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� We develop a neutral model of the evolution of word frequencies.

� We compare the frequency of stable words in American and British English as annotated by Google Ngram.
� Empirical word frequencies deviate from neutral simulations indicating selective processes.
� Word frequencies vary in concert with one another as influenced by cultural forces.
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In biological evolution traits may rise and fall in frequency due to genetic drift, where variant frequencies
change by chance, or by selection where advantageous variants will rise in frequency. The neutral model of
evolution, first developed by Kimura in the 1960s, has become the standard against which selection is detected.
While the balance between these two important forces – drift and selection – has been well established in
biology there are other domains where the contribution of these processes is still coming together. Although
the idea of natural selection has been applied to the cultural domain since the time of Darwin, it has proven
more challenging to positively identify cultural traits under selection both because of a lack of established tests
for selection and a lack of large cultural data sets. However, in recent years with the accumulation of large
cultural data sets many cultural features from pre-history pottery to modern baby names have been shown to
evolve according to the neutral theory. But there is accumulating empirical evidence from cultural processes
suggesting that the neutral theory alone cannot account for all features of the data. As such, there has been a
renewed interest in determining whether there is selection amidst drift. Here we analyze a subset English word
frequencies, and determine whether frequency change reveals processes of selection.

Inspired by the Moran and Wright–Fisher models in population genetics, we developed a neutral model of
word frequency variation to assess when linguistic data appears to depart from neutral evolution. As such, our
model represents a possible “test for selection” in the linguistic domain. We explore how the distribution of
word use has changed for sets of words in English for more than 100 years (1901–2008) as expressed in
vocabulary usage in published books, made available by Google Ngram. When comparing empirical word
frequency changes to our neutral model we find pervasive and systematic departures from neutrality.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Evolution refers to the process by which a system changes over
time. While most commonly thought of in the biological context of
genetic heritability, the concept of evolution applies far more broadly.
),
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In particular, cultural phenomena have long been considered in the
context of evolutionary processes. Indeed, not long after Darwin's
“Origin of the Species” (Darwin, 1859), Schleicher (1869) wrote “What
Darwin lays down of the animal creation in general, can be equally
said of the organisms of speech.” Although the evolutionary process is
quite different in these two domains, two forces are thought to
account for much of the observed variation – selection and drift.

In many cases, cultural change seems governed by the neutral
theory, derived from concepts of genetic drift (Boyd and Richerson,
1988; Crow and Kimura, 1970; Neiman, 1995). This powerful account
playground for tests of selection: Mathematical approaches to
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of evolutionary dynamics – that variational change is purely fre-
quency dependent – has been applied to everything from pre-history
pottery (Bentley et al., 2004) to modern baby names (Hahn and
Bentley, 2003) and much more besides (see Bentley et al., 2011, for a
review). A chief goal of those using the neutral theory is to demon-
strate that aggregate statistical properties of cultural variants exhibit
structure that is elegantly predicted by the theory. In this paper, we
consider the case of vocabulary change across a century of published
books. Indeed, in this linguistic domain, the neutral theory has
already been successfully applied. It shows the power-law relation-
ship between word frequency and cumulative probability (Reali and
Griffiths, 2009), patterns of color word use (Acerbi and Bentley, 2014)
and other cultural products related to language e.g., turnover in
academic terminology: (Bentley, 2008).

Processes of selection have also become influential in the cul-
tural domain, but there is continued debate about the nature of
the selective mechanisms. For example, Acerbi and Mesoudi
(2015) note that most researchers in this domain are now cultural
Darwinists, yet there is still debate about the nature of the selec-
tion itself.2 Processes of selection may be driven mostly by indi-
vidual cognitive agents, making copies of variants present in the
cultural pool. Statistics at the population level are driven by
individual, local decisions. Another quite different perspective is
that there are constraints inherent in the cultural variants trans-
mitted that may dictate their fitness – which may reflect
mechanisms outside the individual. For example, certain cultural
or behavioral patterns may be more or less memorable, so that a
cognitive agent may be more or less constrained by the structure
already present in the cultural milieu. As Acerbi and Mesoudi
(2015) note, it is likely that both of these processes are relevant to
cultural evolution and change – we need new tools to explore
these mechanisms and identify signatures of selection.

With the recent accumulation of massive cultural datasets, there
has been a renewed interest in identifying selective elements
amidst the cultural drift.3 For example, in the domain of baby
names, Gureckis and Goldstone (2009) demonstrated that name
choices are biased by potential cultural factors, such as the popu-
larity of a name. They do this by demonstrating that the patterns of
change across years, for various names, are best captured by models
that factor in such choice biases. Acerbi and Bentley (2014)
demonstrate that processes of selection may be present in various
cultural domains, such as popular songs and baby names (see also
Bentley, 2008). They use patterns in “turnover rates” for variants –

the extent to which a song or baby name pops out of top lists. Their
measure of turnover exhibits a distribution that is not as well
predicted by the neutral theory as a model that includes biases,
such as selection by conformity (for similar discussions in other
domains see Kandler and Shennan, 2013; Steele et al., 2010).

There has been considerable discussion about these and other
tests of selection, and their effectiveness in determining the pre-
sence of selection in natural systems (see Linnen and Hoekstra,
2009, for review). For example, recently, (Zhai et al., 2009) con-
ducted a study of the statistical power of various tests of selection
in simulated biological evolution. One finding they describe is that
if selective sweeps over variants are relatively rare, then popula-
tion genetic tests will have little statistical power to detect them.
These kinds of tests have been elegantly applied in the cultural
2 In language, for example, adaptationism has become a prominent way dis-
cussing language origins and change especially due to Pinker and Bloom (1990).
There is extensive ongoing investigation about the locus of selection – whether
genetic, individual, cultural, and in what combination (Christiansen and Kirby,
2003; D'Andrade, 2002; Hurford et al., 1998).

3 This also occurred, to some extent, sometime ago when the neutral theory
was proposed in population genetics models; considerable evidence has since been
adduced that selection is a relatively frequent phenomenon (Gillespie, 2004).
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domain, as well. For example, Rogers and Ehrlich (2008) compared
functional vs. symbolic features of canoes from cultures in Poly-
nesia. Using statistics of the sort in population genetics with silent
vs. non-silent variants, they find that functional features have
stabilized, while symbolic features tend to change more quickly.

Given these previous studies, there is ample room for developing
and exploring new ideas about selection, especially in the cultural
context. The recent advent of “big data” in social and cultural sci-
ences offers new “data playgrounds” to explore the change in cultural
variants. These new sources of data may reveal new techniques and
principles in various cultural domains, such as the analysis of his-
torical word-frequency changes. If the principles underlying this
change are non-trivially similar to those in the biological cases, then
development in one domain will be of use to the other. We note that
detecting selection in biological data sets is a comparatively well-
studied problem. Adapting selective tests to cultural evolution is
complicated by significant differences between cultural and biologi-
cal evolution. For example, the concept of “alleles” – heritable ele-
ments which selection is thought to operate on – and “inheritance”
are far more rigid in the biological domain than in the linguistic or
cultural domain. But while the relationship between biological and
cultural evolution is imperfect, commonalities between the two
domains mean that similar evolutionary models and statistical tests
may be shared (Mesoudi, 2007). Throughout our analysis and dis-
cussion, we discuss commonalities and differences between evolu-
tion in the linguistic and biological domain.

In this study, we take three approaches to exploring the
domain of vocabulary change. First, we develop a simple mathe-
matical model representing neutral evolution of word frequencies.
Of course, the precise nature of the neutral model is crucial for
drawing any inferences (Blythe, 2012), and we do not mean to
propose a definitive neutral model that accomplishes the best
contrast with a system that shows selection. Instead, it offers a
tractable basis for developing expected statistical properties under
the fundamental “random copying” conditions that have been
proposed in other cultural domains (e.g. Hahn and Bentley, 2003).

Second, we implement this neutral model in a series of simu-
lations that have properties of expected word frequency distribu-
tions (Zipf, 1949). This allows us to demonstrate the effectiveness of
the mathematical formalism in precisely describing neutral numeric
simulations. The simulation also offers a numerical baseline with
which to compare the observed Google Ngram data.

Third, finally, we conduct an analysis of word frequency change
in English from 1901 to 2008 through Google Ngram (Michel et al.,
2011), calculating the measures that are used in the mathematical
and simulated models. The “playground” we chose for this paper
was intended to be very simple to facilitate derivation and dis-
cussion. First, we ignore for the present paper the possibility of
words to “turnover” – instead, we focus on a set of “stable var-
iants,” those which occur in all of the years from 1901 to 2008
(N¼6489) in at least 1000 books each year. This means our ana-
lyses are on the variation over time within this closed set of words
– words may grow or diminish in prominence, but they do not
vanish from the “population.” We note that focusing on “stable”
linguistic variants has a strong analogy to examining biological
evolution by examining changes in a “core” set of genes and not
the entire genome (Daubin et al., 2002).

The tests of selection we propose may provide a basis for
determining the presence of “selective sweeps” (Zhai et al., 2009),
and mining the data for clusters of words that are undergoing
selection, and at what time. Previous work on Google Ngram uses
intuitive and well-known historical events to find these patterns
(Michel et al., 2011). In our case, we assume that we do not know
that interesting patterns of change are occurring, and use the tests
of selection to (i) determine that change exceeds random copying
and (ii) find the clusters in which the change is occurring.
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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Fig. 1. Books per year in Google Ngram. Our analysis considered only the set of
“stable variants,”words which occurred each year from 1901 to 2008 and in at least
1000 books per year. Since each year had at least 7000 annotated books, our
restriction required that words in consideration, at most, occurred in 14% of the
books in each year.
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We design statistical signatures that are suitable for data that
contain historical change over a probability distribution of var-
iants. Akin to Gureckis and Goldstone (2009), we argue that pat-
terns of frequency change in historical data are crucial ingredients
to assessing neutrality or selection. Statistical signatures derived
from these historical data show that there is pervasive and sys-
temic departure from neutrality. In particular, we focus on three
statistical signatures present in the Google Ngram data.

First, we note deviations in the kurtosis of frequency changes. Selec-
tion amplifies or dampens the change inword frequencies, by operating
at the tails of variational drift, producing increased kurtosis in the dis-
tribution of even first-order frequency changes. Second, we note non-
independent changes in word frequencies. Words are part of a broader
cultural system and so their frequency changes are not statistically
independent of each other; a dimensionality reduction over frequency
changes demonstrates latent structure underlying vocabulary change.
Finally, we provide statistical evidence that changes in word frequencies
are complex. The frequency change of words seems to be generated by
complex and often biased models. That is, word frequencies exhibit
fluctuations which are not indicative of random unbiased copying.

Though the neutral model does a very good job of accounting for
broad statistical characteristics of the observed Google Ngram data,
we find distinct departures from neutrality. The measures we
explore offer new ideas in the cultural domain for tests of selection,
and suggest that both neutrality and bias are part of the story of this
closed set of English words. In the General Discussion, we revisit
concerns about cultural selective mechanisms, as described in
Acerbi and Mesoudi (2015). The statistical signatures we introduce
may help us to identify cultural constraints at the population level,
highlighting the role of shared structure across word-use patterns.
For example, a global event such as a world war presents obvious
strong external structure that shapes word usage. The presence of
such an effect is obvious, but as we demonstrate, if we did not know
about such cultural events, it would be possible to identify these
“selective sweeps” over words using the analyses we describe.
2. Methods

2.1. Google Ngram data

The cultural domain we explore in this paper is how the distribu-
tion of word use has changed for the set of words that occur in both
American and British English from 1901 to 2008. There are impressive
data available through Google Ngram for this purpose, offering a pre-
cise distribution of word occurrence across these years. Although this
data set represents only a limited view of cultural evolution, compu-
tational and quantitative exploration of vocabulary change is in and of
itself a highly active area of research (e.g. Dale and Lupyan, 2012;
Michel et al., 2011; Reali and Griffiths, 2009; Lieberman et al., 2007;
Petersen et al., 2012b, 2012a), and indeed vocabulary is a chief source
of data regarding cultural change itself (e.g., recently, Anthony, 2010).

As mentioned in the introduction, we first identify the subset of
words in the Google Ngram data set which correspond to “stable
variants”. These are words which have been a stable part of the
English language during the entire time span in question. In our
analysis, we restricted to the set of words that occur in at least
1000 books per year in each of the years under consideration
(1901–2008). There were over 7000 books annotated for each year
considered (see Fig. 1) books, peaking at 149,373 books in 2008. In
total there are 6489 words present in the current data set,
representing the stable vocabulary set for English across 108 years.

Although restricting to only the stable variants in the Google
Ngram data set removes the process of loss and gain of words, it is
analogous to a research approach in the biological case. By
restricting the data set to this subset we are performing the
Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
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analogous study to examining evolution of an organism by focusing
on fluctuation in the “core genome” (Hsiang and Baillie, 2005;
Richter and King, 2013; Waterhouse, 2015; Tatusov et al., 2003).

To compare Google Ngram data to our neutral model, we nor-
malize the empirical word frequencies. First, we convert all word
frequencies to normalized proportions for each year from 1901–
2008. Next, we convert the frequency of each word to its z-score.
That is, if f w;t is the frequency of word w at time t, and Y is the
number of years, we determine the mean and variance of the
empirical distributions:

f w ¼ 1
Y

� �X
t

f w;t ; ð1Þ

and

σf w

� �2 ¼ 1
Y

� �X
t

f w;t� f w
� �2

: ð2Þ

Then, we convert the empirical distributions to their normal-
ized frequencies (z-scores):

pw;t ¼ ðf w;t� f wÞ=σf w : ð3Þ

We note that if the data were generated independently accord-
ing to the neutral model, we expect pw;t �Nð0;1Þ. In the analysis
below, we also consider the change in normalized frequency:

Δpw;t ¼ pw;t�pw;t�1 ¼ ðf w;t� f w;t�1Þ=σf w : ð4Þ

Under the assumptions of neutrality, we expect Δpw;t �Nð0;2Þ.

2.2. Neutral model of word frequency evolution

We take as inspiration for our work the neutral theory of
molecular evolution first proposed by Kimura (1985) and the
Wright–Fisher model (Ewens, 2004). In the simplest formulation
this neutral model considers a haploid asexually reproducing
population of N individuals. We map the Wright–Fisher model
from biological to linguist evolution by considering each word as
an allele; our trait of interest is the frequency of an allele at a
particular locus, denoted as black, white and gray circles in Fig. 2.
In the neutral model, all alleles have equal fitness and so indivi-
duals are chosen from the previous generation at random. Thus,
while in expectation allele frequencies remain constant, they will
vary as an unbiased random walk.

We adapt the neutral Wright–Fisher model to the linguistic
domain in a straightforward manner. We consider the population
in a given year as the concatenated text of all books from that year.
The frequency of a word is simply the number of instances in that
word divided by the total length of the concatenated text. We
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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generate the text for the following year by randomly sampling
words from the previous year, just as in the Wright–Fisher model.

Finally, to model the word frequency data from Google Ngram
we add some additional detail. First, as we were interested in the
frequencies of stable linguistic variants, we track only a subset of
the full collection of words and we require that each word is
sampled at least once in the next generation. Second, as the size of
written texts increases throughout the term of our study, we
considered size of the text at each successive generation to
increase in accordance with the empirical data from Google
Ngram. Third, to more accurately model the frequencies of words,
we begin with the underlying assumption that the initial fre-
quencies of words sampled in the population follow a Zipf dis-
tribution by seeding the simulation with the empirical distribution
of our stable variants at the year 1901.

Although word frequencies generated by this neutral model are
dependent, analysis of simulated data indicated that these depen-
dencies were weak. Thus, for computational simplicity, in the
results below we generate word frequency trajectories according to
the neutral model by sampling each word independently.

As for the Google Ngram data, distributions of our neutral model
are converted into their corresponding z-scores. As mentioned above,
Fig. 2. Wright–Fisher model. In the Wright–Fisher model of evolution individuals in
generation ðtþ1Þ are chosen from the previous generation t by random. This frequency
dependent selection creates allele frequencies which vary as an unbiased random walk.

Fig. 3. Simulations of neutral model. Computational simulations of the neutral model dem
holds between log word rank and word frequency. (B) Word frequency changes are nor

Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
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according to the neutral model, we expect each word trajectory to
behaving as a normal random variable with μ¼ 0 and σ ¼ 1. Indeed
as shown in Fig. 3, computational realizations of our neutral process
do generate frequencies with the expected distributions of normality
Nð0;1Þ and as expected kurtosis K¼0. In what follows, we system-
atically examine differences between simulations of our neutral
evolutionary process and the Google Ngram data.
3. Results

3.1. Frequency changes exhibit excessive kurtosis

We first consider the overall stability of word frequencies by
examining the patterns in the change of frequency. Under the neutral
model, we expect changes in word frequencies to follow a normal
distribution and, as such, would have excess kurtosis (K) near 0. Our
core set of words deviate with significantly high K. The higher the
excessive kurtosis, the more likely that future changes in frequency
will be either extremely small or extremely large (Rachev et al., 2011).
As such, kurtosis is sometimes termed the “volatility of volatility.”

Words in the observed data can show much greater kurtosis in
the frequency distribution over the century of data. Each word can
be given a K value from its own century worth of data (the dis-
tribution of its changes from 1901 to 2008). In Fig. 4 we show the
distribution of K values for each word on a log scale, because some
words exhibit very high K values. In the comparative neutral
model, K is significantly greater than 0, but the general distribu-
tion of observed words has a much longer tail and by a Kolmo-
gorov–Smirnov (K–S) test shows a difference in distribution,
D¼ 0:19; po10�10, and a t-test finds a different in mean, Welch's
tð7635:51Þ ¼ 21:8; po10�10. These results remain strongly sig-
nificant in log-transformed data, p0so10�10.

Positive kurtosis in a distribution can be commonly attributed
to two factors: the presence of outliers in the distribution or that
the underlying distribution itself is non-normal. For example, in
the inset of Fig. 4 we observe that the frequency in the word
“landing” increases substantially during the 1940s.

We continue to assess the presence of outliers in our data by
examining the year-to-year variation in frequencies. We find even
more substantial differences in the tendency for frequency change
to take place within a year. By taking the year-to-year difference in
frequency, and assigning a K value to the distribution of change
within each year, we see substantial divergence from neutrality.
Observed data involved considerably higher entropy, suggesting
that words tend to change much more erratically from year to year
thanwhat would be expected from the neutral model. Again, a K–S
test shows substantial differences in the log-transformed data,
D¼ 1; po10�10, and the means of these distributions are, of
course, significantly different, Welch's tð108:15Þ ¼ 18:7; po10�10.
In Fig. 5, observed data are in green, and neutral data in red. The
correlated behavior of word frequency changes per year is indi-
cative of the influence of non-neutral forces acting on the tem-
poral dynamics.
onstrate expected behavior in the z-scores and kurtosis (K). (A) Zipfian distribution
mal. (C) Word frequency changes have K near approximately 0 (normal).

playground for tests of selection: Mathematical approaches to
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Fig. 4. Kurtosis of empirical word frequencies. We examine the kurtosis in the change
of word frequencies. By analyzing the center of changes in word frequencies for each
word, we find that the observed Google Ngram data (green) has substantially higher
kurtosis that the our neutral model (red). In order to plot on log scale, we use K
where normality¼3 (i.e., non-excess K). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Kurtosis by year. We take the 107 (Y�1) distributions of frequency changes
and plot the density function of the K for these within-year fluctuations (green).
There is distinct departure from neutrality (red), indicating that the year-to-year
frequency changes are non-normal. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. Cultural effects on word frequencies (“war” and “Germany”). Word frequencies
change visibly due to the impact of culture. In this case we note that the fre-
quencies for “war” (x) and “Germany” (o) change in a highly correlated fashion
likely due to the response from World War I and World War II.
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3.2. Correlated word frequency changes

Our interpretation of the non-neutral behavior is that words
change in their frequency due to the influences of social and cul-
tural forces. If this is the case then, unlike the neutral model where
word frequencies would change independently, we expect the
observed word frequencies to undergo changes in concert. Previous
Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
detecting selection in word use. J. Theor. Biol. (2016), http://dx.doi.o
studies such as Petersen et al. (2012a) and Michel et al. (2011) have
observed cultural forces influencing word frequencies and we see
similar behavior. For example, we observe a similar distribution of
word frequencies for “war” and “Germany” during this 108-year
period in a manner that reflects the temporal impact of WorldWar I
and World War II (see Fig. 6).

We sought to determine the extent to which word frequencies vary
together. A simple way to examine large data sets for the signature of
dependence is through a principal components analysis (PCA) of the
data set. PCA is a computational technique to explain the spread
variance in a (usually) high dimensional data set (Pearson, 1901). In
our data, we have a total of 6489 words each of which we can treat as
a point in either the 108-dimensional space of normalized frequencies
ðpw;tÞ or 107-dimensional space of frequency changes ðΔpw;tÞ.

PCA is closely related to the singular value decomposition (SVD)
and is an attempt to uncover lower dimensional structures. Math-
ematically, it is often interpreted as fitting an ellipsoid of minimal
radii around a cloud of points. If all axes of the ellipsoid have similar
length, this would suggest the data are unstructured. If a few
directions – principal components – have substantially longer axes
than others then this suggests significant correlation and that the
high-dimensional data can be well described by lower-dimensional
projection along the extremal principal components.

As evident in Fig. 8, we observe significant deviation from
neutrality for the empirical data. We observe the very similar PCA
structure for the normalized frequencies between the empirical and
neutrally simulated data, though there is still a significant difference
in the drop in component score for the observed data: by K–S test
D¼ :32;po10�4, though mean PC score cannot be inferred to be
different, Welch's tð213:9Þ ¼ :23; p¼ :82. For the frequency change
patterns, we find much greater different in the observed principal-
component scores, with the observed data having much more
lower-dimensional structure, K–S test D¼ :39; po10�6, and means
are different, Welch's tð124:9Þ ¼ 5:3; po10�6. In particular this
observation shows that our “core” words undergo dependent
changes in frequency which are likely the response to cultural
phenomena.
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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Fig. 7. Words changing together in time. PCA results from frequency changes show that words move together in ways that are intuitive when we look for most-closely similar
words in component space. Here, we show the words most correlated in their frequency changes with ‘music,’ ‘trade,’ and ‘war,’ and ‘weather.’

Fig. 8. Principal component analysis. We examine both our empirical data as well as simulated neutral data through principal component analysis (PCA). (A) We note that
there is no difference in variances associated with the principal components for the word frequencies. However, when we examine the change in word frequencies. (B) We
observe significant differences in the empirical Google Ngram data.
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Although the cultural impact of global war has been previously
noted (Petersen et al., 2012a), the use of PCA provides a historically
agnostic way to identify forces and patterns of correlated change.
We identify relevant clusters of correlated words by projecting
them onto the lower-dimensional space characterized by the 10
largest principal components. We consider two words to be
“highly correlated” if their Pearson correlation coefficient exceeds
Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
detecting selection in word use. J. Theor. Biol. (2016), http://dx.doi.o
0.9. As expected, the empirical data exhibits significantly more
highly correlated pairs of words (58,181 pairs with 0.9 correlations
or greater) than data generated under the neutral model (14,635).
We can now choose words of interest and find which words lie in
their “historical cluster” of nonindependent change (see Fig. 7).

It is worth noting, as we will revisit below, that these non-
independent changes in word frequencies mirror the genetic
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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Fig. 9. Sign of frequency change. In order to employ causal state modeling (CSM) we
translate our word frequencies to a discrete state space by examining the sign of the
change in frequency with each year. Here we show two representative examples (A)
‘support’ and (B) ‘labor’. In gray are the observed frequencies, and these are converted
into signed changes, labeled as ‘þ ’ (þ1) for increasing frequency, and ‘� ’ (�1) for
decreasing frequency, from year to year. Note that ‘support’ shows distinct regimes of
consistent upward frequency change, while ‘labor’ shows an ebb and flow where
change is stable for a time until it shifts.

Fig. 10. Causal state example. (A) We show a simple model with a single causal state
generating sequences of þ1; �1 with each term generated independently and each
symbol equally likely. (B) We demonstrate a simple model with two causal states.
The causal state s1 is more likely (thicker arrow) to emit a þ1 and remain in the
same state than to emit a �1 and transition to state s�1.
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hitchhiking effect where loci undergoing positive selection will
impact the frequencies of nearby loci (Gillespie, 2004; Maynard
and Haigh, 2007).

3.3. Generative models of word frequency changes

Lastly, we utilize Causal State Modeling (CSM) to demonstrate
that word frequencies are generated by processes exhibiting sig-
nificant deviations from a random-unbiased walk. CSM emerged as
a topology-agnostic method for determining the underlying “dis-
crete causal states” and the transition probabilities in a discrete
state Markov process (Crutchfield, 1994; Shalizi and Shalizi, 2004).
In fact, an outcome of CSM is the inference of a hidden Markov
model (HMMs) but without needing to assume an underlying
topology of hidden states. The underlying theoretical principles
were developed for doubly-infinite sequences from a discrete
symbol space but can be adapted for finite sets of sequences (Shalizi
and Shalizi, 2004). In what follows we briefly describe CSM as
applied to our word frequency data and then demonstrate that
word frequency changes do not follow a neutral model (applied
introductions can be found in diverse domains, including: Boschetti,
2008; Dale and Vinson, 2013; Kelly et al., 2012).

CSM relies on a discrete sequence space, and so we first convert
observed word frequency changes to discrete states. While there
are several natural ways to do this, we simply convert each fre-
quency change to its sign by assigning a symbol 1 if the word
frequency increases and �1 if the word frequency decreases (see
Fig. 9). While we lose information in the magnitude of the change,
we can more clearly discern overall trends in the nature of the sign
changes. In particular, we interpret the sign of frequency as being
emitted from the outcome of a Bernoulli trial where we choose to
increase with probability p and decrease with probability ð1�pÞ.
However, the parameter p associated with this Bernoulli trial may
in fact change according to a hidden (causal) state.

The goal of CSM is to identify the set of equivalence classes (hidden
causal states) which are associated with a specific set of emission
probabilities and to uncover the rates of transitions between classes. In
the infinite sequence case, the equivalence classes consist of sets of
infinite prefixes; in the finite case aword length L is used. For example,
consider discrete sequence xn generated by a series of independent
coin flips where we associate 1 with heads and �1 with tails. Suppose
that L¼ 3 and we observe that for all strings of length L are equally
likely to be followed by 1 or �1:

Pðxnþ3 ¼ 1jxn; xnþ1; xnþ2Þ ¼ Pðxnþ3 ¼ �1jxn; xnþ1; xnþ2Þ ¼ 0:5:

From this we might reasonably conclude that the series of symbols is
generated by the outcomes of a single unbiased coin. As such, all
length L strings would belong to the same causal state (Fig. 10(A)).
However, if the emitted symbol depends on the current state then
there may be more than one causal state. In Fig. 10(B) we illustrate a
system with two causal states, each of which can be interpreted as a
biased coin. Coin s1 is more likely to emit a þ1 and remain in the
same state than a �1 and change states and similarly for s�1. We
again note that since we do not observe the sequence of causal states
directly, they represent “hidden” states.

We utilized a previously published method for CSM (Kelly et al.,
2012) on both the empirical and neutral data ðL¼ 3; po0:005Þ. In
comparison to the neutral data, the Google Ngram data differed in
two substantial ways. First, the Ngram data had a significantly
different distribution of causal states. For neutrally generated data,
only 5/6489 words required more than a single causal state. For
the Google Ngram data 431/6489 ð � 7%Þ required at least two
causal states, χ2ð1Þ ¼ 428:7; po10�10. Larger numbers of causal
states indicate words with more complicated dynamics. For
example, the fairly innocuous sounding word “burden” was pre-
dicted to have 5 causal states (see Fig. 11).
Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
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Second, in comparison with the neutral model, words with a
single causal state obeyed biased behavior. That is, the transition
probability þ1=�1 deviated from 0.50 more in the observed
(4.1%) than neutral case (3.8%), a small but reliable difference,
Welch's tð11;982:13Þ ¼ 5:04; po10�5. These subtly different
means are primarily due to many random and observed words
essentially approximating a coin flip. However, the distributions
between the observed and neutral case are different as well, with
more bias seen in the observed case – higher divergences from the
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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Fig. 11. Causal state analysis: “burden”. Words which undergo complex behavior in
the patterns of increasing and decreasing (main figure) may be characterized by
more complicated causal state models (inset). In this example, the word “burden” is
predicted to have 5 causal states.
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coin flip, even with only a single causal state, K–S test D¼ :08; po
10�10. This indicates that even for words whose frequency change
dynamics are consistent with a single causal state, they were likely
to be either increasing or decreasing during the entire duration.
Since we have focused on stable variants, one possibility for a
word decreasing in frequency is that it is on its way to being lost.
This is perhaps consistent with previous analyses of word fre-
quency dynamics which indicate patterns of novelty (birth) and
loss (death) of words are significant contributors to the statistical
properties of overall word frequency dynamics (Petersen et al.,
2012a).
4. General discussion

We note that in biological evolution there are several forces
which are commonly responsible for departures from neutrality:
drift, gene flow, mutations and selection (Gillespie, 2004). We have
showcased signatures in observed linguistic data that signal these
processes. By comparing to a stochastic neutral model of evolution
we have attempted to account for fluctuations in frequencies that
could be attributed to drift. Through focusing only on stable variants
and re-normalizing the data, we hoped to mediate the influences of
gene flow and mutations. Thus, after attempting to account for
these other forces impacting word frequencies we are left to con-
clude that the “non-neutral behavior” we observe in word fre-
quencies is consistent with a biased selective process.

As we described in the introduction, the mechanism underlying
such cultural fluctuation is still under debate (Acerbi and Bentley,
2014). One positionwe could take on the PCA results is that they are
consistent with the idea that cultural forces – such as war – shape
the way language is used. In this case, it is not merely the choices of
individuals aggregating at the population level, but also constraints
present already in the cultural environment that render particular
Please cite this article as: Sindi, S.S., Dale, R., Culturomics as a data
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words more or less useful under relevant conditions. The proce-
dures described in this paper may offer a means of identifying these
“selective sweeps” in historical linguistic data. We would agree with
Acerbi and Bentley (2014) that this cannot account for all of the
data. The general “kick” that seems to be present for various words
from year to year – expressed quantitatively in kurtosis – may
reflect a kind of biased copying at the individual level that is
amplified in a socially interacting community. One candidate for the
form for bias at the cultural level is suggested by evolutionary
biology; Turelli and Barton (1994) note that disruptive selection – a
type of natural selection that favors extreme over intermediate
values of a trait – can also generate high kurtosis. At present, we
cannot identify with any certainty the mechanism of these effects.
However the development of further “big data” approaches in
cultural data (e.g., Acerbi and Bentley, 2014) may provide incre-
mental operationalization of them, such as our PCA analysis here.

Besides this inevitable difficulty in isolating selective mechanism,
there are other limitations to the current study that future work may
explore. As described at the outset of this paper, we ignore “turnover”
rate, and thus neglect vocabulary loss or, equally important, the
introduction of new variants into the vocabulary. It is certainly possible
that the frequency of words we observe in our stable set will be
influenced by words which occur during some subset of the years in
our study. Nevertheless, the terms we explore here are among the
most frequent words in the English language, occurring consistently
for over 100 years. The fact that even this core vocabulary shows an
ebb and flow that may be attributed to amplification through cultural
selection is perhaps intuitive but, we would argue, nevertheless sur-
prising given the stability of these terms. The most intuitive account of
change for such variants would have been a neutral model, since one
might expect these stable variants to be fixed and subject only to
subtle frequency-dependent copying.

Our neutral model could be enhanced, and indeed a more
complex modeling framework itself may be a useful addition to
this kind of corpus analysis. A modeling framework could help
isolate the role of selection, and help us to investigate the role of
different mechanisms in generating the patterns of results we
observe in the historical data. For example, by exploring various
social factors, Nunn et al. (2009) use agent-based modeling along
with general-linear models to demonstrate the power of selection,
but also the potential role of different social variables, such as
prestige or consensus. This may be especially valuable in view of
these large historical data, because they present quantifiable “gold
standard” for what is observed in language change patterns.
Agent-based results may be compared to them directly. This is, of
course, a strategy that has been used elsewhere, such as in English
verb change (Hare and Elman, 1995), and is represented in wider
literature on language evolution (e.g., Hurford et al., 1998).

An additional limitation to our present study is that some words
are subject to sudden “pulses” or changes that take place in just one
year, and this can, by itself, increase K. K may therefore be useful for
identifying potential divergences, but perhaps cannot be used alone
to determine whether sweeps are taking place in some coherent
way. We would propose that coupling the K statistic with PCA
would indicate that these pulses are not simply noise in any
observed data. The two together would suggest divergence from
neutrality in a manner that suggests lower-dimensional – “cultu-
rally functional” – patterns of variation. Further, it is possible that a
linguistic analog of “genetic hitchhiking” is occurring whereby fre-
quencies words will fluctuate not through direct selection but their
associationwith words under selection (Barton, 2000). Coupling our
statistical approaches with the study of bi-grams, also available
through Google Ngram, may help to disambiguate these processes.

Though we have related our analysis of stable variants with that
of a “core genome”, we note that there are other linguistic data sets
which may be appropriate to consider. In 1955, Swadesh established
playground for tests of selection: Mathematical approaches to
rg/10.1016/j.jtbi.2015.12.012i
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a list of words deemed common across all human languages (Swa-
desh, 1955) that has since been revised several times. We compared
our list of stable variants with the 100 Swadesh words.4 We found
that 96 of the Swadesh words occurred in our list of stable variants
(the 4 missing words were louse, fingernail, belly and liver). While
we might expect that, given their essential nature, words on the
Swadesh list would be characterized by a single unbiased causal
state. However, we found about an equivalent fraction of the Swa-
desh words had more than 1 causal state (8/96).

Another interesting potential extension is to explore words that
are more stable than what would be anticipated by chance. While
we have focused on change and explored potential sources of
selection – like major cultural events – it may also be linguistically
interesting to quantify more or less stability (resistance to change)
relative to our various baselines. We leave this to future explora-
tion, but note that the “skeletal” features of language in the form
of grammatical word classes may show this pattern, and exhibit
slower change, though there is ongoing discussion about the
quantification of this idea (e.g., Greenhill et al., 2010).

Finally, we have attempted to draw commonalities between cul-
tural and biological evolution. We note that rather than simply an
application of insights from biological evolution, cultural evolution
offers many opportunities for discovering new and relevant dynamics
that are currently intractable in the realm of traditional evolutionary
biology. Due to social media, Google, and other online services, we are
now in the presence of a multitude of massive cultural data sets. In
contrast to the traditional biological realm, many of these cultural data
sets, such as the one we examine, demonstrate highly frequent
observations over a lengthy temporal scale. This offers us the ability to
examine time-varying selective processes and directly consider flow of
cultural units between historically disparate populations. This may
also provide a “playground,” as onemight call it, for developing further
tests of selection that may be newly applicable in the biological case.
As such, we believe that the cultural domain represents an important
source and opportunity for quantitative modeling and analysis inways
that will likely complement and spur new ideas in other scientific
disciplines (e.g., Bentley et al., 2011).
5. Conclusion

In our analysis, we have examined a large set of curated word
frequency data from Google Ngram representing words used in
English books over the past 100 years. To target our analysis, we
focused on “stable variants” – commonly used words throughout
the past 100 years. Surprisingly, we observed that even these
stable parts of the English language undergo substantial deviations
under what we expect from a neutral model.
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