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ABSTRACT
We study how decentralized agents can develop shared vo-
cabularies without global coordination. Answering this ques-
tion can help us understand the emergence of many commu-
nication systems, from bacterial communication to human
languages, as well as helping to design algorithms for sup-
porting self-organizing information systems such as social
tagging or ad-word systems for the web. We introduce a
formal communication model in which senders and receivers
can adapt their communicative behaviors through a type of
win-stay lose-shift adaptation strategy. We find by simula-
tions and analysis that for a given number of meanings, there
exists a threshold for the number of words below which the
agents can’t converge to a shared vocabulary. Our finding
implies that for a communication system to emerge, agents
must have the capability of inventing a minimum number of
words or sentences. This result also rationalizes the neces-
sity for syntax, as a tool for generating unlimited sentences.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems, Languages and structures,
Coherence and coordination
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self-organizing vocabularies, win-stay lose-shift

1. INTRODUCTION
We study the question of how decentralized agents can de-

velop a shared vocabulary without global coordination. This
is a fundamental question that underpins how we understand
the emergence of many communication systems arising in
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nature and in human society, e.g., how do different organ-
isms develop the communication needed to coordinate their
activities, how do encoding/decoding networks arise in the
brain, or how did human languages emerge? The study of
this question can also help us design algorithms that support
self-organizing information systems such as social tagging,
web ad-words, or peer-to-peer retrieval systems.

Two general frameworks, evolutionary and self-organizing,
have been proposed to study the emergence of communica-
tion systems. Evolutionary frameworks assume that vocab-
ularies of agents are inherited genetically and/or learned cul-
turally from parents or teachers. The driving force for the
emergence of shared vocabularies comes from mechanisms
in which good communicators produce more offspring with
similar vocabularies[2, 6, 7]. In contrast, in self-organizing
frameworks decentralized agents actively develop shared vo-
cabularies without global knowledge in a short span of time
by changing their own representations via distributed learn-
ing and positive feedback loops[1, 3, 4, 8]. The work re-
ported here can be seen as an effort in the self-organizing
camp.

Most existing work on the development of shared vocab-
ularies has been done using computer simulations and only
intuitive interpretations. While this is often suggestive, to
achieve a thorough understanding we need to augment sim-
ulation studies with mathematical characterizations of spe-
cific conditions and limitations under which the emergent
behaviors are stable. Recent work by Baronchelli et al.[1]
provides one example; they explain how a sharp transition
to a shared vocabulary observed in simulations can occur
as the density of certain inter-agent vocabulary hypotheses
grows beyond a “tipping point.”

In this paper, we focus on a formal communication model
in which senders and receivers can adapt their communica-
tive behaviors through a type of win-stay lose-shift learning
strategy[5]. To simplify the characterization of the dynam-
ics, we study a model that consists of two agents. Through
simulations and analysis, we give the conditions under which
the agents can develop a stable shared vocabulary.

2. WIN-STAY LOSE-SHIFT ADAPTATION
MODEL

Our communication model consists of two agents, called a
sender and a receiver. In our model, there are m meanings
{x1, · · · , xm}, and n words {y1, · · · , yn}. The sender and
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The sender’s dictionary The receiver’s dictionary
Round 0

meaning word wins
x1 0
x2 0
x3 0

word meaning wins
y1 0
y2 0
y3 0

Round 1 (play game on meaning x1, successful—a luck.)
meaning word wins

x1 y1 1
x2 0
x3 0

word meaning wins
y1 x1 1
y2 0
y3 0

Round 2 (play game on meaning x1, successful.)
meaning word wins

x1 y1 2
x2 0
x3 0

word meaning wins
y1 x1 2
y2 0
y3 0

Round 3 (play game on meaning x2 via word y1, failed.)
meaning word wins

x1 y1 2
x2 0
x3 0

word meaning wins
y1 x1 1
y2 0
y3 0

Round 4 (play game on meaning x3 via word y1, failed.)
meaning word wins

x1 y1 2
x2 0
x3 0

word meaning wins
y1 0
y2 0
y3 0

Figure 1: An illustration of repeated play of com-

munication games.

receiver each have a dictionary, consisting of a list of en-
tries. The sender’s entry is of the format <meaning,word>

or <x, y>. Each entry is indexed by a meaning; it indicates
that for each meaning there is one and only one entry. For
each entry <x, y>, there is an associated number that in-
dicates how many more times the sender has successfully
communicated the meaning x via the word y than he has
failed to do. Such a number is called the wins of the entry,
and denoted by winss(x), where the subscript s indicates
the sender. We require wins ≥ 0. When there is no win
(i.e., wins = 0), the word y will be empty. Initially, all
entries have no win.

Similarly, the format <word, meaning> or <y, x>represents
the receiver’s entry. Each entry is indexed by a word; it in-
dicates that for each word there is one and only one entry.
For each entry <y,x>, there is an associated number that
indicates how many more times the receiver has successfully
interpreted the word y to the meaning x than he has failed
to do. Such a number is called the wins of the entry, and
denoted by winsr(y), where the subscript r indicates the re-
ceiver. When there is no win (i.e., wins = 0), the meaning
x will be empty. Initially, all entries have no win.

A communication event is initiated by the sender who tries
to communicate a meaning to the receiver. The meaning
that the sender wants to communicate is drawn according
to some probability distribution. (In this short paper, we
will assume it is uniform distribution.) To communicate a
meaning, say, x, the sender needs to represent it as a word.
The sender looks up the meaning x in his dictionary. Let
the found entry be <x, y>. If winss(x) > 0, then the sender
will use word y to represent the meaning x. If winss(x) =
0, which means the word y is empty, then the sender will
randomly choose a word to represent the meaning. (This is
the idea of win-stay lose-shift.)

When receiving a word, say, y, the receiver looks up the
word in her dictionary. Let the found entry be <y,x′>. If
winsr(y) > 0, then the receiver will use the meaning x′ to
interpret the word y. If winsr(y) = 0, which means the
meaning x′ is empty, then the receiver will randomly choose
a meaning as the interpretation to the word.

If the interpreted meaning x′ is correct (we suppose suc-
cessful task performance can provide feedback on commu-
nicative success), i.e., x′ = x, we say the communication is
successful; otherwise, the communication is failed. When
the communication succeeds, the sender will update the
wins of the entry indexed by x according to the reward
rule: winss(x) ← winss(x) + 1. If the word field is empty
he will replace it with the word y. Similarly, the receiver
will update the wins of the entry indexed by y according to
the rule: winsr(y) ← winsr(y) + 1. If the meaning field is
empty she will replace it with the meaning x.

When the communication fails, the sender will update
the wins of the entry indexed by x according to the rule:
winss(x) ← winss(x)− 1 if winss(x) > 0. If winss(x) = 0
he will replace the word field with empty. Similarly, the re-
ceiver will update the wins of the entry indexed by y accord-
ing to the rule winsr(y)← winsr(y)− 1 if winsr(y) > 0. If
winsr(y) = 0 she will replace the meaning field with empty.

We call one communication event between the sender and
receiver a communication game, and thus we model the vo-
cabulary development process as repeated play of commu-
nication games (Fig. 1).

3. SIMULATIONS
In this section, we show by simulations that for a given

number of meanings, there exists a threshold of the num-
ber of words below which the agents can’t develop a shared
vocabulary using the win-stay lose-shift adaptive commu-
nication model. In Fig. 2(a), we can see that there ex-
ists a dramatic phase transition when the number of words
n is around a threshold n∗ = 21. When n is above the
threshold, the two agents can develop a communication sys-
tem with converged communicative performance given by
min{ n

m
, 1}; that is, the sender and receiver can develop

min{n, m} meaning-word agreements. However, when the
number of words is below the threshold, it rapidly approaches
random guess—the sender and receiver can’t develop any ef-
fective communication system, or a shared vocabulary. The
three graphs (c,d,e) in Fig. 2 illustrate the dynamics of com-
munication over time for three specific settings of the num-
ber of words: n = 10, n = 21, and n = 40.

4. A SIMPLE ANALYSIS
In this section, we give a simple analysis aiming to under-

stand why the above phase transition phenomenon happens.
The basic idea is that soon or later the sender and receiver
will form a temporary meaning-word agreement. Then, in
the following rounds, this temporary agreement may be ei-
ther reinforced or weakened. If the temporary agreement has
a better chance to be reinforced than to be weakened, ran-
dom walk theory tells us that the temporary agreement will
have a positive probability of becoming a permanent agree-
ment. We will show that the probability for a temporary
agreement to become permanent depends on the relation
between the number of words and the number of meanings.
When the number of meanings is fixed, the more the words,
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(a) generation=1000 (b) number of words n = 10
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(c) number of words n = 21 (d) number of words n = 40

Figure 2: (a) Communication performance (success ra-

tio) as a function of the number of words n when the

number of meanings is held constant at m = 30. A dra-

matic phase transition occurs when the number of words

n is around a threshold n
∗ = 21, above which the agents

can develop a communication system with eventual com-

munication performance given by min{ n
m

, 1}. The perfor-

mance numbers, marked by red circles, are obtained by

averaging the results from 100 runs (after 1000 genera-

tions, where each generation contains m = 30 rounds of

play). (b,c,d) Dynamics of adaptive communication over

time (only 200 generations are shown). The thick lines in

the graphs are obtained by averaging the results of 100

runs, 5 of which are shown as thin lines. All meanings

are uniformly distributed.

the better the chance for a temporary agreement to become
permanent. (See Fig. 1 for a better understanding of the
following analysis.)

For simplicity, we will assume that all meanings are uni-
formly distributed. Since we have m meanings, so given a
meaning the probability that it is chosen for play is 1

m
.

Without loss of generality, let a temporary agreement be
on the meaning-word pair (x1, y1). With probability 1

m
, at

the next round the sender will play game on the meaning
x1. Clearly the communication on meaning x1 will succeed,
so the wins value of the sender and receiver, winss(x1) and
winsr(y1), will increase by 1. Therefore we have a reinforce-
ment probability of 1

m
that the temporary agreement will be

reinforced.
With probability 1 − 1

m
, at the next round the sender

will play game on a meaning other than x1, say, x2. If
the wins value of x2 in the sender’s dictionary is zero, i.e.,
winss(x2) = 0, then the sender will randomly choose a word
from the n words to represent the meaning x2, and so there
is a probability of 1

n
that word y1 will be used to represent

the meaning x2. If this happens, the communication will

fail, because the receiver will interpret word y1 as meaning
x1. And then, the wins of the word y1 in the receiver’s
dictionary, winsr(y1), will decrease by 1. In summary, we
have a weakening probability of (1− 1

m
) 1

n
that the temporary

agreement will be weakened.
If the reinforcement probability, 1

m
, is larger than the

weakening probability, (1− 1
m

) 1
n
, the temporary agreement

will become stable. Therefore, by solving the following in-
equality

1

m
> (1−

1

m
)
1

n

we can see that when n > m−1, the sender and receiver can
guarantee to establish a permanent agreement. Note that if
in the above analysis we consider the case of winss(x2) > 0,
then the weakening probability will be even lower, and thus
the condition n > m−1 can be relaxed. This partly explains
why in the above simulations the threshold value is n∗ = 21
rather than n∗ = m− 1 = 29.

Clearly, the two agents can develop as many as min{m, n}
stable agreements, since there are at most min{m, n} dis-
tinct pairs of meaning-word. And thus, the maximum con-
verged communicative performance should be min{m, n} 1

m

or equivalently min{ n
m

, 1}.

5. CONCLUSION
We have presented an adaptive communication model in

which a sender and a receiver can adapt their communicative
behaviors through a simple learning strategy—win-stay lose-
shift. By computer simulations and mathematical analysis,
we find that for a given number of meanings, there exists a
threshold for the number of words below which the agents
can’t develop a shared vocabulary. Our finding shows that
for a communication system to emerge, agents must be able
to invent a minimum number of words or sentences. This
result also rationalizes the necessity for syntax, as a tool for
generating unlimited sentences.

Though this analysis treats just two communicating agents,
we believe it can be extended to the case of multiple agents—
one sender and many receivers, many senders and one re-
ceiver, or many senders and many receivers.
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