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Abstract-This paper presents the finding that the invocation of new words in human language 
samples is governed by a slowly changing Poisson process. The time dependent rate constant for this 

process has the form 

X(t) = X1 (1 - A$) emXat +X3 (1 - A&) emAqt +X5, where Xi > 0, i= 1,...,5. 

This form implies that there are opening, middle and final phases to the introduction of new words, 
each distinguished by a dominant rate constant, or equivalently, rate of decay. With the occasional 
exception of the phase transition from beginning to middle, the rate X(t) decays monotonically. Thus, 
A(t) quantifies how the penchant of humans to introduce new words declines with the progression of 

their narratives, written or spoken. 
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INTRODUCTION 

The present paper began with an investigation of how new words are introduced into written or 

spoken texts. Prior work [l] f ound that the introduction of new words is approximately Poisson 

with respect to word position into the narrative. The data for these prior works were text samples 

less than several hundred words long, in contrast to the present works each of which exceed 600 

words in length. 

More careful study of longer narratives suggests that the new word process is governed by a 

slowly evolving Poisson model, that is, a model for which the probability of an event in a small 

time interval h has the form X(t)h + o(h) where o(h)/h -+ 0 as h + 0 [2-51. Figure 1 gives the 
histogram for waiting times to new words at the end of each quarter of Martin Luther King’s 

speech (“I had a dream . . . “), where the waiting time is the number of words between a new 

word and a next new word. 

Note that the sample standard deviations are comparable to the means, a sign of an exponential 
population. This suggests that the waiting times between new words have a signature of a Poisson 

process-a negative exponential density. The sample means, whose reciprocals should estimate 

the Poisson rate constant, grow from quarter to quarter. This is evidence for a Poisson process 
which evolves by slowing. 

The repeated discovery of such findings as in Figure 1 across many samples led to the present 
position that a slowly evolving Poisson process governs the way speakers and writers introduce 
new words into their text. 
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SYMBOL COUNT 
X 205 

EACH SYMBOL REPRESENTS 
INTERVAL 
NAME 25 50 75 100 125 150 175 200 

*1 
*2 
‘3 
*4 
“5 
+6 
*7 
*8 
*9 
‘10 

+____+____+__-_+____+_---+----+----+----+ 
+xxxxxxxxxxxxxxxxxxXxxx 
+xxxxxxxxxxx 
+xxxx 
+x 
+x 
+x 
+x 
+ 
+ 
+ 

MEAN ST.DEV. 
2.000 1.785 

5 OBSERVATIONS 
FREQUENCY PERCENTAGE 
INT. CUM. INT. CUM. 

108 108 52.7 52.7 
56 164 27.3 80.0 
21 185 10.2 90.2 

5 190 2.4 92.7 
3 193 1.5 94.1 
5 198 2.4 96.6 
4 202 2.0 98.5 
0 202 0.0 98.5 
2 204 1.0 99.5 
0 204 0.0 99.5 

(a). Histogram of new word waiting times, first quarter of Martin Luther King’s 
speech. 

SYHBOL COUNT MEAN ST.DEV. 
X 336 2.438 2.126 

EACH SYZlBOL REPRESENTS 5 OBSERVATIONS 
INTERVAL 
NAME 25 50 75 100 125 150 

+____+____+____+____+_---+----+- 

l 1 +xXXXXXXxxxxxXXXXXXXxxxxXXXXXx 
*2 +xXXXXXXXxxxXXxXXXXx 
*3 +xXXxXXXX 
*4 +xxx 
*5 +XX 
*6 +xXX 
*7 +x 
*8 +x 
*9 +x 
*10 + 

FREQUENCY PERCENTAGE 
175 200 INT. CUM. INT. CUM. 

___+____+ 
144 144 42.9 42.9 

94 230 28.0 70.8 
38 276 11.3 82.1 
14 290 4.2 86.3 
12 302 3.6 89.9 
15 317 4.5 94.3 

7 324 2.1 96.4 
4 320 1.2 97.6 
5 333 1.5 99.1 
1 334 0.3 99.4 

(b). Histogram of new word waiting times, first half of Martin Luther King’s speech. 

SYMBOL COUNT 
X 433 

EACH SYNBOL REPRESENTS 
INTERVAL 
NAME 25 50 75 100 125 150 175 200 

+____+____+____+____+__~~+----C----+----+----+ 

*1 +xXXXxXXxxXXxxxxxxXXXXXXxXXXXXXxx 
l 2 +xxxXXXXXXXXxxxXXXXXXXXx 
*3 +XXXXXXXxxXXx 
l 4 +xXXx 
*5 +xxXX 
*6 +XXXX 
*7 +xxx 
*8 +x 
l 9 +x 
*lo + 
*11 + 
*12 +x 
l 13 +x 
*14 + 
l 15 + 

MEAN ST.DEV. 
2.841 2.683 

5 OBSERVATIONS 
FREQUENCY PERCENTAGE 
INT. CUM. INT. CUM. 

161 161 37.2 37.2 
113 274 26.1 63.3 

61 335 14.1 77.4 
21 356 4.8 02.2 
20 376 4.6 86.8 
19 395 4.4 91.2 
14 409 3.2 94.5 

6 415 1.4 95.8 
6 421 1.4 97.2 
2 423 0.5 97.7 
1 424 0.2 97.9 
3 iii 0.7 98.6 
3 430 0.7 99.3 
0 430 0.0 99.3 
1 431 0.2. 99.5 

(c). Histogram of new word waiting times, first three quarters of Martin Luther 
King’s speech. 

Figure 1. Note: All histograms are plotted on the same scale. Frequencies of leas 
than 5 do not appear. 
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INTERVAL 
NAME 

*1 
*2 
*3 
*4 
*5 
f6 
*7 
*8 
*9 
l 10 
*11 
*12 
l 13 
*14 
l 15 

SYMBOL COL'NT 
X 516 

EACH SYMBOL REPRESENTS 

25 50 75 100 125 150 175 200 
+__-_+____+____+___-+____+----+----+____+ 
+xxxxxxxxxxxxxxxxxXXxxxXXxxxxxxxXXXxx 
+xxXXxxxxxxxxxxxxxxxxXXxXXx 
+xxxxXXxxxxxxxXX 
+xxxxx 
+xXXx 
+xXXxx 
+xXX 
+XX 
+xx 
+x 
+ 
+x 
+x 
+x 
+ 

XEaN ST.DEV. 
3.167 3.307 

5 OBSERVATIONS 
FREQUENCY PERCENTAGE 
INT. CUM. INT. CUM. 

180 180 34.9 34.9 
131 311 25.4 60.3 
74 385 14.3 74.6 
26 411 5.0 79.7 
22 433 4.3 83.9 
26 459 5.0 89.0 
15 474 2.9 91.9 
9 483 1.7 93.6 
10 493 1.9 95.5 
3 496 0.6 96.1 
1 497 0.2 96.3 
5 502 1.0 97.3 
5 507 1.0 98.3 
3 510 0.6 98.8 
2 512 0.4 99.2 

(d). Histogram of all new word waiting times of Martin Luther King’s speech. 

Figure 1 continued. Note: All histograms are plotted on the same scale. Frequencies 
of lass than 5 do not appear. 

DATA 

The data for this paper are drawn from a number of works by noted authors and speakers 

(Table 1). In all, twelve samples were selected, seven of which are noted oratory or prose, and 

five of which are monologues. The first group (Items 1 to 7 in Table 1) begins with two samples 

of oratory-Martin Luther King and Patrick Henry-followed by five of prose. As for the second 

group, the first four monologues (Items 8 through 11) were.given by the male and female members 

of couples studied elsewhere for the properties of emotional dialogues. The final monologue 

(Item 12) is a free narrative given by a subject in response to a 30 second advertisement. The 

data selected is thus quite diverse. 

Table 1. Authors and speakers. 

Sample Content 

1. King, I had a dream speech 

2. Henry, Give Me Liberty or Give Me Death 

3. Bacon, Of Friendship 

4. Addison, The Vision of Mirza 1711 

5. Defoe, The Education of Women 

6. Swift, A Treatise on Good Manners and Good Breeding 

7. Emerson, Gifts (1844) 

8. Monologue 1 

9. Monologue 2 

10. Monologue 3 

11. Monologue 4 

12. Monologue 5 

In each case, the word sequence is converted to an integer sequence by using word position 
as follows: the first word and all of its occurrences are replaced by the number 1, the second 
word-if different from the first-and all of its occurrences is replaced by the number 2, and so 
on. 
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For example consider the first few lines from The Soliloquy of Hamlet (Act iii, Scene 1 of The 
Tragedy of Hamlet): 

To be, or not to be: that is the question: 
Whether ‘tis nobler in the mind to suffer 
The slings and arrows of outrageous fortune, 
Or to take up arms against a sea of troubles, 
And by opposing end them. To die: to sleep;. 

The text is replaced by the integer sequence: 

1234125678 
9 10 11 12 7 13 1 14 
7 15 16 17 18 19 20 
3 1 21 22 23 24 25 26 18 27 
16 28 29 30 31 1 32 1 33. 

The above procedure transforms the original narrative from a sequence of words to a sequence 
of positive integers, with initial value 1. The distances between the occurrences of new integers 
in the sequence contain information on the generation of new words. 

METHOD: DATA ANALYSIS 

Let t be the number of words in a sample of text to a given point and let he(t) denote the 
histogram of waiting times between new words up to time t. The subscript C is used to suggest 
cumulative because the estimate of an exponential fit at time t is based upon a histogram that 
has presumably accumulated information from prior exponentials. For each t, we compute a best 
exponential fit to he(t) (see footnote’) and denote it Xc(t). The computed value of Xc(t) is 
the one giving the greatest confidence for goodness of fit using the Kolmogorov-Smirnoff (KS) 
criterion [6-81. Xc(t) is well fit, via nonlinear regression2, by functions of the form: Xc(t) = 
XreeXzt + Xse- X4t + &. The true rate function X(t) is inferable from Xc(t). Figure 2 plots the 
regression of Xc(t) for the King speech and is typical of all others in our sample. 

We take the present process as a discrete approximation to a continuous one and assume 
that X(t) is a continuous function defined on a closed interval. Suppose a continuous process 
is observed at discrete times kT/N, where k = 1,2,. . . N and T is fixed. At time kT/N the 
expected quantity to be added to he(t) is X(kT/N)/N. Multiplying by T/T, summing over k 

and letting N approach infinity leads to: 

Xc(T) = s,’ X(t) & 
T ’ 

or X(T) = (T&(T))‘. 

A more careful analysis observes that the quantity added to he(t), at time kt/N, is bk/N, 
where bk is a random variable, that the limit processes of summation (N) and expectation (bk) 

are presumed to commute, and that an ergodicity assumption is needed to assure the equality 
of the commuted limits. While we have no direct evidence for ergodicity, we note that human 
communicative processes are deeply stable and that the unfolding of any one realization tends to 
avoid abrupt or otherwise swift change. 

The integral form of the above equation implies, as one hopes, that X(t) - Xc(t) approaches 0 
as t approaches 0. The differential form implies that if Xc(t) is constant-as is the case for an 
ordinary Poisson process-then so is x(tj. Thus, the above equations do satisfy some of the first 
necessary conditions that come to mind in order for them to be correct. 

Figures 3A and 3B graph both Xc(t) and X(t) for the King data and for Monologue 3. At 
t = 0, Xc(t) and X(t) are equal, ss they should be. As t grows, Xc(t) falls below X(t), and for 

‘Esch he(t) had a correlation of .98 or better with the histogram data used to compute it. 
2Nonlinear computations were done with the BMDP statistical package. 
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Figure 2. xc(t) for Martin Luther King’s speech. P denotes predicted by the regres- 
sion. 0 denotes observed. * denotes agreement of P and 0 to within plot resolution. 

approaches from below the far field behavior of Xc(t)--asymptotic to X5. Given that 
Xc(t) is, in a sense, an acceleration of X(t), this geometry is to be expected. 

RESULTS 

Table 2 reveals that the cumulative rate constant Xc(t) is well fit by 

xc(t) = Ale -Xzt + X3e-x4t + As, where Xi > 0, i = 1,...,5. 

Indeed, the RMS’s are uniformly less than l/3% of the asymptotes. Using the differential equation 
above this implies that the true rate function A(t) is: 

X(t) = Al(l - Ast)e-x2t + X3(1 - X4t)e -ht + xg. 

The derivative of X(t) is: 

x’(t) = &xs(-2 + &t)e-xzt + &j&(-2 + k&+4t. 
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Table 2. Nonlinear regressions on raw estimated rate constant. 

Work Word A1 x2 x3 x4 x5 RMS DF R Nz 

Length 

104 K 1641 2.6382 -0.0244 0.7288 -0.0020 0.3978 0.00168 1622 .9928 3 

108 H 1220 1.5541 -0.0098 0.7192 -0.0004 0.0287 0.00133 1199 .9931 3 

107 B 2590 2.7878 -0.0293 0.5557 -0.0013 0.3658 0.00208 2576 .9853 3 

109 A 1795 1.8230 -0.0267 0.6973 -0.0021 0.3843 0.00119 1783 .9928 3 

110 D 1406 1.5481 -0.0348 1.0077 -0.0034 0.3770 0.00087 1392 .9958 1 

111 s 1945 1.9742 -0.0387 0.6724 -0.0023 0.4590 0.00102 1922 .9887 3 

112 E 1509 1.9958 -0.0236 0.7133 -0.0017 0.3899 0.00138 1485 .9915 3 

044 M 1756 1.4318 -0.0183 0.9129 -0.0027 0.3108 0.00092 1743 .9961 1 

045 M 3511 6.7154 -0.0498 0.7820 -0.0014 0.3076 0.00118 3481 .9900 3 

046 M 1870 1.0711 -0.0146 0.6121 -0.0022 0.3099 0.00076 1857 .9942 1 

047 M 1720 2.8870 -0.0531 0.8972 -0.0026 0.3800 0.00074 1698 .9560 3 

083 M 995 3.6885 -0.0911 0.6749 -0.0026 0.2626 0.00078 981 .9930 3 

DEFINITIONS. 
Word Length: the number of words in the work. Xl, X2, X3, X4, X5: parameters of the regression model: 

J+,(t) = Xre-x2t + Xse-X4t + X5. 

RMS: residual mean square of the regression. 
DF: degrees of freedom. 
R: correlation between fitted and observed data. 
N,: the number of zeros of x’(t) where 

J.(t) = X1(1 - X2t)emxzt +X3(1 - X4t)e-X4t +X5, and 

X’(t) = &x2(-2 + X&-x2t +&x4(-2 + X4t) 62--x4t. 

Thus x(t) is decreasing when t < 2min(l/Xa,l/X& increasing when t > 2max(l/Xz, l/Ad) 

(Figures 3A and 3B) and X’(t) can vanish only in (2/X2,2/&), where we adopt the convention 

that X2 > X4. In particular, A’(t) is 0 when: 

x1x2 (3 x3x4 

,(XI-Xz)t - 2 - X4t or 
2 - X,t 

In AlX2 

( > 

- 
x3x4 

+ (X4 - X2)t = In 
(-S). 

The zeros of A’(t) can be estimated by graphing the linear and In function above together. Such 

a graph makes it clear that A’(t) can vanish 1 or 3 times (Figure 4). 

In order for A’(t) to vanish twice the linear function must have the unlikely geometry of being 

tangent to the In function at some point. This is an interesting degenerate case because if A’(t) 

vanishes one or three times, then X(t) approaches its asymptote-&-from below, but if A’(t) 

vanishes twice then X(t) approaches its asymptote from above. In the present data, all derivatives 
vanished either one or three times, a point we discuss below. 

When A’(t) vanishes three times the geometry of X(t) is complex, involving two local minima 
and one local maximum, a notch configuration as in Figure 3A. On the other hand, when A’(t) 
vanishes once the geometry of X(t) is simpler and more graceful as in Figure 3B. 

PHASES OF NEW WORD GENERATION 

The form of X(t) implies that the generation of new words, written or spoken, has a beginning, 
middle and final or asymptotic phase. Figure 3 suggests an almost piecewise linear model for the 
phases. All three are operative at t = 0, with the first and then the second becoming essentially 

extinct after some time. 
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(a). The cumulative rate, xc(t) and the true rate, X(t) for Martin Luther King’s 

speech. Xc(t) is the upper plot. 
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(b). The cumulative rate, xc(t) and the true rate, X(t) for Monologue 3. xc(t) is 

the upper plot. 

Figure 3. 

There are no instances in the present data where A’(t) vanishes twice. As noted, this cor- 
responds to approaching the asymptote from above, an event of ongoing fatigue. When A’(t) 
vanishes 1 or 3 times, the far field behavior of x(t) is to approach its asymptote, Xs, from below. 
There is, thus, something of an overall U-shape to X(t). This is a familiar phenomenon in human 
task activity and is usually interpreted to signify entry into an activity with gusto, followed by 
fatigue, and concluding with fresh energy in anticipation of quitting the task. 
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(a). Plot of ln(Xr&/Xs&) + (X4 - X2)t and ln(-(2 - &Q/(2 - X2t)) to locate the 
number of zeros of A’(t) for Martin Luther King’s speech. Note: There are 3 points 
of intersection. Two are in the upper left hand corner, and one in the lower right 
hand corner where the linear function meets the (unplotted) asymptote to -oc of 
the In function. 
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(b). Plot of ln(XrX2/XsX4) + (X4 - Xz)t and ln(-(2 - X&)/(2 - X2t)) to locate the 
number of zeros of X’(t) for Monologue 3. Note: There is 1 point of intersection in the 
lower right hand corner where the linear function meets the (unplotted) asymptote 
to -oo of the In function. 

Figure 4. 
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When X’(t) vanishes 3 times-the notch in X(t) as in Figure SA-there is a “local” U at the 
transition from phase one to two. This corresponds to exit from phase one, a fatigue event, 
followed by recovery with entry into phase two. Overall then, one may wish to infer that both 
phase transitions-one to two and two three-begin with fatigue and conclude with recovery into 
the next phase. In this case, there are two U’s, one for each transition. These tentative inferences 
open the question ss to what does a single zero of x’(t) signify. 

NUMERICAL RANGE 

The parameters in Table 2 are tightly clustered and give little surface suggestion as to whether 
x’(t) vanishes 1, 2 or 3 times. The question must be advanced: is the presence or absence of the 
notch (3 zeros for x’(t)) a result of the method of estimation? It is well known that small changes 
in the parameters for a sum of exponentials fit can produce large changes in the resulting fit. 

We believe that the absence of the notch-a single zero for X’(t)-is the result of ill conditioning. 
There is a uniform recovery from the middle phase to the end phase in every case. This is the 
longest regime in the data, commencing at about 2/X2 as compared to the interval from t = 0 
to 21x2 where the first transition can be identified. That is, it appears to be in the nature of 
the process to provide enough data to fully identify the second phase transition but not always 
the first. Prior experience indicated that at least 600 words are necessary to estimate Xi, X2, Xs, 
X4, and Xs. The present samples of text, ranging from 995 to 3511 words, favor more accurate 
estimation of the middle to final phase. 

In addition, as illustrated in Figure 3B, where there is no notch, there is still a tumescence (an 
interval where x”(t) < 0) in the graph of X(t)-suggesting that the sensitivity of the estimation 
method, and/or an insufficiency in the amount of data, is obscuring a real notch. 

The U-shaped performance curve is well known and is expectable in a fresh domain. We also 
believe for this nonmathematical reason that the absence of the notch implies an estimation 
problem versus a distinctive feature. Finally, we are convinced too that the unanimous absence 
of data for which x’(t) vanishes twice speaks for itself in arguing that x’(t) has 3 zeros. 

INDIVIDUAL DIFFERENCES 

The present sample is too small to support the inference of significant differences. However, 
there are suggestions in Table 2 of differences between the noted authors and speakers (l-7) as 
compared to the anonymous monologues (8-12). With the exception of Patrick Henry there is 
some tendency for the first group to have higher asymptotes the second group. Table 2 also 
suggests that the second group has more variety in the parameters 1 and 2 than the second. 

CONCLUSION 

The generation of new words in spoken or written text appears to be an evolving Poisson 
process having a distinct beginning, middle and final phase. The functional form of the time 
dependent rate X(t) reveals that the new word rate begins with a relatively large opening burst, 
after which it declines. The decline is sometimes monotonic and is otherwise interrupted by a 
brief notch in phase transition from beginning to middle. 

The finding of an evolving Poisson process for new words is continuous with prior results. We 
found this process in studying monologues and the members of emotionally charged 
dialogues [g-11]. We argue that if another observable, contained within word sequences, de- 
fines a Poisson process then it is likely to do so as a macro-recapitulation of a more primitive 
Poisson process. Indeed, we conceptualize the new word Poisson process as a “carrier” or even a 
generator for higher order processes whose definitions are contained within the words themselves. 

No cases were observed for which x’(t) vanishes twice. Thus, there is no data for which (t) 
approaches its asymptote from above. We take this as evidence that humans generate new words 
without asymptotic fatigue and note that this also characterizes most known human tasks. 
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The new word generalized Poisson process is nonstationary but is probably independent of 
its initial point in a long sample of text. More data and analysis are required to verify this 

conjecture. This form of translation invariance, if verified, would suggest that the process has 

some ergodic properties. 
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