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INTRODUCTION

Much ink has been spilled arguing over the idea that ontogeny recapitulates phylogeny.

The discussions typically center on whether developmental stages reflect different

points in the evolution of some specific trait, mechanism, or morphological structure. For

example, the development trend from crawling to walking in human infants can be seen

as recapitulating the evolutionary change from quadropedalism to bipedalism in the

hominid lineage. Closer to the area of the evolution of communication, endocasts have

been taken to indicate that the vocal tract of newborn human infants more closely

resemble those of Australopithecines and extant primates than the adult human vocal

tract — with the vocal tract of Neanderthals falling in between, roughly corresponding to

that of a two-year-old human child (Lieberman, 1998). These data could suggest that

the development of the vocal tract in human ontogeny is recapitulating the evolution of

the vocal tract in hominid phylogeny. However, other researchers have strongly

opposed such perspectives, arguing that evolution and development work along entirely

different lines when it comes to language (Pinker & Bloom, 1990). In this chapter, we

provide a different perspective on this discussion within the domain of linguistic

communication, arguing that phylogeny to a large extent has been shaped by ontogeny.

A growing bulk of work on the evolution of language has focused on the role of

learning – often in the guise of “cultural transmission” – in the evolution of linguistic

communication (e.g., Batali, 1998; Christiansen, 1994; Deacon, 1997; Kirby & Hurford,

2002). Instead of concentrating on biological changes to accommodate language, this

approach stresses the adaptation of linguistic structures to the biological substrate of

the human brain. Languages are viewed as dynamical systems of communication,



subject to selection pressures arising from limitations on human learning and

processing. From this perspective language evolution can be construed as being

shaped by language development, rather than vice versa.

Computational simulations have proved to be a useful tool to investigate the

impact of learning on the evolution of language. Connectionist models (also sometimes

referred to as “artificial neural networks” or “parallel distributed processing models”)

provide a natural framework for exploring a learning-based perspective on language

evolution because they have previously been applied extensively to model the

development of language (see e.g., Bates & Elman, 1993; MacWhinney, in press;

Plunkett 1995; Seidenberg & MacDonald, 2001; for reviews).  In this chapter, we show

how language phylogeny may have been shaped by ontogenetic constraints on

language acquisition.  First, we discuss connectionist models in which the explanations

of particular aspects of language evolution and linguistic change depend crucially on the

learning properties of specific networks – properties that have also been pressed into

service to explain similar aspects of language acquisition. We then present two

simulations that directly demonstrate how network learning biases over generations can

shape the very language being learned. Finally, we conclude the chapter with a brief

discussion of the possible theoretical advantages of approaching language evolution

from a learning-based perspective.

EVOLUTION THROUGH LEARNING

Connectionist models can be thought of as a kind of “sloppy” statistical function

approximators learning from examples to map a set of input patterns onto a set of



associated output patterns. The two most important constraints on network learning (at

least for the purpose of this chapter) derive from the architecture of the network itself

and the statistical make-up of the input-output examples. Differences in network

configuration (such as, learning algorithms, connectivity, number of unit layers, etc. —

see Bishop, 1995; Smolensky, Mozer & Rumelhart, 1996) provide important constraints

on what can be learned. For example, temporal processing of words in sentences is

better captured by recurrent networks in which previous states can affect current states,

rather than simple feed-forward networks in which current states are unaffected by

previous states.

These architectural constraints interact with constraints inherent in the input-

output examples from which the networks have to learn. In general, frequent patterns

are more easily learned than infrequent patterns because repeated presentations of a

given input-output pattern will strengthen the weights involved. For example, for a

network learning the English past tense, frequently occurring mappings, such as go Æ

went, are learned more easily than more infrequent mappings, such as lie Æ  lay.

However, low-frequency patterns may be more easily learned if they overlap in part with

other patterns. This is because the weights involved in the overlapping features of such

patterns will be strengthened by all the patterns that share thse features, making it

easier for the network to acquire the remaining unshared pattern features. In terms of

the English past tense, this means that the partial overlap in the mappings from stem to

past tense in sleep Æ slept, weep Æ wept, keep Æ kept (i.e., -eep Æ -ept) will make

network learning of the these mappings relatively easy even though none of the words

have a particularly high frequency of occurrence. Importantly, these two factors — the



frequency and regularity (i.e., degree of partial overlap) of patterns — interact with one

another. Thus, high frequency patterns are easily learned independent of whether they

are regular or not, whereas the learning of low-frequency patterns suffer if they are not

regular (i.e., if they do not have partial overlap with other patterns). This characteristic of

neural network learning makes them well suited for capturing human language

processing as many aspects of language acquisition and processing involve such

frequency by regularity interactions (e.g., auditory word recognition, Lively, Pisoni &

Goldinger, 1994; visual word recognition, Seidenberg, 1985; English past tense

acquisition, Hare & Elman, 1995).

The frequency by regularity interaction also comes into play when processing

sequences of words. In English, for example, embedded subject relative clauses such

as ‘that attacked the reporter’ in the sentence ‘The senator that attacked the reporter

admitted the error’ have a regular ordering of the verb (attacked) and the object (the

reporter) — it is similar to the ordering in simple transitive sentences (e.g., ‘The senator

attacked the reporter’). Embedded object relative clauses, on the other hand, such as

‘that the reporter attacked’ in the sentence ‘The senator that the reporter attacked

admitted the error’ have an irregular verb-object ordering with the object (the senator)

occurring before the verb (attacked). The regular nature of subject relative clauses —

their patterning with simple transitive sentences — makes them easy to learn and

process relative to the irregular object relative clauses; and this is reflected in the similar

way in which both humans and networks deal with the two kinds of constructions

(MacDonald & Christiansen, 2002).



As we shall see next, the frequency by regularity interaction is also important for

the connectionist learning-based approach to language evolution. From this

perspective, structures that are either frequent or regular are more likely to be

transferred from generation to generation of learners than structures that are irregular

and have a low frequency of occurrence.

Learning-Based Morphological Change

Although the first example comes from the area of morphological change, we suggest

that the same principles are likely to have played a role the evolution of morphological

systems as well. Connectionist networks have been applied widely to model the

acquisition of past tense and other aspects of morphology (for an overview, see

Christiansen & Chater, 2001). The networks’ sensitivity to the frequency by regularity

interaction has proven crucial to this work. Simulations by Hare & Elman (1995) have

demonstrated that these constraints on network learning can also help explain observed

patterns of dramatic change in the English system of verb inflection over the past 1,100

years.

The morphological system of Old English (ca. 870) was quite complex involving

at least 10 different classes of verb inflection (with a minimum of six of these being

"strong").  The simulations involved several "generations" of neural networks, each of

which received as input the output generated by a trained network from the previous

generation.  The first network was trained on data representative of the verb classes

from Old English.  However, training was stopped before learning could reach optimal

performance. The imperfect output of the first network was used as input for a second



generation net. This reflected the causal role of imperfect transmission from learner to

learner in language change. Training for the second-generation network was also halted

before learning reached asymptote.  Output from the second network was then given as

input to a third network, and so on, until seven generations were trained.  This training

regime led to a gradual change in the morphological system. These changes can be

explained by verb frequency in the training corpus, and phonological regularity (i.e.,

phonological overlap between mappings as in the -eep Æ -ept example above).  As

expected given the frequency by regularity interaction, the results revealed that

membership in small classes, irregular phonological characteristics, and low frequency

all contributed to rapid morphological change.  High frequency and phonologically

regular patterns were much less likely to change. As the morphological system changed

through generations, the pattern of simulations results closely resembled the historical

change in English verb inflection from a complex past tense system to a dominant

"regular" class and small classes of "irregular" verbs.

These simulations demonstrate how constraints on network learning can result in

morphological change over time. We suggest that similar learning-based pressures may

also have been an important force in shaping the evolution of morphological systems

more generally. Next, we shall see how similar considerations may help explain the

existence of word order universals.

Learning-Based Constraints on Word Order

Despite the considerable diversity that can be observed across the languages of the

world, it is also clear that languages share a number of relatively invariant features in



the way words are put together to form sentences.  We propose that many of these

invariant features — or linguistic universals — may derive from learning-based

constraints, such as the frequency by regularity interaction. As an example consider

heads of phrases: The particular word in a phrase that determines the properties and

meaning of the phrase as a whole (such as the noun boy in the noun-phrase ‘the boy

with the bicycle’). Across the world’s languages, there is a statistical tendency toward a

basic format in which the head of a phrase consistently is placed in the same position —

either first or last — with respect to the remaining clause material. English is considered

to be a head-first language, meaning that the head is most frequently placed first in a

phrase, as when the verb is placed before the object noun-phrase in a transitive verb-

phrase such as ‘eat curry’.  In contrast, speakers of Hindi would say the equivalent of

‘curry eat’, because Hindi is a head-last language.

Christiansen and Devlin (1997) trained simple recurrent networks (Elman, 1990;

SRN) on corpora generated by 32 different grammars that differed in the regularity of

their head-ordering (i.e., irregular grammars would have a highly inconsistent mix of

head-first and head-final phrases). The networks were trained to predict the next lexical

category in a sentence. Importantly, these networks did not have built-in linguistic

biases; rather, they are biased toward the learning of complex sequential structure.

Nevertheless, the SRNs were sensitive to the amount of head-order regularity found in

the grammars, such that there was a strong correlation between the degree of head-

order regularity of a given grammar and the degree to which the network had learned to

master the language. The more irregular a grammar was, the more erroneous network

performance it elicited. The sequential biases of the networks made the corpora



generated by regular grammars considerably easier to acquire than the corpora

generated from irregular grammars. Christiansen and Devlin further collected frequency

data on the world’s natural languages concerning the specific syntactic constructions

used in the simulations. They found that languages incorporating fragments that the

networks found hard to learn tended to be less frequent than languages the network

learned more easily. This suggests that constraints on basic word order may derive

from non-linguistic constraints on the learning and processing of complex sequential

structure. Grammatical constructions with highly irregular head-ordering may simply be

too hard to learn and would therefore tend to disappear.

In a similar vein, Van Everbroeck (1999) presented network simulations in

support of an explanation for language-type frequencies based on learning constraints.

He trained recurrent networks (a variation on the SRN) to produce the correct

grammatical role assignments (i.e., who does what to whom) for noun-verb-noun

sentences, presented one word at a time. Forty-two different language types were used

to represent cross-linguistic variation in three dimensions: word order (e.g., subject-

verb-object), and noun/verb inflection. Results of the simulations coincided with many

observed trends in the distribution of the world's languages. Subject-first languages,

both of which make up the majority of language types (51% and 23%, respectively),

were easily learned by the networks. Object-first languages, on the other hand, were not

well learned, and have very low frequency in the world's languages (object-verb-subject:

0.75% and object-subject-verb: 0.25%).  Van Everbroeck argued that these results were

a predictable product of network learning and processing constraints.



However, not all of Van Everbroeck’s results were directly proportional to actual

language-type frequencies. For example, verb-subject-object languages only account

for 10% of the world's language types, but the model’s performance on it exceeded

performance on the more frequent subject-first languages. In recent simulations,

Lupyan and Christiansen (in press) were able to fit language-type frequencies

appropriately once they took case-markings into account. More importantly, from the

viewpoint of the present chapter, they were able to observe a frequency by regularity

interaction when modeling the acquisition of English, Italian, Turkish, and Serbo-

Croatian. English relies strongly on word order to signal who does what to whom, and

thus has a very regular mapping from words to grammatical roles (e.g., the subject noun

always comes before the verb in declarative sentences). Italian has a slightly less

regular pattern of word order, but both English and Italian make little use of case.

Turkish, although it has a flexible (or irregular) word order, nonetheless has a very

regular use of case-markings to signal grammatical roles. Serbo-Croatian, on the other

hand, has both an irregular word order and a somewhat irregular use of case. Similar to

the children (Slobin & Bever, 1982), the networks initially showed the best performance

on reversible transitive sentences in Turkish, with English and Italian quickly catching

up, and with Serbo-Croation lacking behind. Because of their regular use of case and

word order, respectively, Turkish and English are more easily learned than Italian and,

in particular, the highly irregular Serbo-Croation language. Of course, with repeated

exposure the networks (and the children) learning Serbo-Croatian eventually catches up

as predicted by the frequency by regularity interaction.



Together, the simulations by Christiansen and Devlin, Van Everbroeck and

Lupyan and Christiansen provide support for a connection between learnability and

frequency in the world's languages based on the learning and processing properties of

connectionist networks. Languages that are more easily learned tend to proliferate, and

we propose that such learning-based constraints are crucial to our understanding of

how language may have evolved into its current form. However, one limitation regarding

the three word-order models is that there is no actual transmission between generations

of learners (as was the case in the Hare & Elman simulation). Next, we present a series

of simulations in which we show how, through processes of linguistic adaptation,

learning-based constraints on language acquisition can shape the very language being

learned.

THE EVOLUTIONARY EMERGENCE OF MULTIPLE-CUE INTEGRATION

An outstanding problem in developmental psycholinguistics is how children overcome

initial hurdles in learning language.  Upon first glance, these hurdles seem

insurmountable: Children must disentangle a continuous stream of speech without any

obvious information about syntactic structure.  They have to learn to what grammatical

categories words belong in their native language, and how to put those words together.

However, grammatical categories and syntactic structure are not themselves logically

independent.  A language's syntax assumes grammatical categories, and grammatical

categories themselves assume a particular syntactic distribution.  The task of acquiring

language therefore presents a "bootstrapping" problem.



A solution to this problem has been recently proposed (Gleitman & Wanner,

1982; Morgan & Demuth, 1996; Christiansen & Dale, 2001), and argues that multiple

probabilistic cues in speech provide the child's entering wedge into syntax.  Prosodic

and phonological sensitivity emerges rapidly in children (Jusczyk, 1997; Kuhl, 1999),

and this attunement offers opportunities for languages to contain prosodic and

phonological information about linguistic structure.  Christiansen and Dale (2001)

offered computational support for the hypothesis that integrating multiple probabilistic

cues (phonological, prosodic and distributional) by perceptually attuned general-

purpose learning mechanisms may hold the key to how children solve the bootstrapping

problem.  Multiple cues can provide reliable evidence about linguistic structure that is

unavailable from any single source of information.

Much evidence suggests that such cues are present cross-linguistically (Kelly,

1992), and are manifested in different combinations or "cue constellations." Our

hypothesis is that in order for languages to increase their linguistic complexity without

compromising learnability, they have evolved cue constellations that reflect their

respective structure, and cater to cognitive constraints imposed by the child's learning

mechanisms. Here, we consider the evolution of these cues from a computational

perspective.  After reviewing the cues available for syntax acquisition, we present two

language evolution simulations in which we explore how and why cues may have

arisen.  In the first, we demonstrate the ways in which cues could have emerged given a

language that is growing in vocabulary size.  In the second, we offer an illustration of

how growing grammatical complexity can strengthen the importance of cues for

language acquisition.



Cues Available for Syntax Acquisition

Although some kind of innate knowledge may play a role in language acquisition, it

cannot solve the bootstrapping problem.  Even with built-in abstract knowledge about

grammatical categories and syntactic rules (e.g., Pinker, 1984), the bootstrapping

problem remains formidable: Children must map the right sound strings onto the right

grammatical categories while determining the specific syntactic relations between these

categories in their native language. Moreover, the item-specific nature of early syntactic

productions challenges the usefulness of hypothesized innate grammatical categories

(Tomasello, 2000).

Language-external information may substantially contribute to language

acquisition.  Correlations between environmental observations relating prior semantic

categories (e.g., objects and actions) and grammatical categories (e.g., nouns and

verbs) may furnish a “semantic bootstrapping” solution (Pinker, 1984).  However, given

that children acquire linguistic distinctions with no semantic basis (e.g., gender in

French, Karmiloff-Smith, 1979), semantics cannot be the only source of information

involved in solving the bootstrapping problem.  Another extra-linguistic factor is cultural

learning where children may imitate the pairing of linguistic forms and their conventional

communicative functions (Tomasello, 2000).  Nonetheless, to break down the linguistic

forms into relevant units, it appears that cultural learning must be coupled with

language-internal learning.  Moreover, because the nature of language-external and

innate knowledge is difficult to assess, it is unclear how this knowledge could be



quantified: There are no computational models of how such knowledge might be applied

to learning basic grammatical structure.

Though perhaps not the only source of information involved in bootstrapping the

child into language, the potential contribution of language-internal information is more

readily quantified.  Our test of the multiple-cue hypothesis therefore focuses on the

degree to which language-internal information (phonological, prosodic and

distributional) may contribute to solving the bootstrapping problem.

Phonological information – including stress, vowel quality, and duration – may

help distinguish grammatical function words (e.g., determiners, prepositions, and

conjunctions) from content words (nouns, verbs, adjectives, and adverbs) in English

(e.g., Cutler, 1993).  Phonological information may also help distinguish between nouns

and verbs.  For example, nouns tend to be longer than verbs in English – a difference

that even 3-year-olds are sensitive to (Cassidy & Kelly, 1991).  These and other

phonological cues, such as differences in stress placement in multi-syllabic words, have

also been found to exist cross-linguistically (see Kelly, 1992, for a review).

Prosodic information provides cues for word and phrasal/clausal segmentation

and may help uncover syntactic structure (e.g., Morgan, 1996).  Acoustic analyses

suggest that differences in pause length, vowel duration, and pitch indicate phrase

boundaries in both English and Japanese child-directed speech (Fisher & Tokura,

1996).  Infants seem highly sensitive to such language-specific prosodic patterns (for

reviews, see e.g., Jusczyk, 1997; Morgan, 1996) – a sensitivity that may start in utero

(Mehler et al., 1988).  Prosodic information also improves sentence comprehension in

two-year-olds (Shady & Gerken, 1999).  Results from an artificial language learning



experiment with adults show that prosodic marking of syntactic phrase boundaries

facilitates learning (Morgan, Meier & Newport, 1987).  Unfortunately, prosody is partly

affected by a number of non-syntactic factors, such as breathing patterns (Fernald &

McRoberts, 1996), resulting in an imperfect mapping between prosody and syntax.

Nonetheless, infants’ sensitivity to prosody provides a rich potential source of syntactic

information (Morgan, 1996).

None of these cues in isolation suffice to solve the bootstrapping problem; rather,

they must be integrated to overcome the partial reliability of individual cues.  Previous

connectionist simulations by Christiansen, Allen and Seidenberg (1998) have pointed to

efficient and robust learning methods for multiple-cue integration in speech

segmentation.  Integration of phonological (lexical stress), prosodic (utterance

boundary), and distributional (phonetic segment sequences) information resulted in

reliable segmentation, outperforming the use of individual cues.  The efficacy of

multiple-cue integration has also been confirmed in artificial language learning

experiments (e.g., McDonald & Plauche, 1995).

 By one year, children's perceptual attunement is likely to allow them to utilize

language-internal probabilistic cues (for reviews, see e.g., Jusczyk, 1997; Kuhl, 1999).

For example, infants appear sensitive to the acoustic differences between function and

content words (Shi, Werker & Morgan, 1999) and the relationship between function

words and prosody in speech (Shafer, Shucard, Shucard & Gerken, 1998).  Young

infants can detect differences in syllable number among isolated words (Bijeljac,

Bertoncini & Mehler, 1993) – a possible cue to noun/verb differences.  Moreover, infants

are accomplished distributional learners (e.g., Saffran, Aslin & Newport, 1996), and



importantly, they are capable of multiple-cue integration (Mattys, Jusczyk, Luce &

Morgan, 1999).  When solving the bootstrapping problem children are also likely to

benefit from specific properties of child-directed speech, such as the predominance of

short sentences (Newport, Gleitman & Gleitman, 1977) and the cross-linguistically more

robust prosody (Kuhl et al., 1997).

This review has indicated the range of language-internal cues available for

language acquisition, that these cues affect learning and processing, and that

mechanisms exist for multiple-cue integration. In a previous paper (Christiansen & Dale,

2001) we conducted a series of simulations revealing the computational feasibility of the

multiple-cue approach to syntax acquisition.  SRNs that faced the task of learning

grammatical structure and predicting cues actually benefited from the additional burden.

Despite previous theoretical reservations about the value of multiple-cue integration

(Fernald & McRoberts, 1996), the analysis of network performance revealed that

learning under multiple cues results in faster, better, and more uniform learning.  In

another simulation, SRNs were able to distinguish between relevant cues and

distracting cues, and performance did not differ from networks that received just reliable

cues.  Overall, these simulations offer support for the multiple-cue integration

hypothesis in language acquisition.  They demonstrate that learners can benefit from

multiple cues, and are not distracted by irrelevant language-internal information.

Though Christiansen and Dale (2001) offered computational support for the

benefit of multiple-cues, they did not investigate how these cues may have emerged in

language.  The following two simulations address this question, and illustrate how



learning-based ontogenetic constraints can impinge on the phylogeny of evolving

languages.

Simulation 1: Growing Vocabulary

The following simulation implements a system of language selection: Grammars mutate,

and are selected on the basis of their learnability.  This approach echoes observations

by Christiansen (1994) and Deacon (1997) that language changes much more rapidly

than its neurobiological substrate, and the child's brain serves as a kind of habitat

through which natural selection applies to individual languages.  Languages that were

difficult to learn were selected against, and languages more easily learned survived and

propagated throughout a population of speakers.  This method of simulating language

change allows investigation into how cues evolved to contribute to this selection, and

benefit language learning.   In what follows, we describe the networks and the language

they learn, the conditions provided for transmitting language across generations, and

the resulting patterns of cue constellations in the languages that evolved.

Networks and Grammar.

SRNs served as language learners in both simulations.  Each had initial weight

randomization of [-0.05, 0.05], with a learning rate of .1 and momentum of 0.  Input to

the networks consisted of individual words in the form of localist representations (one

unit was activated for each word).  When presented with a word, networks were

required to predict the following word in a sentence, along with its corresponding cues.



Networks consisted of 12 or 24 word units (depending on the vocabulary size condition

of the simulation) and two cue units, one representing a constituent cue (e.g., pauses)

and another activated conjointly with words representing any lexical cue (e.g., primary

stress).  Each network had 10 hidden units and 10 context units.

Languages consisted of phrase-structure grammars: A system of rewrite rules

defining how sentences are constructed.  The phrase-structure grammar “template”

used in this simulation is presented in Table 1.  Individual grammars had three

changeable features allowing “mutation” with each generation.  Head ordering was

modified by shifting the constituent order of the four main rewrite rules: S(entence),

N(oun)P(hrase), V(erb)P(hrase), and P(repositional)P(hrase).  For example, a grammar

with the rule PP Æ P NP, a head-first rule, could be made head-final by simply rewriting

PP as NP P, with the head of the prepositional phrase in the final position (as described

in above the Christiansen and Devlin (1997) simulation).  The constituent cue was

permitted to mark the boundary of the four main rewrite rules.  This cue was modified by

addition, deletion, and movement (from one rewrite rule to another).  Finally, all words

were permitted to be associated with the lexical cue.  Cues could be added to words,

deleted from them, or moved from one word to another.  This process was applied

across all words, and not specific to any particular grammatical category.  The

constituent cue was represented as a single unit activated separately after its

corresponding phrase-structure rules.  The lexical cue was a single unit co-activated

with lexical items during training.

[Table 1]



Two grammar templates were created for two separate sets of simulation runs.

These grammars differed only in the size of their vocabulary, the first being half (12

words) of the second (24 words).

Procedure.

The grammar template was initially randomized to form 5 different languages, and each

language was learned by 5 different networks (25 networks in total).  Networks were

trained on 3,000 randomly generated sentences of their respective grammar

(approximately 15,000 word presentations).  The performance of each language's 5

networks was averaged, and the language most easily learned produced linguistic

“offspring” for the next generation of networks.  Performance was based on a test

corpus of 100 randomly generated sentences.  The winning language, and 4 variations

of it, served as the 5 languages for the next generation.  Variations were formed by

randomly selecting two of the three features of the grammar to modify (as described

above).  The simulation was halted after 500 generations.  Ten differently seeded

simulation runs were performed.  Figure 1 visually illustrates the procedure.

[Insert Figure 1 on opposing page]

Analysis

Head-order.  Christiansen and Devlin (1997), as described previously, argued that

head-order regularity is a consequence of learning constraints.  SRNs in their simulation



better learned languages that had head-order regular rules.  Similarly, in this simulation,

we observe head-order regularity of languages cross generations.  We simply

associated with each winning grammar a score based on the proportion of rules

consistently head-first or head-final.

Constituent cue.  We observed the ways in which evolving languages incorporated the

constituent cue, and its consonance with what is observed in child-directed speech.

Lexical cue.  Length, stress, and other lexical cues in language benefit the child to the

extent that they delimit grammatical classes.  To measure this in the simulation, we

performed a simple comparison of how the lexical cue associated with different classes.

We used the magnitude of the maximum difference of association among grammatical

categories.  Formulaically, we measured cue relevance using

max(abs[Â xi+ / Â xi  -  Â xj+ / Â xj])

where xi denotes a grammatical class, and xi+ denotes words of that class that have an

associated lexical cue.  This approach to measuring cue relevance is beneficial for two

reasons.  First, if the cue is unimportant and does not become associated with any

words or simply becomes associated with all of them, the value of cue relevance will be

0 (0% relevant).  If the cue separates any two-word classes completely, then cue

relevance will be 1 (100% relevant).  Second, this interval of [0, 1] allows us to



graphically represent how the lexical cue becomes exploited across language

generations.

Results

Head-order.  Languages did not evolve head-ordering regularity in any runs of the

simulation, in both vocabulary sizes.

Constituent cue.  In all runs of the simulation, the constituent cue quickly delimited NP

and VP rules, consistent with child-directed speech (Fisher & Tokura, 1996).

Lexical cue.  Only in the simulation runs with a large vocabulary did languages exploit

the lexical cue.  As seen in Figure 2 languages with a larger vocabulary remained highly

consistent in use of the lexical cue, in which it clearly delimits two word classes across

generations.  Using the area under these graphs as a measure of cue consistency

across generations, larger vocabularies were more consistent in their use of the lexical

cue than small (p < .05).

[Please insert Figure 2 here]

Simulation 2: Growing Grammatical Complexity



Simulation 1 suffers from a few limitations.  First, the grammatical template used was

very simple, and may not capture fully the importance of cues in emerging syntactic

structure.  Second, the simulations were unable to settle on a particular grammar, but

would continuously change back and forth between several possible grammars.  Finally,

in contrast to the simulation of Christiansen & Devlin (1997), we did not observe a

strong effect of regular head-ordering.  Simulation 2 was intended to overcome these

limitations.

Networks and Grammar

The networks in this simulation were the same as those in Simulation 1, with initial and

learning conditions the same.  The selection process in this simulation, however, was

based on a considerably more complex grammar template (see Table 2).  This grammar

template is the same as the phrase-structure grammar used in Christiansen and Devlin.

[Table 2]

Procedure

The procedure mirrored that of Simulation 1, with 3,000 sentences for training, and 100

for testing.  Mutation of the languages was accomplished in the same way, and winning

grammars were again selected on the basis of their learnability.  Runs of this simulation

were halted after the winning language remained the same for 50 generations.

Analysis



Head-order regularity, constituent cue use, and lexical cue consistency were measured

as in Simulation 1.

Results

Nine of our 10 simulation runs stabilized on one particular language variation.  Of those

9, the following results were observed:

Head-order.  All languages had highly regular head ordering (87% and above, 5 of the 6

rules or more were consistently head-first or head-final).

Constituent cue.  As in Simulation 1, the constituent cue consistently delimited plausible

aspects of the grammar template.  All runs of the simulation rapidly evolved languages

delimiting NP boundaries, again consistent with child-directed speech.

Lexical cue.  All stable languages had perfectly consistent lexical cues.  Interestingly,

six of the 9 that stabilized evolved lexical cues that separated function from content

words, much like English and other natural languages.

Summary of Simulations

These simulations explored two ways in which languages can evolve, and how these

conditions influence the emergence of cues to service language acquisition.  Simulation

1 revealed that constituent cues, such as pauses or pitch modulation, are highly

important in initial syntactic structure and emerge quickly.  A growing vocabulary,



however, enabled languages to exploit subtler lexical cues, such as word length or

lexical stress, to delimit grammatical classes.  Simulation 2 revealed that growing

grammatical complexity compels languages to incorporate both constituent and lexical

cues for syntax acquisition. Together, these simulations illuminate how ontogenetic

constraints can guide the evolution of languages.  The learning-based constraints

imposed by neural network learners shaped the form of the emerging languages across

generations.

CONCLUSION

In this chapter, we have sought to turn the discussion of whether or not ontogeny

recapitulates phylogeny on its head. At least when it comes to language, we have

proposed that development to a large extent has shaped the evolution of our linguistic

abilities, rather than vice versa. Consequently, we have emphasized the role of

learning-based constraints in the evolution of linguistic structure, instead of biological

changes to accommodate language. Connectionism provides a natural framework for

studying a learning-based approach to language evolution, given it widespread

application to the modeling of language development. Indeed, we have seen that the

same specific network properties that have proven crucial for modeling developmental

patterns in language acquisition — e.g., the frequency by regularity interaction — also

provide a basis for explaining language evolution. We have presented two series of

connectionist simulations in which learning biases over generations lead to the

emergence of multiple-cue integration through linguistic adaptation. Importantly, the

nature of the emergent cue systems was similar to the kind of cue systems that young



infants have been shown to use in language acquisition. These cue systems appears to

emerge to service growing linguistic structure. Fueled by constraints on learning, cue

integration becomes a vehicle for the facilitation of the acquisition of complex linguistic

structure. Languages employing cues become more likely to survive the processes of

cultural transmission across generations, demonstrating how learning can shape

evolution.

On a more theoretical level, our learning-based approach to language evolution

may allow us to deal productively with Lewontin’s (1995) scathing critique of

evolutionary approaches to cognition, and to language evolution in particular:

“Reconstructions of the evolutionary history and the causal mechanisms of the

acquisition of linguistic competence […] are nothing more than a mixture of pure

speculation and inventive stories” (p. 111). He argues that we are unlikely to find solid

evidence that there are heritable variations in linguistic abilities among individuals in the

hominid lineage, and that these variations lead individuals with greater abilities to have

more offspring. Lewontin’s main concern is that we can simply not test the hypotheses

put forward to explain language evolution because of our limited knowledge about

hominid evolution in general. However, if, as we have suggested here, language has

evolved largely through cultural transmission constrained by limitations on human

learning and processing, we can test these hypotheses through computational

simulations and human experimentation (Christiansen & Ellefson, 2002; Christiansen,

Dale, Ellefson & Conway, 2002).
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Table 1: The phrase-structure grammar

used in Simulation 1

S Æ {NP VP}*

NP Æ {PP N}

VP Æ {V NP}

PP Æ {P NP}

* Curly brackets indicate the order of these

rules was permitted to change.

Table 2: The phrase-structure grammar

used in Simulation 2

S Æ {NP VP}

NP Æ {PP N}

VP Æ {V NP}

PP Æ {P NP}

NP Æ {PosP N}

PosP Æ {Pos NP}

generations
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Figure 2: A small and large vocabulary run similarly seeded.
Languages with larger vocabulary better exploit the lexical cue.
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