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Human languages are characterized by a number of universal patterns of structure and
use. Theories differ on whether such linguistic universals are best understood as
arbitrary features of an innate language acquisition device or functional features
deriving from cognitive and communicative constraints. From the viewpoint of language
evolution, it is important to explain how such features may have originated. We use
computational simulations to investigate the circumstances under which universal
linguistic constraints might get genetically fixed in a population of language learning
agents. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by
which previously learned linguistic features might become innate through natural
selection across many generations of language learners. The results indicate that under
assumptions of linguistic change, only functional, but not arbitrary, features of language
can become genetically fixed.

1. Introduction

Although the world’s languages differ considerably from one another, they
nonetheless share many systematic constraints on how they are structured and
used. Explaining how such universal linguistic constraints evolved in the
hominid lineage is the focus of much debate in language evolution research. One
view suggests that linguistic universals are best viewed as arbitrary features of
language with no functional explanation, but instead deriving from an innate
Universal Grammar (UG; Chomsky, 1965). This abstract body of linguistic
knowledge is proposed, by some theorists, to have evolved gradually through
biological adaptations complex grammars (e.g., Briscoe, 2003; Pinker &
Bloom, 1990). An alternative view seeks to explain linguistic universals as
functional features of language, emerging due to communicative and cognitive
factors outside of grammatical knowledge (e.g., Bybee, 1998). These features are
seen as by-products of linguistic adaptation, in which language itself has been
adapted through cultural transmission across many generations of language
learners (e.g., Tomasello, 2003).



The Baldwin effect (1896) is the primary evolutionary mechanism by which
the arbitrary features of UG are envisioned to have been genetically fixed in the
human population. Although a Darwinian mechanism, the Baldwin effect
resembles Lamarckian inheritance of acquired characteristics in that traits that are
learned or developed over the life span of an individual become gradually
encoded in the genome over many generations (see Weber & Depew, 2003).
That is, if a trait increases fitness, then individuals that, due to random genetic
variation, require less exposure to the environment to develop that trait will
have a selective advantage. Over generations, the amount of environmental
exposure needed to develop this trait decreases, as individuals evolve
increasingly better initial conditions for its rapid development. Eventually, no
environmental exposure may be needed; the trait has become genetically
encoded. A frequently cited example of the Baldwin effect (e.g., Briscoe, 2003)
is the ability to develop hard skin on certain areas of the body with relatively
little environmental exposure. Over time, natural selection would have favored
individuals that could develop hard skin more rapidly (because it aids in
mobility, prevents infection, etc.) until it became fixed in the genome, requiring
little environmental stimulation to develop. Similarly, it has been suggested
that arbitrary linguistic features, which would originally have had to be learned,
gradually became genetically fixed in UG via the Baldwin Effect (Pinker &
Bloom, 1990).

In this paper, we use computer simulationsa to investigate the
circumstances under which the Baldwin effect may operate, for arbitrary and
functional features of language. Building on previous work (Chater,
Christiansen & Reali, 2004), Simulation 1 indicates that arbitrary linguistic
features cannot be genetically fixed via the Baldwin effect when linguistic
change is incorporated — even when this change is driven in part by the genes
themselves. In Simulation 2, we show how functional features of language can
come to be genetically fixed in the population when they promote better
communicative abilities. Finally, we discuss the implications of the simulations
for theories of language evolution.

2. Simulation 1: Arbitrary Language Features

Following recent work on the possible evolution of UG (e.g., Briscoe, 2003;
Nowak, Komarova & Nyogi, 2001), we model language and learners as a set of
binary vectors. Specifically, we adopt the framework of the pioneering

                                                
a All simulations were replicated several times due to their stochastic nature.



simulations of Hinton & Nowlan (1987), used by Pinker & Bloom (1990) to
support their suggestion that the Baldwin effect underlies the gradual genetic
fixing of arbitrary grammatical features in UG. Our previous work indicated that
although the Baldwin effect can occur within this framework in the context of
arbitrary linguistic features, the effect disappears when language is allowed to
change (Chater et al., 2004). However, these simulations were limited in scope;
we therefore conducted a new series of simulations to determine whether our
original results would replicate after addressing the limitations.

In our earlier simulations, a language was defined as a set of arbitrary binary
features, F1…Fn, taking the values 0 or 1. The n  “genes” of the learners
correspond to each of the n features of the language. The genes can take three
values, representing an innate bias (0, 1) for a feature being 0 or 1 in the
language; or neutrality (represented as ‘?’). For example, if n = 3 the language
may correspond to [0, 1, 1] and the genes of a random agent to [?, 1, 0]. At the
beginning of each generation, an initial language (phenotype) is expressed for
each agent based on its genes (genotype). The innate bias toward a particular
feature value will in most cases result in that value being expressed in the
phenotype (in most of the simulations the ‘stickiness’ of the bias is 95% in the
direction of the designated value), but on occasion it will be expressed in the
opposite direction. For the neutral (learning) genes there is a 50% change of
either setting (1 or 0). Thus, in our previous example, the initial language of the
agent could be [1, 1, 1]. If the initial language does not match the target
language, the agent begins a process of trial and error learning, in which learners
randomly sample features using the biases in their genes. Once a feature is
‘guessed’ correctly, it is not changed. The learner keeps guessing until all the
features in its language match those of the target language, with the fastest
learners being selected to form the basis for the next generation. Some
mutations would occur across generations, with an equal probability of
randomly reassigning a gene to 0, 1, or ? (mutation rate varied between
simulations). Although the neutral bits initially speeds learning, agents that are
genetically biased toward a feature Fi will guess it faster. Thus the Baldwin
effect should gradually ensure that all the arbitrary features of the language
become genetically encoded.

Chater et al. (2004) found a Baldwin effect for arbitrary linguistic features,
for the case where the language is fixed. In these simulations, reproduction was
implemented as simple duplications of the top 50% of the learners subject to a
1% mutation rate. Does the same result hold, given a more realistic model of
genetic  transmission?  To better approximate hominid  evolutionary  dynamics,



Table 1. Number of generations needed to reach the success criterion for the Baldwin effect
(parameter value : number of generations)

Genome
Size

Population
Size

% Initial
Neutral Bits

Stickiness of
Innate Bias

% Survivors % Mutation
Rate

10 : 25     24 : 369   0 : 23 100 : 152 26 : 52 0.1 : 232
20 : 51 100 : 51 25 : 69 95 : 51 50 : 51  1 : 51

  50 : 201 250 : 47   75 : 137 90 : 85   74 : 195 2.5 : 104
    80 : 1045 100 : 147 80 : 88

the current simulations use a simple model of sexual reproduction, instantiated
as random cross-over between two sets of learner genes.

We first replicated our original results in which the language/genome size
was set to 20, the population size to 100, the number of initially neutral bits to
50%, the ‘stickiness’ of the innate genetic bias to 95%, the number of surviving
agents to the top 50%, and a 1% mutation rate. Using a success criterion that
more than 95% of the initial bits in the top 50% of the learners’ genomes
should correctly match the target language, we found that a robust Baldwin
effect occurred after 51 generations. We then varied the simulation parameters
and found that a robust Baldwin effect occurred in all circumstances, with
parameter variations only affecting the speed with which it emerged (see Table
1). These results show that our earlier results generalize to sexual reproduction,
and show that the Baldwin effect is highly robust, with a fixed language. If
such a robust effect disappears under when the language is allowed to change,
this cannot easily be dismissed.

An important limitation of our original simulations is that language change
was completely independent of the genes. It seems reasonable to assume that if
the genes control language learnability then they should also influence the
direction of language change in a process similar to Baldwinian niche
construction (e.g., Odling-Smee, Laland & Feldman, 2003). To explore this, we
carried out a set of simulations in which language at time t+1 was determined
by a combination of genes and language at time t. Specifically, p percent of the
change would be determined by the most frequent gene values in the previous
population and the remaining 1-p percent of change by the previous language.
Given that other pressures than learnability also affects language change (such as
cognitive/communicative constraints, parsability, language contact, linguistic
drift, etc.), we also incorporated random language change at a rate of ten times
faster than the mutation rate (i.e., 10%). The faster rate of linguistic change
reflects the fact that cultural evolution is much faster than biological evolution
(Dawkins, 1976). Whereas linguistic change is measured in thousands of years,
biological  evolution  is  measured  in  hundreds of  thousands  of  years.  Other



Figure 1. The effect of population influence on the emergence of the Baldwin effect.

simulation parameters were the same as in our initial replication above.
The results of these simulations (Figure 1) show that only when there is a

very high degree of population influence does the Baldwin effect emerge. Only
when the direction of linguistic change is at least 50% determined by the
previous generations genes do we observe a robust Baldwin effect after 835
generations. This suggests that arbitrary features of language would have to be
predetermined strongly by the genes from the very beginning, thus leaving little
room for subsequent evolution of the kind envisioned by Pinker & Bloom
(1990). This corroborates our previous findings that under reasonable
assumptions about language change, the Baldwin effect does not occur for
arbitrary linguistic features. Unlike the example of hard skin, where the
environment provides a stable target for the Baldwin effect, language change is
too fast for genetic commitments to arbitrary features to be worthwhile.
However, it is possible that non-arbitrary features of language could become
genetically fixed in the population if they facilitated communication in some
manner; e.g., improved abilities for word learning, increased working memory
capacity for language, vocal apparatus optimizations for speech, and so on.

3. Simulation 2: Functional Language Features

Because the arbitrary features of language by definition do not affect
communicative function (e.g., Pinker & Bloom, 1990), Simulation 1 did not
need to incorporate communication between agents. However, to explore the
degree to which functional features of language could have become genetically



fixed via the Baldwin effect, it is necessary to take communication into account
to provide a context within which the non-arbitrary features can be functional.

We used the same representation of language and genes as before, with the
initial language expressed in the same way. However, learning was implemented
differently, now mediated by communicative interactions. Communication was
only possible between agents who had a majority of the same kinds on language
features (either 0 or 1). Thus, an agent, a1, whose language is [0, 0, 0, 0, 1],
would be able to communicate with an agent, a2, with a [0, 0, 0, 0, 0] language
but not with agent a3 that has a [0, 1, 1, 1, 0] language. Agents benefit
mutually from successful communication in proportion to the overlap in their
features. The successful two-way interaction between a1 and a2 would result in
an increase in both agents’ communication scores by 9 (the combined number of
0s in their two languages). The simulations also integrate the developmental
trend that comprehension precedes production: even though a1 can only
“produce” four 0s, it can “comprehend” a2’s five 0s. However, if the difference
between the productive abilities of two agents is more than one unit, then lesser
competent “speaker” will not be able to understand its more proficient
communication partner, resulting in a one-way interaction. In this case, the
proficient speaker received the combined communication score (as before),
whereas the less competent agent would only receive its own contribution to
that score. Hence, if a2 interacted with a4, whose language is [0, 1, 0, 1, 0], a2

would increase its communication score by 8 while a4’s score would only
increase by 3.

In this framework, less competent agents are able to learn from more
competent agents (with stronger bias towards 0s or 1s); this is meant to reflect
the tendency for children to learn much of their language from others with
greater language skills than themselves (e.g., adults or older children). Learning
can only happen when two-way communication is possible (as described above),
and consists in a process in which the less competent agent, based on the biases
in its genome, re-samples the first bit in its language that differs from the more
competent agent’s language. For example, in a communicative interaction
between a1 and a4, the latter would resample its second language bit. If a4’s
genome encoded an innate bias (0 or 1), then there would be a 95% chance of
getting this bit expressed; but if the genome encoded a neutral bit, the chance of
either value would be 50%. Thus, genes constrain learning as in Simulation 1.

To further mirror the learning conditions from the previous simulations, we
introduced noise into the learning process at a rate ten times higher than the
mutation  rate.  During 10% of the  learning  opportunities a  random  bit in the



Figure 2. The influence of variations in the number of initial learnable bits on the Baldwin effect
for different mutation rates (mr) and noises rates (nr).

learner’s language would be chosen for potential reassignment (given the
learner’s genetic bias for that bit) instead of the first bit that deviated from the
competent speaker’s language. This paralleled the 10% random change in the
target language in Simulation 1.

From each generation of 100 learners, pairs of agents were randomly picked
for 500 interactions. The 50 agents with the highest communication scores were
selected, and cross-over sexual reproduction used to create the next generation
(combined with a 1% mutation rate). The results (Figure 2) show that a robust
Baldwin effect emerges across several different variations in mutation rate and
number of neutral bits in the first generation. Even when the first generation has
all neutral (learnable) bits, a robust Baldwin effect emerges after 33-269
generations. Thus, functional features that improve communication abilities may
become genetically fixed in the population. For example, vocabulary learning is
likely to rely on innate domain-general abilities for establishing reliable
mappings between forms and meanings (e.g., Bloom, 2002). As such, the
ability to acquire a large vocabulary may have become gradually innate by way
of the Baldwin effect because it would have increased communicative abilities.

4. General Discussion

These results indicate that the Baldwin effect may not provide a suitable
evolutionary mechanism for explaining the emergence of arbitrary features of
language. Rather, the results suggest that functional features that facilitate
communication may be a better candidate for aspects of language that have come



to be genetically fixed over evolutionary time. For a trait to be amenable to the
Baldwin effect, it needs to be stable over a period of many generations.
Functional features are stable in that they facilitate communication on a
continuous basis and thus are likely to become ‘Baldwinized’ when
communicative abilities affect selective fitness in a population. In contrast,
abstract linguistic features are free to change randomly exactly because they are
non-functional and not subject to direct selective pressures. More generally, the
simulations raise doubts about the gradual evolutionary emergence of a UG, as
proposed by Pinker & Bloom (1990), and instead support a cultural
transmission model of language evolution in which the Baldwin effect has
enabled certain cognitive/functional features to become genetically encoded.
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