mind that this
is equivalent to a guessing game involving multi-referential
categories. Likewise, the object to which a word via its as-
sociated category refers to will be called the meaning of that
word.

An agent will be characterized by its production and in-
terpretation behavior. The production behavior determines
the probability with which the agent produces a word for
some object. This also includes the mechanism that deter-
mines when to introduce a new word. The interpretation be-
havior determines how the topic is guessed given a context
and a word. An interaction is considered a success when
the hearer succeeds in identifying the topic chosen by the
speaker. However, whether the topic is guessed correctly
or not does not influence the agent: the agents do not re-
ceive feedback about the outcome of the game because this
would again introduce some form of meaning transfer. The
amount of corrective feedback that children receive when
learning a language has been much debated on, and many
mechanisms and heuristics have been proposed with which
children can determine or guess the meaning of an unknown
word (e.g. the whole object, exclusivity, relevance or joint
attention principles.) However, our model can be applied in-



dependent of these: we assume that a hearer, using a further
unspecified set of such mechanisms, is able to reduce the set
of all possible word meaningsM to some finite setMt rele-
vant in the current context. And for the same reasons that we
can identifyO (the set of all possible objects) withM (the set
of all possible meanings), we can identifyMt with Ct . The
fact that there can be more or less powerful meaning deter-
mination heuristics can be modeled by changing the size of
Ct .

All agents have an equal chance of interacting and we
assume a zero probability that the same word is invented
twice. Still, our relaxed assumptions imply the possibility
of homonymy and imply that the complete environmentCt

has to be taken into account, i.e. it cannot be reduced to one
single object.

To sum up, each time stept, the only information trans-
mitted between a speaker and a hearer is the fact that the
speaker produced a particular wordw for one of the objects
in the contextCt . This information is insufficient to deter-
mine the intended meaning of the wordw (the object it refers
to) and cross-situational learning is required. If the hearer is
to learn a stable language, he could wait until the wordw is
observed again at timet ′ > t, concluding that the meaning of
w should be inCt ∩Ct ′ , and continuing with this strategy un-
til its meaning is exactly known. However, as new words are
introduced and as the meaning of existing words may change
this strategy may fail. This because of inconsistent observa-
tions that reduceCt ∩Ct ′ to the empty set. Thus, a more
intelligent cross-situational learning scheme is required. In
the following section such a scheme is proposed.

Intelligent cross-situational learning
In this section we propose a learning scheme that is capable
of estimating a word/meaning mapping that changes over
time from incomplete information. The information con-
sists of consecutive〈w,Ct〉 pairs of a wordw and a set of
objectsCt of which one is apparently referred to byw. Pre-
viously, (Smith, 2003) proposed a Bayesian learning mech-
anism that estimates the probability of some meaningm oc-
curring given the occurrence of a wordw in a similar setting.
Basically, it consists of storing all co-occurrences of words
and meanings. However, such a mechanism on the one hand
neglects the possibility that the learning target may change
over time and on the other insufficiently uses available infor-
mation. For example, if an agent at timet observes a word
w1 with a contextCt = {m1,m2} and, at some later time step
t ′, observes the same word with contextCt ′ = {m1,m3}, it
seems logical to conclude that the meaning ofw1 should
be m1. However, only taking co-occurrences into account
results inw1 referring tom1 with a probability of 0.5 and
either tom2 or m3 with a probability of 0.25.

The mechanism we propose works independent for differ-
ent words. Therefore, we will explain the learning scheme
for a given wordw∗ given the subsequent contexts with

which it appears. Ifw∗ occurs first at timet with contextCt ,
the agent associates a probability distributionst : M → [0,1]
with it, such that

st(m) =

{ 1
|C| if m∈C

0 otherwise

This implements the fact that all objects inCt have an
equal probability of being the meaning of the wordw∗, while
all other meanings have a zero probability.

Next, if w∗ is observed again at timet ′ in a contextCt ′ ,
the probability distributionst ′ is defined as follows. Letγ =
∑

m∈Ct
s(m) andδ = 1− γ. Furthermore, letγ ′ = (1−α)γ+

α andδ′ = 1− γ ′. Then

st ′(m) =

{

β(γ)st(m) γ ′
γ +(1−β(γ)) γ ′

|Ct |
if m∈Ct

st(m) δ′
δ if m /∈Ct .

with β(γ) =
√

1− (1− γ)2, a definition which is moti-
vated further on.

In words,γ is the total probability of all meanings consis-
tent with the current observation (all objects inCt ). At time
t ′, this probability is increased toγ ′ ≥ γ according to the pa-
rameterα. As such,α represents the strength with which the
new information at timet is valued as more important than
the information gathered before timet. Furthermore, this
new probabilityγ ′ should be distributed among the consis-
tent meanings such that if the new information is in agree-
ment with the current state. Ifγ is close to 1, the relative
probabilities among the consistent meanings should be more
or less conserved (i.e. strong associations between words
and meanings remain strong and weak ones remain weak).
Therefore we requireβ(1) = 1. However, if the new infor-
mation is not in agreement with the current state (γ low),
then we wantγ ′ to be more or less distributed evenly among
all meanings inCt . Therefore we also requireβ(0) = 0.
Moreover, we want that all scores of objects inCt increase
if γ < 1, because this guarantees convergence to a unique in-
terpretation if the contexts are random but always contain a
certain object. It is easily verified that a necessary condition
for this is that

β(γ) >
γ
γ ′

=
γ

(1−α)γ+α

for γ < 1. From this it follows thatβ′(1) ≤ α.1 In order for
the update mechanism to work for all values ofα, we chose
β′(1) = 0. The specific definition ofβ given meets all of
these requirements. In any case, the total probabilityδ of
inconsistent associations is weakened toδ′ ≤ δ.

We will refer to this updating mechanism which trans-
formedst in st ′ as a functionu such that

st ′ = u(st ,Ct).

1β′ is the derivative



To illustrate this estimation function, assume thatα = 0.3
and thatCt = {m1,m2} andCt ′ = {m1,m3}. Then initially
st(m1) = st(m2) = 0.5 andst(m3) = 0. After observingCt ′

we havest ′(m1) ≃ 0.61,st ′(m2) ≃ 0.35 andst ′(m3) ≃ 0.04.

Agent Architecture

At time-step t, an agent can be described by a tuple
〈Wt ,σt ,φt〉. Wt is the set of words the agent has encountered
until that moment. Initially, for each agent holdsW0 = /0.

σt : Wt ×M → [0,1] is a function which associates mean-
ings with words, such that,σt(w,m) gives the agent’s estima-
tion of the probability that wordw meansm. It might seem
that the agents would have to know all the possible mean-
ingsM in advance, but this is not the case: as can be verified
in the following,σt will always be zero for meanings not yet
encountered.

φt : Wt → [0,1] is a function which associates scores with
words, which will be used to dampen synonymy.

An example of an agents’ state and the way we represent
it is the following:

1.0 0.8 0.9
w1 w2 w3

m1 0.1 0.7 0.4
m2 0.5 0.2 0.4
m3 0.4 0.1 0.2

Hereby we haveM = {m1,m2,m3} andWt = {w1,w2,w3}.
The lower-right matrix contains the valuesσt(w,m) and the
values above the words are the word scoresφt(w).

Before explaining the production and interpretation be-
havior of an agent and the way he updates his internal
state, we first define the interpretation function of an agent
〈Wt ,σt ,φt〉 as the functiong : Wt → M with

g(w) = argmaxm∈Mσ(w,m).

If multiple meanings inM have a maximum value, one is
chosen at random. Thereforeg(w) is possibly a stochas-
tic value. For instance in the example agent above we have
g(w1) = m2, g(w2) = m1 andw3 interprets asm1 or m2, both
with a probability of 1/2.

Production Suppose that the speaker at timet is given
by 〈Wt ,σt ,φt〉, the context isC and the topic he will speak
about ism∗(∈ C). The production behavior of an agent
will not depend on the context. The speaker searches for
words W′ ∈ Wt which according to him interpret asm∗:
W′ = {w∈Wt |g(w) = m∗}.2 As g(w) can be stochastic, also
canW′. If W′ = /0 (which is always the case ifm∗ is en-
countered for the first time) the speaker invents a new word
w∗(/∈Wt). If W′ 6= /0 then he chooses the wordw∗ from W′

with the highest score:w∗ = argmaxw∈W′φt(w). Again, if

2The production resembles theintrospective obervertermecha-
nism of (Smith, 2003).

multiple words have a highest score, one is selected at ran-
dom.

Only if the speaker invented a new word he updates his
internal state. Obviously,Wt+1 = Wt ∪ {w∗}. The word-
meaning scores of known words stays the same, but for the
new word we have

σt+1(w
∗,m) =

{

1 if m= m∗

0 otherwise

Finally the new word gets score 1:φt+1(w∗) = 1 (scores
for other words are left unchanged.)

To illustrate the production consider the example agent
inroduced before. If this agent is a speaker and he has to
verbalizem3 he will invent a new word, sayw4. The new
agent’s state then becomes (changed values in bold)

1.0 0.8 0.9 1.0
w1 w2 w3 w4

m1 0.1 0.7 0.4 0
m2 0.5 0.2 0.4 0
m3 0.4 0.1 0.2 1

If he has to verbalizem2, he will look for words which inter-
pret asm2, hence there is 1/2 chance that he will usew1 and
1/2 chance that he will have to choose betweenw1 andw3

according to the score functionφ. As φ(w1) > φ(w3) he will
choosew1 in this case. As mentioned before, in this case the
state of the agent does not change.

To summarize, the speaker has produced a wordw∗ for
meaningm∗ in contextC, thereby possibly changing its in-
ternal state. As will be described next however, the major
state change occurs at the hearer side.

Interpretation Suppose that the hearer at timet is given
by 〈Wt ,σt ,φt〉, the context isC and the word received isw∗.
If this word is unknown to him (w∗ /∈Wt) then we obviously
haveWt+1 = Wt ∪{w∗} and the word-meaning association
scores forw∗ are initialized as follows:

σt+1(w
∗,m) =

{ 1
|C| if m∈C

0 otherwise

If the word is known to the agent (w∗ ∈Wt), the associa-
tion scores involvingw∗ are altered according to the updat-
ing functionu defined before:

σt+1(w
∗, · ) = u(σt(w

∗, · ),C).

We now describe the updating of the word-scores, using
the auxiliary definitionφt(w∗) = 1 if w∗ /∈Wt . First, the in-
terpretationm′ of w∗ is determined asm′ = g(w∗) (with g
using σt+1). Next, the set of synonymsS for w∗ is deter-
mined as those words inWt+1 \{w∗} which also have inter-
pretationm′ (according tog). Finally, the score ofw∗ is in-
creased:φt+1(w∗) = (1−θ)φt(w∗)+θ, and the scores of the
synonyms are ‘lateraly inhibited’:φt+1(w) = (1− θ)φt(w)



for w∈ S. The other scores remain the same. In the follow-
ing examplesθ was set to 0.3.

To illustrate the interpretation and updating, consider the
example agent introduced before. If he is a hearer and would
hear the wordw4 with contextCt ′ = {m1,m3} then w4 is
added with new entries forσ. In addition, synonyms ofw4

are inhibited. With 1/2 chanceg(w4) = m3 and there are no
synonyms. With 1/2 chanceg(w4) = m1 in which casew2 is
a synonym and with 1/2 chance alsow3. Suppose bothw2

andw3 are synonyms then the agent’s state becomes

1.0 0.56 0.63 1.0
w1 w2 w3 w4

m1 0.1 0.7 0.4 0.5
m2 0.5 0.2 0.4 0
m3 0.4 0.1 0.2 0.5

If he would hear the wordw3 with contextCt ′ = {m2,m3},
the associated scores will be updated as follows. The to-
tal probability of the consistent meanings inCt ′ is γ =
0.4+ 0.2 = 0.6. With α = 0.3 this will be transformed to
γ ′ = 0.72, giving rise toβ ≃ 0.92. With regard to the word
scores we have thatφ(w3) will increase according to the lat-
eral inhibition parameterθ, and since noww3 and w1 are
synonymsφ(w1) will be inhibited. The new state of the
agent is given by

0.7 0.8 0.93
w1 w2 w3

m1 0.1 0.7 0.28
m2 0.5 0.2 0.47
m3 0.4 0.1 0.25

Experiments
Measures
In order to get insight in the way the population of agents
comes to agree on an emerging language, we define some
measures on the population’s state. This population state
can conceptually be summarized in a semiotic graph. Such
a semiotic graph is a bipartite, directed graph in which nodes
represent meanings and words and in which edges go from
meaning nodes to word nodes or vice versa. An edge going
from a meaning to a word node represents a possible produc-
tion and an edge going from a word to a meaning node repre-
sents a possible interpretation (without context.) Each edge
is weighted with the weights representing the probability to
observe the associated production when a randomly chosen
speaker produces the meaning represented by the starting
node of the edge. Or, in the case of interpreting a word:
each edge has a weight representing the probability to ob-
serve to associated interpretation when a randomly chosen
hearer interprets the word represented by the starting node
of the edge. The sum of the weights of the outgoing edges
of a node is at most one, but may be lower. This because
there is the possibility that an agent has not (yet) encoun-
tered a certain object or word, in which case no production

or interpretation is done (only when building the semiotic
graph, not during a game).

Figure 1: An example of a semiotic graph representing the
state of the entire population at some point in time. The
nodes markedmi represent a meaning, those markedwi rep-
resent words. The weights on the edges refer to probabilies
averaged over the entire population (see text).

As a first measure we define thereturn of a graph as the
probability that, starting from a random meaning node, one
returns to that node after taking two steps (thus first going
to a word node and then back to a meaning node), with the
probability of taking an edge equal to the edge’s weight. For
example, in figure 1, the chance for returning tom1 starting
from it is 0.4×0.4 = 0.16, for m2 it is 0.8×1.0 = 0.8 and
for m3 = 1.0× 0.9 = 0.9. Thus the return of this graph is
the average 0.62. If a hearer would not take into account the
context to guess the meaning of a given word, then the return
equals the communicative success.

We will also define two other measures for the amount
of synonymy and homonymy present in the graph. For this
the notion of theeffective out-degree of a node is needed,
which is related to the number of edges starting in the node,
but takes into account the weights of these edges. We as-
sume that the weights of the outgoing edges are normalized
such that their sum equals 1. If there arek edges each having
an equal probability 1/k, then the effective out-degree equals
k. If, however, thek edges have differing probabilities, then
the effective out-degree should be lower. Moreover, if one
of the edges has a probability close to one, the effective out-
degree should also be close to one (but still slightly higher).
Therefore we define the effective out-degree of a node as the
number of edges with equal probability needed for a hypo-
thetical node to have the same associated Shannon informa-
tion as the original node. More precisely, if a node hask
outgoing edges with weightsxi ,1≤ i ≤ k, its Shannon infor-



mation is given by

k
∑

i=1

−xi log(xi).

A node withk′ outgoing edges with equal probability 1/k′

thus has a Shannon information of log(k′). By definition this
information should be equal to the information associated
with the original node, from which it follows that

k′ = exp(
k

∑

i=1

−xi log(xi)).

The effective out-degreek′ is not necessarily integer. For
example, the effective out-degree ofm1 in figure 1 is 2.97
and ofw3 it is 1.38.

We now define thesynonymy present in a semiotic graph
as the average effective out-degree of the meaning nodes.
The synonymy present in the graph in figure 1 is thus 1.87.

The homonymy present in a graph is defined as a
weighted average of the effective out-degrees of the word
nodes, where each node is weighed with its probability of
being the result of a production. This probability is pro-
portional to the sum of the node’s incoming edges. The
homonymy of the example graph is 1.26.

When no synonymy is present in the population, the syn-
onymy measure will be 1. The same goes for the homonymy
measure.

A final measure is thenumber of words present in the
graph. This measure gives an indication of the parsimony of
the language. Ideally, the number of words should equal the
number of meanings.

Results
We will now present some results of a simulation involving
N = 20 agents evolving a lexicon to communicate about 100
objects (|O| = |M| = 100). Each interaction the speaker and
the hearer are presented with a context containing 5 objects
(∀t ≥ 0 : |Ct |= 5.) The evolution over time of the return, the
number of words used by the agents in the population, the
homonymy and the synonymy are presented in figure 2.

As can be seen, the agents eventually reach a coherent
successful language without synonyms or homonyms.

The return, which is related to the communicative suc-
cess (and necessarily equivalent with it when is 1), starts
at a small (chance level) value. As new words are intro-
duced and as their meanings starts to settle, the return grad-
ually increases until finally it becomes maximum at around
t = 105000.

The maximum number of words present in the population
is reached approximately attmax≃ 10000 and is equal to
1194, which is of the order ofN |O|/2 = 1000 as would be
expected. The cross-situational learning mechanism as pro-
posed in the previous sections allows the agents to eliminate

homonyms, which partly explains why the number of words
decreases steadily aftertmax.

In contrast to earlier findings in (Vogt and Coumans,
2003), our agents do reach a complete coherent language,
where coherence is defined as the chance of two random
speakers producing the same word for the same meaning.
The main difference between Vogt and Coumans’ agents
and the ones defined in this paper is the use of a synonymy-
damping mechanism which explains further why the number
of words used by the agents eventually drops to the number
of objects|O|.

Conclusion
In a nutshell we have identified three problems that arise
when relaxing the meaning transfer assumption in a nam-
ing game. First, since during a single game a hearer can no
longer determine the meaning of a word, a cross-situational
learning mechanism is required. We have proposed a mecha-
nism that is capable of estimating a word/meaning mapping
that changes over time. Second, the conditions that deter-
mine when a speaker needs to invent a new word need to be
extended beyond the obvious case of uncovered meaning:
also when he does not know a word which he himself would
interpretas the target meaning should he invent a new one.
Third, for a coherent language to emerge some synonymy-
damping mechanism is needed implementing a kind of lat-
eral inhibition between competing synonyms.

For our study we have identified word-meanings and ob-
jects in the world. However, a more realistic setup should
take perception and categorization into account. In this case,
every object in the world is, through perception, mapped
onto a set of agent-internal categories, for example related
to the object’s features, such as color or size. However the
problem of determining the meaning of an utterance —as
identified by (Quine, 1960) in his famous ‘gavagai’ thought
experiment or by (Siskind, 1996) in his account of the lex-
ical acquisition problem— persists and the mechanism we
propose can still be applied.

Finally, our model is also independent of corrective feed-
back received by children when learning the meaning of
words, or of principles of relevance, exclusivity, joint atten-
tion, whole object and the like. Although such principles
do help to narrow down the set of possible meanings of an
unknown word, the actual meaning still needs to be chosen
from the remaining set. As we have shown, our learning
model can be used for this, even if these mechanisms some-
times produce incorrect results or, equivalently, if the mean-
ing of words changes over time.
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